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ABSTRACT
IMAGE RECONSTRUCTION METHOD TO SEPARATE SIMULTANEOUS

ENCODED SLICES WITH IN-PLANE AND THROUGH-PLANE
ACCELERATION IN FMRI

Ke Xu, M.S.

Marquette University, 2025

FMRI has been a safe medical imaging tool to study brain function by observing
the spatial and temporal changes in brain metabolism in recent decades. To capture
brain functionality more efficiently, efforts have been made to accelerate the number
of images acquired per unit of time that create each volume image, without losing
full anatomical structure. The Simultaneous Multi-Slice (SMS) technique provides
a reconstruction method where multiple slices are aliased and acquired concurrently.
The Through-Plane Acceleration (TPA) method is one of the SMS techniques that can
reduce data acquisition time in proportion to the number of aliased images acquired
per unit of time. Other image acquisition acceleration techniques, such as the In-Plane
Acceleration (IPA) method, focus on reducing the total image scan time by skipping
partial lines in the frequency domain (k -space), resulting in a “fold-up” artifact after
inverse Fourier transform. To un-alias and un-fold the acquired images, the Sensitivity
Encoding (SENSE) and the GeneRalized Autocalibrating Partial Parallel Acquisition
(GRAPPA) techniques can be utilized but still have their drawbacks. Due to the short
physical distance and high similarity in coil sensitivity information between the aliased
voxels, a singular matrix problem arises in the design matrix, and the influence of
the geometry factor (g-factor) increases. To manually increase the distance and the
difference in coil sensitivity information between the aliased images, the Controlled
Aliasing in Parallel Imaging (CAIPI) and view angle tilting (VAT) techniques achieve
slice-wise image shift by applying different radiofrequency pulse sequences. In this
dissertation, multi-direction image shift techniques are incorporated with the multi-
coil separation of parallel encoded complex-valued slices (mSPECS) technique in a
Bayesian approach. The TPA and IPA techniques are integrated with Hadamard
phase encoding and a novel 2D Hadamard phase encoding technique. A bootstrapping
technique and an artificial aliasing of calibration images are applied to enhance the
condition of the design matrix. Through the investigation of the novel SMS techniques
on both simulation and experimental fMRI dataset, our model significantly reduces
total image scan time while preserving and detecting task signal effectively.
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CHAPTER 1: INTRODUCTION

1.1 FMRI Background

As a powerful and non-invasive medical imaging tool, functional Magnetic Reso-

nance Imaging (fMRI) has played a predominant role in brain imaging studies. The

activity of neurons cannot be directly detected but is correlated to the Blood Oxygen

Level Dependence (BOLD) contrast signal which is used as a proxy (Ogawa et al.

(1990)). When the task-related neuronal region transitions from the resting state to

the task state, the blood flow to the active area of the brain increases, leading to

a higher ratio of oxyhemoglobin to deoxyhemoglobin (Glover (2011)). By detecting

task-related changes in the BOLD signal inside our brain, the magnetic resonance

(MR) scanner can map our brain with a unique radio frequency (RF) pulse sequence

(Ogawa et al. (1990), Glover (2011)). The Gradient Echo Echo-Planer Imaging (GE-

EPI) pulse sequence is widely used in fMRI studies to shorten the scan time and

decrease the influence of the motion of subjects by acquiring full k -space spatial infor-

mation within a single excitation (Mansfield (1977); Rzedzian et al. (1983); Stehling

et al. (1991); Poustchi-Amin et al. (2001)). For each excitation of the GRE-EPI pulse

sequence, a zig-zag data collection pattern is followed sequentially to form the full

k -space with each data point represents complex-valued spatial frequency informa-

tion for the corresponding image. However, conducting an fMRI experiment requires

acquiring multiple brain images at different positions, forming what is known as a

volume-image. As a result, acquiring a volume-image fMRI time series takes a rela-

tively long time to ensure a steady and reliable task-related activation signal.
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In-Plane Acceleration

In 1986, Hyde introduced a parallel image acquisition technique that incorporated

coil combination by utilizing spatially variable receive coil sensitivities for parallel

imaging (Hyde et al. (1986)). The full brain image can be reconstructed by applying

the Sensitivity Encoding (SENSE) approach to combine weighted spatial frequencies

from each coil into one single k -space array (Pruessmann et al. (1999)). In structural

and functional MRI studies, the time to measure a volume image is dependent upon

how rapidly the amount of data necessary to reconstruct an image can be measured.

In order to accelerate the number of images measured per unit time, a topic of study

has been to measure less data but still be able to reconstruct a high-quality image

with clear anatomical information. To reconstruct images using less data, multiple

receiver coils are used where each coil measures sensitivity-weighted images (Sod-

ickson and Manning (1997); Nencka and Jesmanowicz (2013)). Initially, accelerated

imaging was aimed at In-Plane Acceleration (IPA) where spatial frequency data are

partially skipped, and each coil measured fewer lines of the spatial frequency ar-

ray. Figure 1.1A shows the acquisition of spatial frequency data with an acceleration

factor of IPA = 2. The data are acquired sequentially following a zig-zag pattern

(black dots), with every other line in k -space (white dots) skipped. Figure 1.1B shows

the acquired subsampled k -space from four receiver coils. The dimension of the ac-

quired subsampled k -space is half of the full k -space due to IPA = 2. In parallel

imaging techniques, like Generalized Autocalibrating Partially Parallel Acquisitions

(GRAPPA) (Griswold et al. (2002)), a single slice has been excited, and partial lines

of k -space skipped, resulting in a sensitivity weighted aliased image for each coil, that

is combined into a single complete image. Bayesian techniques have been applied to

improve the resolution of the reconstructed images by incorporating the anatomical

information from prior distributions into the k -space (Kornak et al. (2010); Kornak

et al. (2020)). Other in-plane imaging acceleration techniques like partial Fourier
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Coil 1

Coil 2

Coil 3

Coil 4

A. B.

Figure 1.1: A. The subsampled spatial frequency domain incorporated with IPA
approach and the acceleration factor equal to 2. B. The acquired subsampled k -space
acquired from four receiver coils.

imaging technique (Feinberg et al. (1986); Noll et al. (1991)) can acquire half of the

lines in the k -space. The unacquired spatial frequency data can be determined due to

the Hermitian symmetry property of the k -space to reconstruct real-valued images.

Moreover, a rapid three dimensional volume-image method has been established to

sample the k -space (Lindquist et al. (2008)). However, considering some fixed time

blocks in the data-acquiring process, for instance, imaging encoding and the proper

time for T ∗
2 contrast in one excitation, the scan time will not decrease significantly in

IPA techniques.

Through-Plane Acceleration

More recently, Simultaneous Multi-Slice (SMS) techniques were developed and

discussed (Souza et al. (1988); Rowe et al. (2013); Barth et al. (2016)). Figure 1.2

shows the 3D and 2D view of an example for SMS technique with four images are

acquired concurently and four receiver coils. The SMS technique is extensively used

in fMRI studies, and it allows for acquiring fMRI data with high resolution by using

a multiband (MB) radiofrequency (RF) within a reduced repetition time (TR). Com-
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Slice 1
Slice 3
Slice 5
Slice 7

Figure 1.2: The 3D view (left) and 2D view (right) of an example for SMS technique
with four slices and four coils.

pared with conventional parallel imaging techniques, in SMS techniques, multiple

slices are acquired concurrently and aliased together in one excitation, and hence, the

image-acquiring time will decrease with a factor of the total number of aliased slices.

Thus, Through-Plane Acceleration (TPA) is achieved using SMS techniques, offering

a more efficient approach to image acquisition compared to In-Plane Acceleration

(IPA) methods.

In this dissertation, we present three novel SMS imaging reconstruction techniques

with high acceleration factors. The first technique incorporates only the TPA accel-

eration method. The second technique combines both IPA and TPA acceleration

methods. The third technique also combines IPA and TPA acceleration methods,

but additionally utilizes the GRAPPA technique to estimate the missing spatial fre-

quencies in k -space.
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1.2 Image Shift Techniques

Since multiple slices are acquired at the same time for one excitation of the TPA

technique, a short distance between aliased slices will lead to a high similarity of voxel

and coil sensitivity information. When applying the standard SENSE method, this

may cause a singular matrix problem and strong inter-slice signal leakage will ap-

pear on the reconstructed images. As a result, incorrect anatomical information from

other brain slices may appear, making the interpretation of the reconstructed images

more difficult. In fMRI studies, the brain image can be shifted along three directions:

the phase-encoding (PE) direction (vertically in this dissertation), the readout (RO)

direction (horizontally in this dissertation), and PE and RO direction concurrently

(vertically and horizontally at the same time in this dissertation). To decrease the

influence of the geometry properties of the coil sensitivity maps, techniques like “con-

trolled aliasing in parallel imaging results in higher acceleration” (CAIPIRINHA),

“blipped-CAIPIRINHA” (Blipped-CAIPI), and Hadamard phase-encoding provide

other possible ways to minimize the influence of the geometric factor (g-factor) and

increase the conditioning of the slices aliasing matrix (Breuer et al. (2005); Jesman-

owicz et al. (2011); Setsompop et al. (2012)). By modulating the phase for each line

in k -space and imparting each line with a specific angle, the field-of-view (FOV) is

moved in the phase-encoding direction. Applying a unique phase modulation amount

to each slice in the aliased image-acquiring process increases the physical distance be-

tween the aliased voxels. Therefore, the difference of coil sensitivity for each slice will

increase and the influence of the g-factor for each excitation is minimized. Moreover,

to shift the brain image along the RO direction, a technique like the view angle tilt-

ing (VAT) approach applies compensation gradients to the slice selection direction to

correct the chemical-shift artifacts in the image scanning process (Cho et al. (1988);

Kim et al. (2012)). The distance shifted along the RO direction is relate to the view

angle θ in the data acquisition process. Furthermore, to further increase the physical
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distance between two aliased voxels and expose more information beneath the coil

sensitivities, the FOV can not only be moved along the vertical PE direction but also

the horizontal RO direction. The study “multislice CAPIPRINHA using view angle

tilting technique” (CAIPIVAT) (Jungmann et al. (2015), Kim et al. (2016)) proposes

a method combining the CAIPIRINHA technique and View Angle Tilting (VAT)

(Kim et al. (2012)) technique together by applying a unique compensation gradient

of VAT. Figure 1.3 shows the k -space representations for the CAIPIRINHA, VAT,

and CAIPIVAT techniques, along with the reconstructed brain images after applying

the inverse Fourier transform. In Figure 1.3, white dots represent spatial frequency

data points with a phase modulation of π, while black dots indicate spatial frequency

data points without phase modulation. The star in Figure 1.3 denotes the application

of an additional global phase modulation along the readout (RO) direction to produce

horizontal image shift artifacts.

1.3 Complex-valued Bayesian Model

The future can be predicted based on past data. As a dominant methodology in

statistical studies, the Bayesian approach can be integrated into other research areas

by incorporating prior knowledge. Functional magnetic resonance imaging (fMRI)

studies can be interpreted following the Bayesian methodology but with complex-

valued observations. To set up a complex-valued Bayesian linear model, the complex-

valued observation can be written as equation 1.1:

aC = XCβC + εC . (1.1)

In equation 1.1, aC is a p× 1 complex-valued observed vector, XC is a p× q complex-

valued design known matrix, βC is a q × 1 complex-valued unobserved regression

coefficient vector, and εC is a complex-valued measurement error vector with same

dimension as vector aC , where p is the number of observations, and q is the number of
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Figure 1.3: Top row: the image shift process corresponding to the CAIPIRINHA
technique (shifted vertically). Middle row: the image shift process corresponding
to the VAT technique (shifted horizontally). Bottom row: the image shift process
corresponding to the CAIPIVAT technique (shifted vertically and horizontally).
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regression coefficients. Moreover, the real and imaginary component of the measure-

ment error εC follow normal distribution with εR, εI ∼ N(0, σ2Ip). Equation 1.1 can

be reformulated through a real-valued isomorphism to transform the complex-valued

model into a real-valued model:aR
aI

 =

XR −XI

XI XR


βR

βI

+

εR
εI

 . (1.2)

In equation 1.2, the dimension of observation vector a = [aR; aI ] is 2p× 1, the dimen-

sion of design matrix X = [XR,−XI ;XI , XR] is 2p× 2q, the dimension of regression

coefficient vector β = [βR; βI ] is 2q × 1, and the dimension of measurement error

vector ε = [εR; εI ] is 2p × 1. Thus, the likelihood distribution of the multivariate

observation is:

P (a | X, β, σ2) ∝ (σ2)−
2p
2 exp

[
− 1

2σ2
(a−Xβ)′(a−Xβ)

]
, (1.3)

with independent and identical noise variance for a1, · · · , ap. The coil measurements,

assuming there is not a coil covariance follow a normal distribution, a ∼ N(Xβ, σ2I2p).

In the linear regression model, the regression coefficients can be estimated through

maximum likelihood estimation (MLE):

β̂MLE = (X ′X)−1X ′a. (1.4)

And the estimated variance through MLE is:

σ̂2
MLE =

1

2p
(a−Xβ̂)′(a−Xβ̂). (1.5)

Based on prior knowledge and experience, the regression coefficient β is specified

to have a normal prior distribution P (β | σ2), and the variance of the measurement
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error σ2 is specified to have an inverse gamma prior distribution P (σ2 | ·). Thus, the

posterior distribution of regression coefficient β and variance σ2 is proportional to the

joint distribution of the likelihood and the prior distributions:

P (β, σ2 | ·) ∝ P (a | X, β, σ2)P (β | σ2)P (σ2 | ·). (1.6)

The joint posterior distribution of the regression coefficient β and variance of mea-

surement error σ2 can be integrated to obtain their marginal distributions and hence

their marginal posterior mean (MPM) and variance. More details are provided in

following chapters.
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CHAPTER 2: A BAYESIAN APPROACH OF MSPECS-CAIPIVAT

In this Chapter, we introduce the mSPECS-CAIPIVAT model in a Bayesian man-

ner. We incorporate different slice-wise image shift techniques and the Hadamard

phase-encoding technique together in which different voxel combinations is acquired

for each excitation. In the unaliasing process, calibration reference images are arti-

ficially aliased, and the artificial aliasing matrix used to assess hyperparameters of

prior distributions in the separation process. The artificial aliased calibration imag-

ing technique and bootstrap sampling approach is combined and applied into the

model to eliminate inter-slice signal leakage in the reconstruction images at the cost

of a slightly increased variance of the calibration images forming the prior variance.

The marginal posterior distribution can be obtained by integration to calculate the

margianal posterior mean and variance of the estimated reconstruction voxel. The

mSPECS-CAIPIVAT model provides a solution to significantly reduce the scan time

with a high acceleration factor, meanwhile providing high-resolution and high-quality

reconstruction images.

2.1 The Data Acquiring Process in mSPECS-CAIPIVAT

2.1.1 Image Shift Techniques in mSPECS-CAIPIVAT

As mentioned in Chapter 1.2, the physical distance between two aliased voxels can

be increased by applying the CAIPIRINHA, the VAT, and the CAIPIVAT techniques

to achieve slice-wise image shifts, thus reducing the dependence on the geometry

of the coil array. The CAIPIRINHA technique can move the FOV along the PE

direction (vertical) by modulating the phase for each line in k -space. The VAT

technique can move the FOV along the RO direction (horizontal) by modulating

the phase along the RO direction. Whereas the CAIPIVAT technique can shift the

FOV along two directions, PE (vertical) and RO (horizontal), by applying a unique
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compensation gradient of VAT. Through these three image shift techniques along with

the Hadamard slice encoding technique, the g-factor of the reconstructed images can

be reduced. Since the g-factor is related to the signal-to-noise ratio (SNR), in SMS

studies, giving the definition of the SNR (Pruessmann (2004)):

SNRSMS = SNRfull/(g
√
R), (2.1)

where R is the IPA factor. From equation 2.1, the SNRSMS is strongly influenced

by the geometric properties of the coil array, g-factor. It depends on the number and

location of the coils, the phase-encoding direction, the voxel location. Thus, the g-

factor is not a constant value but varies across each voxel within the images (Preibisch

et al. (2015)). A short physical distance between two aliased voxels increases the g-

factor due to the high similarity in their coil sensitivity profiles, thereby reducing the

SNRSMS as described in equation 2.1. Therefore, increasing the physical distance

between two aliased voxels is one of our strategies. The CAIPIRINHA technique, the

VAT technique, and the CAIPIVAT technique can reduce the influence of the g-factor

by applying a partial in-plane image shift. Considering the 1D inverse discrete Fourier

transform, a periodic time series y(t) sampled at n time points ∆t apart is described

as below:

y(p∆t) =
∑n

2
−1

q=−n
2

f(q∆ν)ei
2π
n
pq, (2.2)

where ∆ν is the temporal frequency resolution and ∆ν = 1/(n∆t). It is the sum-

mation of the Fourier amplitude coefficients at multiple various frequencies. In equa-

tion 2.2, y(p∆t) and f(q∆ν) are complex-valued quantities with real and imaginary

components. When we shift the whole time series from p∆t to p′∆t, where y(p′∆t) is

same as y(p∆t) sampled at n time points ∆t apart with a different order from y(p∆t),
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a field-of-view shift ∆y occurs and is:

∆y = y((p− p′)∆t) =
∑n

2
−1

q=−n
2

f(q∆ν)ei
2π
n
pqe−i 2π

n
p′q, (2.3)

for p = 1, . . . , n. The FOV shift only depends on the phase change in k -space, which

equals −2πp′q/n. If p′ = 1, which means the image moves one voxel distance in the

PE direction, the modulation quantity of phase is −2πq/n. If half of the image is

shifted in the PE direction (FOV/2), p′ = n/2, the modulation of phase should be

−πq. Therefore, the phase of even lines in k -space should impart π and the phase of

odd lines should impart 0. If the FOV/4 shift of the image needs to be achieved, the

modulation of the phase for each line in the k -space needs to be adjusted to different

amount.

In this chapter, the principal idea of the CAIPIRINHA technique is applied first.

For each slice within each excitation, we imply ∆y = (l − 1)FOV/Ns in-plane image

shift, where l = 1, . . . , Ns and Ns is the total number of aliased slices. On the

TR dimension, we also imply the CAIPIRINHA technique for each excitation by

∆y = (m − 1)FOV/Ns in-plane image shift, where m = 1, . . . , Ns. Thus, with the

in-excitation and through-excitation image shift, at the TR = Ns +1 excitation time

point, the aliased artifacts should be the same as the TR = 1 excitation time point.

Figure 2.1A shows an example of an in-excitation and through-excitation image shift

process with Ns = 4 incorporating with the CAIPIRINHA technique. When TR = 5,

the image shift pattern for each slice should be the same as the time point TR = 1.

The VAT technique is also applied in this chapter. For each excitation, each slice is

shifted horizontally with a amount of image shift distance is related to the view angle

(Kim et al. (2016)). There is no image shift along the phase-encoding (PE) direction.

Figure 2.1B shows an example of an in-excitation and through-excitation image shift

process with Ns = 4 incorporating with the VAT technique. When TR = Ns + 1,
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A.

B.

C.

Figure 2.1: A. An example of in-excitation and through-excitation image shift pro-
cess with Ns = 4 by applying the CAIPIRINHA technique. B. An example of in-
excitation and through-excitation image shift process with Ns = 4 by applying the
VAT technique. C. An example of in-excitation and through-excitation image shift
process with Ns = 4 by applying the CAIPIVAT technique.
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the image shift pattern for each slice should be the same as the time point TR = 1.

Furthermore, the principal idea of the CAIPIVAT technique will also be applied.

Similar to the CAIPIRINHA technique, ∆y = (l− 1)FOV/Ns for the in-plane image

shift and ∆y = (m− 1)FOV/Ns for the through-plane image shift is applied to each

excitation along the PE direction. For each slice within each excitation, a unique

image shift will appear horizontally on the RO direction with the support of the

CAIPIVAT technique. The shift distance for each slice along the RO direction can

be calculated and depends on the distance between the desired aliased slices, the

compensation gradient, and the RO gradient. A modest slice-wise shift is applied for

each excitation to ensure the brain image is not outside the FOV. Figure 2.1C displays

an example of in-excitation and through-excitation image shift process of Ns = 4

incorporating with the CAIPIVAT technique. Besides the same amount of the FOV

shift in- and through-excitation on the PE direction as CAIPIRINHA technique, slice

1 and slice 3 will have a FOV shift to the left and slice 2 and slice 4 will have a FOV

shift to the right on the RO direction according to the CAIPIVAT technique. Thus,

comparing with the CAIPIRINHA technique approach, the overlapping area between

two desired aliased images will decrease and the independence of the sensitivity for

each coil will increase.

2.1.2 The Hadamard Phase Encoding

The Hadamard encoding technique is a well-developed volume excitation method.

The conventional MR imaging techniques have been limited by the size of the ma-

trix for the acquired aliased images. The Hadamard phase-encoding method allows

the increment of the size of the acquired aliased image matrix by aliasing in both

frequency and phase encoding dimensions. With the support of this simultaneous

binary-encoded technique, the TR will decrease, and the SNR ratio will improve.
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The Hadamard matrix is given by:

H2n =

H2n−1 H2n−1

H2n−1 −H2n−1

 = H2 ⊗H2n−1 , and H1 =

[
1

]
, H2 =

1 1

1 −1

 , (2.4)

where ⊗ denotes the Kronecker product. It is an orthogonal and full rank matrix

with elements of either +1 or -1. In the mSPECS-CAIPIVAT study, each excitation

is sequentially coordinated with a unique Hadamard aliasing pattern. To improve the

computational efficiency, we select the size of the Hadamard phase-encoding matrix to

be the same as the number of the aliased slices. Thus, the size of the Hadamard phase-

encoding matrix is Ns ×Ns. In this aim, Hδ,z is the δth row and zth column element

of Hadamard matrix corresponding to zth slice in δth TR. Due to the characteristics

of the Hadamard aliasing coefficient matrix, the number of aliased slices must be a

power of two, which may represent a potential limitation of this approach. Alternative

techniques, such as orthogonal contrast, may offer a potential solution for handling

aliasing scenarios involving an odd number of slices. Same as the sequential properties

of image shifts, the Hadamard phase-encoding aliasing pattern will cycle through

along the TR dimension. For example, the Hadamard aliasing pattern of TR = Ns+1

should be the same as TR = 1. Figure 2.2 shows an example of the Hadamard aliasing

pattern when Ns = 4. Figure 2.2A shows a 4×4 Hadamard matrix, Figure 2.2B shows

the Hadamard coefficients for each slice in the fMRI time series, Figure 2.2C shows

the phantom brain images multiplied by Hadamard aliasing coefficients at the first

4 TRs. In order to increase the distance between two aliased voxels and reduce the

influence of the g-factor, we introduce the term “packet” to indicate the slice aliasing

circumstance. For example, under a circumstance with Ns = 8 and Nα = 2, we put

odd number slices into one packet (i.e., slice 1, slice 3, slice 5, and slice 7), and even

number slices into another packet (i.e., slice 2, slice 4, slice 6, and slice 8). For each

excitation, all slices in one packet are measured simultaneously as one single array.
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Figure 2.2: An illustration of Hadamard phase-encoding aliasing pattern when
Ns = 4. A. shows the H4 matrix with plus sign denotes as 1 and minus sign demotes
as -1. B. shows sequential Hadamard aliasing coefficient for each slice in the fMRI
time series. C. shows the phantom brain images are multiplied by the Hadamard
aliasing coefficients at the first 4 TRs.

Therefore, we will have 2 packets in this situation, and both packets will coordinate

with the same Hadamard phase-encoding aliasing pattern. With the help of the

packet technique, the slice-to-slice signal leakage artifacts will diminish.

2.1.3 A Single Aliased Voxel

Given a single aliased voxel, aj,γ,δ, at the location (x, y) of aliased images, with

δth Hadamard aliasing pattern and γth matrix rotation operation, measured at coil

j, is defined as the summation equation:

aj,γ,δ =
∑Ns

z=1
Hδ,zRγ,zSj,zβz + εj. (2.5)

In equation 2.5, aj,γ,δ is a 2 × 1 complex-valued vector with the real and imaginary

components of the acquired aliased voxel value measured at coil j, with rotating

operation γ and Hadamard phase-encoding aliasing pattern δ. The Hadamard phase-

encoding aliasing pattern, Hδ,z, is the same as the definition in Chapter 2.1.2, where
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parameter δ corresponds to the order of Hadamard coefficients pattern, and parameter

z corresponds to the slice number. The coefficients of Hδ,z is either +1 or -1. The

matrix rotation operator, Rγ,z, is closely related to the definition of Chapter 2.1.1.

Subscript γ denotes the order of the matrix rotation operation for each TR, and

parameter z corresponds to the number of slices. The coil sensitivity matrix, Sj,z,

is a 2 × 2 skew symmetric matrix with the real and imaginary components at coil

j for slice z, S(j, z) = [SR,−SI ;SI , SR]j,z. The true voxel value, βz = [βzR; βzI ], is

a 2 × 1 vector with the real and imaginary parts of the aliased voxel in slice z, and

the real part is stacked on the top of the imaginary part. The measurement noise,

εj = [εR; εI ], is a 2 × 1 vector with real and imaginary parts stacked. The mean of

measurement noise is E(εj) = 0, and the covariance of error is cov(εj) = σ2I2, where

I2 is a 2× 2 identity matrix.

Considering the measured aliased voxel in equation 2.5 across the Nc coils for

Ns aliased slices with Nα time-points in the fMRI time series, equation 2.5 can be

expressed as:

a = XAβ + ε. (2.6)

Nα denotes the number of sequential time-points of the Hadamard encoded pattern,

and it is an integer between 1 and Ns. Therefore, the net acceleration of the fMRI

time series acquisition is defined as A = Ns/Nα. In equation 2.6, the dimension of a

is 2NcNα × 1 including the real and imaginary components. The measurement error,

ε, has the same dimension as a with the mean E(ε) = 0 and covariance cov(ε) =

σ2I2NcNα . The dimension of the aliasing matrix, XA, is 2NcNα × 2NsNr, where Nr is

an indicator of the number of matrix rotation operations. In this study, we generally

assign Nr = Ns to improve the computational efficiency. The true voxel value, β, has

the dimension of 2NsNr×1, including the real and imaginary value for each voxel. For

the δth Hadamard aliasing pattern and γth matrix rotating operation, the aliasing
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matrix (XA)γ,δ across Nc coils is defined as:

(XA)γ,δ =

Hδ,1Rγ,1


S1,1

...

SNc,1

 , . . . , Hδ,NcRγ,Nc


S1,Ns

...

SNc,Ns


 . (2.7)

Rγ,z is the image shift indicator which operates on coil sensitivity maps for each slice,

and not matrix multiplication. Across the Nα excitations, the aliasing matrix XA is

written as:

XA =

[
(XA)1 , . . . , (XA)Nα

]′

. (2.8)

Since the measurement error has a Gaussian distribution, the likelihood of the

acquired aliased voxel for the Nc coils and the Nα excitations is:

P (a | XA, β, σ
2) ∝ (σ2)−

2NcNα
2 exp

[
−(a−XAβ)

′(a−XAβ)/(2σ
2)
]
. (2.9)

To separate the aliased images and estimate the voxel value for each slice, the

least square estimation method is used. The estimated separate voxel value, β̂, can

be calculated by:

β̂MLE = (X
′

AXA)
−1X

′

Aa. (2.10)

Equation 2.10 also can be used to calculate the reconstructed brain images in the

SENSE model. In general, the determinant of XA is close to zero, det (XA) ≈ 0,

which leads to failure in calculating the inverse of X
′
AXA. Thus, a bootstrap sampling

method incorporated with artificial aliasing of reference calibration images technique

are combined with the mSPECS-CAIPIVAT model. This combined technique can

reduce the inter-slice signal leakage artifacts by quantifying prior information in cal-

ibration images in a Bayesian model. More details is shown in the following section.

Figure 2.3 illustrates the data-acquiring process of the mSPECS technique (without
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Figure 2.3: The data-acquiring process of the mSPECS technique (without any
image shifts), the mSPECS-CAIPIRINHA technique (shift vertically), the mSPECS-
VAT technique (shift horizontally), and the mSPECS-CAIPIVAT technique (shift
vertically and horizontally).
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any image shifts), the mSPECS-CAIPIRINHA technique, the mSPECS-VAT tech-

nique and the mSPECS-CAIPIVAT technique.

2.2 The Bootstrap Sampling and Artificial Aliasing of Calibration Images

In the previous simultaneous multi-slice (SMS) study, bootstrap sampling and

artificial aliasing of calibration reference image techniques have been proven as pow-

erful tools to support the separation and reconstruction process of aliased images.

By increasing the size of the aliasing matrix and adding a regularizer into the least

square estimation function, the correlation induced by the separation process will

decrease and the slice-to-slice signal leakage eliminated. In the fMRI time series, for

each excitation, Ns bootstrap sampled coil slice images are randomly chosen from

fully sampled calibration reference images. The mean calibration image is calculated

for each slice and is artificially aliased, which is then repeated for each TR.

Given a single TR, the calibration images will have the same shift pattern as

acquired images, thus, the total number of different combinations for different voxels

should beNs, which is equal to the rank of the chosen Hadamard matrix. After remov-

ing the combination of the acquired aliasing pattern from the full voxel combination

pattern, Ns − 1 different combinations remain. Therefore, for a single excitation, a

voxel across Ns slices, measured through Nc coils, ν, can be represented as a vector

with the dimension of 2NsNc(Ns− 1)× 1 with the real component stacked on the top

of the imaginary component, corresponding to the remaining combinations without

the acquired aliasing combination. The mean bootstrap sampled voxel, ν̄, is the same

dimension as ν for each time point. The artificial aliasing calibration images, ν, across

Ns slices measured through Nc coils at Nα sequential time point can be expressed as:

ν = Cν̄ = CAµ+ Cη. (2.11)

The dimension of the measurement error vector, η, is the same size as the vector
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ν. The mean of the measurement error for the calibration images is E(η) = 0,

and the covariance is cov(Cη) = τ 2I2NcNα(Ns−1), where I2NcNα(Ns−1) is the identity

matrix. It is assumed that there is no correlation between the real and imaginary

components of the calibration images, and no correlation between coils. The true

voxel value vector, µ, is constructed with the real and imaginary components of the

calibration voxel with the dimension 2Ns × 1. The artificial aliasing matrix, CA,

is following the same aliasing rules as acquired images do, rotating by the matrix

rotation operation and multiplying the Hadamard encoding aliasing coefficients. Due

to the combination of acquired aliasing voxel removed from the full combinations,

the dimension of the artificial aliasing matrix is 2NcNα(Ns − 1) × 2Ns. Same as

the assumption in the acquired aliasing images, we assign Nr = Ns to improve the

computational efficiency. For example, considering a situation with Ns = 4 and

Nr = 4, for each time point, Ns − 1 = 3 combinations should be applied for the

calibration images. Thus, for a given excitation, the δth Hadamard aliasing pattern

and γth matrix rotating operation, the aliasing matrix (CA)γ,δ across Nc coils is:

(CA)γ,δ =

Hδ,1Rγ,1


S1,1

...

SNc,1

 , . . . , Hδ,NcRγ,Nc


S1,Ns

...

SNc,Ns


 . (2.12)

The notation HR denotes the remaining combination for the Hadamard encoding

aliasing pattern with the matrix rotation pattern after removing the combination of

the acquired aliasing pattern. Incorporating Nα sequential time points, the artificial

aliasing matrix, CA, is:

CA =

[
(CA)1 , . . . , (CA)Nα

]′

. (2.13)

Thus, the prior distribution of the artificial aliased calibration voxel is:

P (ν | CA, µ, τ
2) ∝ (τ 2)−

2NcNα(Ns−1)
2 exp

[
−(ν − CAµ)

′(ν − CAµ)/(2τ
2)
]
. (2.14)
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The Equation 2.6 and Equation 2.11 can be combined together, which will generate:

y =

a
ν

 =

XAβ

CAµ

+

 ε

Cη

 . (2.15)

Based on the previous section, the covariance for the acquired aliasing measure-

ment error is cov(ε) = σ2I2NcNα , and the covariance for the artificial aliasing mea-

surement error is cov(Cη) = τ 2I2NsNc(Ns−1), the covariance for vector, y, consisting of

the acquired aliasing voxel value and the artificial aliasing voxel value is:

cov(y) =

σ2I2NcNα 0

0 τ 2I2NcNα(Ns−1)

 . (2.16)

Without the support of the bootstrapping technique, there is no variation in the

artificial aliasing calibration images, i.e. the same calibration reference images is

artificially aliased for each TR, which will lead to τ 2 = 0. However, by applying the

bootstrapping technique, for each excitation, the Ns calibration images are randomly

selected and averaged to obtain ν̄, and hence τ 2 = σ2. Thus, the covariance for vector,

y, is:

cov(y) = σ2I2NcNαNs . (2.17)

2.3 The Prior Distribution

In Chapter 1.3, we discussed the prior distribution can be observed from the

artificial aliasing of the calibration images. To estimate the reconstructed voxel value

separated from the aliased slices, the voxels β are specified to have a normal prior

distribution β ∼ N(µ, σ2(C
′
ACA)

−1), therefore:

P (β | σ2, µ, CA) ∝ (σ2)−
2NsNr

2 exp
[
−(β − µ)′(C

′

ACA)(β − µ)/(2σ2)
]
. (2.18)
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The measurement error variance σ2 is specified to have an inverse gamma prior dis-

tribution:

P (σ2 | λ, δ) ∝ (σ2)−(λ+1) exp
[
−δ/σ2

]
, (2.19)

where hyperparameters µ, λ and δ are assessed from the pre-scan calibration images.

2.4 The Hyperparameters Assessment

Following the complex-valued Bayesian process discussed in Chapter 1.3, the un-

known hyperparameters can be assessed using the prior calibration images. In the

image acquisition process of the mSPECS-CAIPIVAT model, two series of brain im-

ages from two different fMRI experiments are acquired: the calibration images and the

aliased images. The aliased images correspond to the mSPECS-CAIPIVAT model,

whereas the calibration images, on the other hand, are obtained using the traditional

method without any image shift techniques or acceleration factors. Thus, the cal-

ibration images can be treated as prior information, and hyperparameters can be

estimated from them. According to our Bayesian mSPECS-CAIPIVAT model, to

estimate the voxel value β, we need to estimate the hyperparameters µ, λ, and δ. In

Equation 2.18, the artificial aliasing matrix CA is known information and it strictly

follows the artificial aliasing rules in Chaper 2.2. The hyperparameter µ represents

the averaged voxel value after the bootstrap resampling process, and its estimation

is described in detail in Chapter 2.2. The hyperparameters λ and δ are the shape pa-

rameter and the scale parameter of the inverse-gamma distribution and we can assess

them from calibration images. As discussed in the Chapter 2.2, for each excitation,

Ns brain images will be randomly chosen from the fully sampled calibration images

and averaged to assess hyperparameter µ. Moreover, the calibration reference images

can be utilized to estimate sample noise variance σ2
0. Therefore, the hyperparameters

µ, λ and δ can be assessed by µ = ν̄, λ = n0 and δ = (n0 − 1)σ2
0, where n0 is the

number of calibration images and σ2
0 is sample noise variance.
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2.5 The Posterior Estimation

Following Chapter 2.3 and Chapter 2.4, the joint posterior distribution for the

voxel values β and the noise variance σ2 can be obtained by combining the likelihood

equation (Equation 2.9), the prior distribution of β (Equation 2.18) and the prior

distribution of σ2 (Equation 2.19) together along with algebra to become:

P (β, σ2 | ·) ∝ (σ2)−
p
2 exp

[
−((β − β̂MPM)′(X

′

AXA + C
′

ACA)(β − β̂MPM) + w)/(2σ2)
]
,

(2.20)

where p = 2NcNα+2NsNr−2λ−2, and w = a
′
a+µ

′
C

′
ACAµ−(X

′
Aa+C

′
ACAµ)

′
(X

′
AXA+

C
′
ACA)

−1(X
′
Aa+C

′
ACAµ) + 2δ. After integration, the marginal posterior distribution

of estimate voxel value β is a student-t distribution β ∼ t(ν⋆):

f(β | ·) ∝
{
1 +

1

ν⋆
(β − β̂MPM)

′
[
(X

′
AXA + C

′
ACA)

τ 2

]
(β − β̂MPM)

} ν⋆+1
2

, (2.21)

with ν⋆ = p− 1 and τ 2 = w/ν⋆. The marginal posterior mean (MPM) for β̂ is:

E(β | ·) = β̂MPM = (X
′

AXA + C
′

ACA)
−1(X

′

Aa+ C
′

ACAµ). (2.22)

The matrix C
′
ACA acts as a regularizer for the matrix inverse to improve the condition

of the equation. Since the true voxel value from calibration images is close to the true

voxel value from acquired aliased images, Equation 2.22 leads to E(β | ·) = β. The

marginal posterior covariance of the voxel value β̂ is:

cov(β | ·) = ν⋆

ν⋆ − 2
τ 2(X

′

AXA + C
′

ACA)
−1. (2.23)

The covariance of the voxel value β̂ is diagonal due to the structure of the design

matrix. As a results, the separated voxel values are uncorrelated, meaning that there

will not be signal leakage between slices. Moreover, the marginal posterior distribution
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of σ2 is an inverse gamma distribution, σ2 ∼ IG(γ, w/2):

f(σ2 | ·) ∝ (σ2)−
p
2
−1 exp

[
−w/(2σ2)

]
, (2.24)

with γ = (p− 1)/2. The MPM of the noise variance σ2 is:

E(σ2 | ·) = w/2

γ
, (2.25)

and the marginal posterior variance of the noise variance is:

var(σ2 | ·) = w/2

(γ − 1)2(γ − 2)
. (2.26)
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CHAPTER 3: A BAYESIAN APPROACH OF MSPECS-IPA-CAIPIVAT

In this chapter, to further reduce the total image scan time, we introduce a novel

SMS image reconstruction technique called “a controlled aliasing in parallel imag-

ing with view angle tilting approach and in-plane acceleration method for multi-coil

separation of parallel encoded complex-valued slices” (mSPECS-IPA-CAIPIVAT) in

a complex-valued Bayesian manner. This novel SMS technique combines in-plane

acceleration technique and through-plane acceleration technique, hence the total im-

age acquisition time further reduced compared with the mSPECS-CAIPIVAT model

discussed in Chapter 2. This approach builds upon the mSPECS-IPA method by

integrating both TPA and IPA acceleration techniques into a unified 2D acceleration

technique (Kociuba (2016)). By leveraging 2D acceleration, a higher overall accelera-

tion factor can be achieved, with the net acceleration equal to the product of the TPA

and IPA factors. In this novel image reconstruction method, we incorporate an image

shift technique into the model to reduce the similarity of coil sensitivity information

for aliased voxels, thereby improving image reconstruction accuracy.

3.1 The Data Acquiring Process in mSPECS-IPA-CAIPIVAT

3.1.1 Image Shift Techniques in mSPECS-IPA-CAIPIVAT

As discussed in Chpater 1.1, the SMS technique enables the concurrent acquisi-

tion of multiple brain slice images, reducing the total volume scan time depending on

the selected TPA factor. Unlike single-slice acquisition, multi-slice acquisition results

in a short physical distance between aliased images. When applying the SENSE al-

gorithm to reconstruct brain images and capture activity signals, an ill-conditioned

matrix problem arises due to the high similarity of coil sensitivity information between

closely spaced aliased voxels. Consequently, strong inter-slice signals and anatomi-

cal structures from other slices may appear as artifacts in the reconstructed images.
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To eliminate those wrong anatomical artifacts from other slices on the reconstructed

brain images, decreasing the similarity of the coil sensitivity information is the pri-

mary strategy. Therefore, we introduced the images shift techniques to artificially

increase the physical distance between aliased images. To assess the performance

of the image reconstruction method at high acceleration factors, we define the noise

amplification factor, also known as the geometry factor (g-factor), as described in

(Pruessmann (2004); Setsompop et al. (2012); Welvaert and Rosseel (2013)):

gSMS =
SNRfull

SNRaccelerate

√
R
. (3.1)

In equation 3.1, SNRfull is the signal-to-noise (SNR) ratio for the reconstructed im-

ages from techniques without acceleration factors and image shift techniques, and

it can be assessed from the calibration images. SNRaccelerate is the SNR value for

the reconstructed images with acceleration factors, and the IPA acceleration factor

R indicates the omission of spatial frequency data along the phase encoding direc-

tion. The closer the value of gSMS is to 1, the better the reconstruction quality

of the accelerated method. According to equation 3.1, high similarity of coil sen-

sitivity information induces the high gSMS value, which leads to a reduction of the

SNRaccelerate ratios for the reconstructed images. Thus, to increase the SNRaccelerate

value and improve the performance of the novel acceleration technique, three image

shift techniques discussed in Chapter 1.2 have been incorporated.

3.1.2 The 2D Hadamard Phase Encoding

As discussed in Chapter 2.1.2 the traditional Hadamard encoding technique is a

well-developed volume-image method and widely used in fMRI studies (Souza et al.

(1988)). The conventional magnetic resonance (MR) imaging techniques have been

limited by the size of the matrix for the acquired aliased images. The traditional

Hadamard phase encoding method allows the increment of the size of the acquired
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aliased image matrix by aliasing in both frequency and phase encoding dimensions.

With the support of this simultaneous binary-encoded technique, multiple slices can

be acquired concurrently for each excitation, enabling the implementation of SMS.

As a result, the repetition time (TR) is reduced, and the SNR is improved. The

Hadamard matrix is given by:

H2n =

H2n−1 H2n−1

H2n−1 −H2n−1

 = H2 ⊗H2n−1 ,where H1 =

[
1

]
, H2 =

1 1

1 −1

 , (3.2)

where ⊗ denotes the Kronecker product. It is an orthogonal and full rank matrix

with elements of either +1 or -1. In this study, since the TPA approach and the

IPA approach are combined to further decrease the total image scan time, and the

image shift techniques are incorporated to decrease the influences of the geometry

properties, we introduce a novel 2D Hadamard phase encoding technique to our ap-

proach. The novel 2D Hadamard phase encoding technique is developed and based

upon the Hadamard phase encoding technique with elements of either +1 or -1. How-

ever, different from the traditional Hadamard phase encoding technique, in order to

guarantee the orthogonality property for each aliased image, different 2D Hadamard

coefficients will be assigned to different segments for different slices. Figure 3.1 shows

the 2D Hadamard phase encoding aliasing coefficient for Ns = 2 and Ns = 4 situ-

ations, where Ns is the number of aliased slices for each excitation. First, for each

excitation or each TR, the through-plane Hadamard coefficient will be assigned to dif-

ferent slices. Second, for each segment of each slice, the in-plane Hadamard coefficient

will be assigned to a different excitation. To maintain the orthogonality property for

each segment of each slice, the in-plane Hadamard coefficient starts from the second

column of the Hadamard coefficient for the first excitation. At the last TR of the

cycle, the in-plane Hadamard coefficient is the first column of the Hadamard matrix.

Finally, the 2D Hadamard coefficient will be the product of the through-plane and



29

A. B.

Figure 3.1: A. The 2D Hadamard phase encoding coefficient for Ns = 2. B. The
2D Hadamard phase encoding coefficient for Ns = 4.

in-plane Hadamard coefficient for each segment of each slice and each excitation. The

size of the in-plane and through-plane Hadamard coefficient matrix is equal to the

number of aliased slices, Ns, for each excitation.

3.1.3 The Combination of Image Shift Techniques and 2D Hadamard Phase

Encoding

To accomplish the goal of decreasing the coil sensitivity information similarity

of aliased voxels, and thus decreasing the influence of the g-factor, we combined the

image shift techniques and the 2D Hadamard phase encoding technique together.

Figure 3.2 shows the image shift situation corresponding to different SMS techniques

for the first 4 TRs along with the 2D Hadamard coefficients for each segment of

the slices under the circumstance with Ns = 4. Compared with the mSPECS-IPA

method (Figure 3.2A), the other three methods are incorporating with different im-

age shift directions and amount for each slices and each excitation. Figure 3.2B

shows the image shift situation along with the 2D Hadamard coefficients incorpo-

rating with the mSPECS-IPA-CAIPIRINHA method. For each slice within each
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TR, a ∆y = (l − 1)FOV/Ns of in-plane image shift on the vertical direction will

be implied, where l = 1, . . . , Ns. For each excitation, a ∆y = (m − 1)FOV/Ns of

in-plane image shift on the vertical direction will be implied, where m = 1, . . . , Ns.

Thus, with the in-plane and the through-excitation CAIPIRINHA image shift, the

voxel aliasing situation at TRNs + 1 will be identically same as aliasing situation at

TR1. Figure 3.2C shows the image shift situation along with the two-dimensional

Hadamard coefficients incorporating with the mSPECS-IPA-VAT method. Unlike

the mSPECS-IPA-CAIPIRINHA method, the mSPECS-IPA-VAT method only shift

the image along the horizontal direction. Thus, for each excitation and each slice,

no image shift happens along the vertical direction, but a modest amount of image

shift will be applied for each slice and each excitation along the horizontal direction.

Furthermore, similar to the mSPECS-IPA-CAIPIRINHA method, the voxel alias-

ing situation at time point TRNs + 1 will be same as the voxel aliasing situation at

time point TR1. Figure 3.2D shows voxel aliasing situation incorporated with the

mSPECS-IPA-CAIPIVAT method. Since the mSPECS-IPA-CAIPIVAT method is

combining the principle idea of mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-VAT

method together, the image shift will happen along the vertical and the horizontal

direction. For each slice within each excitation, a ∆y = (l − 1)FOV/Ns amount of

the image shift along the vertical direction, where l = 1, . . . , Ns, and the amount of

the image shift technique corresponding to the VAT technique along the horizontal

direction will be implied. Moreover, for each excitation, a ∆y = (m − 1)FOV/Ns

of through-excitation image shift will be implied along the vertical direction, where

m = 1, . . . , Ns. Same as the other three methods, at time point TRNs + 1, the voxel

aliasing situation will be identical as time point TR1. Comparing these four image

shift techniques, the overlapping area between summed slices are decreasing from

the mSPECS-IPA method to the mSPECS-IPA-CAIPIVAT method. However, since

the novel proposed SMS technique is aiming at combining TPA and IPA technique
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Figure 3.2: The voxel aliasing situation for the first 4 TRs with Ns = 4 circum-
stance incorporating with A. mSPECS-IPA image shift technique, B. mSPECS-IPA-
CAIPIRINHA technique, C. mSPECS-IPA-VAT technique, and D. mSPECS-IPA-
CAIPIVAT technique.

together, thus, making the voxel aliasing situation clear after the IPA technique is

another vital process to discuss in this paper.

Figure 3.3 displays the voxel aliasing situation after the IPA aliasing technique

for mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-

IPA-CAIPIVAT technique under the circumstance with Ns = 4. In Figure 3.3, those

dots in the same color indicating voxels are aliased together. From Figure 3.3, for the

top two methods, mSPECS-IPA and mSPECS-IPA-CAIPIRINHA, four voxels at the

same position are aliased together, whereas for the bottom two methods, only two
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Figure 3.3: The voxel aliasing situation with Ns = 4 for mSPECS-IPA, mSPECS-
IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT technique.

voxels at the same position are aliased together. Moverover, comparing the mSPECS-

IPA and the mSPECS-IPA-CAIPIRINHA method, after the IPA acceleration tech-

nique, the mSPECS-IPA-CAIPIRINHA has the more complex aliasing artifacts and

the overlapping area is larger than the mSPECS-IPA method especially at the center

part of the acquired images. Comparing the bottom two methods, mSPECS-IPA-VAT

and the mSPECS-IPA-CAIPIVAT technique, the similar conclusion can be made.

3.1.4 A Single Aliased Voxel

Given an excitation δ in the fMRI time series, we define ISδ,z notation indicating

the image shift pattern for the zth slice and the δth TR, corresponding to one of the

mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and the mSPECS-

IPA-CAIPIVAT technique, and it follows the definition in Chapter 3.1.1. Thus, for
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a single aliased voxel at the location (x, y) of the acquired aliased images with TPA

and IPA acceleration techniques, corresponding to the 2D Hadamard coefficients at

time point δ, measured at jth coil, is defined as the summation equation:

aj,δ =
IPA∑
k=1

Ns∑
z=1

Hδ,z,kSISδ,z ,kβISδ,z ,k + εj,δ. (3.3)

In equation 3.3, the acquired aliased voxel value aj,δ is a complex-valued data with

real and imaginary component, aC = aR + iaI , and parameter k is the IPA indicator.

The 2D Hadamard coefficient, Hδ,z,k, is a real-valued orthogonal matrix corresponding

to the δth excitation, zth slice and the kth IPA process, and it strictly follows the

definition of the 2D Hadamard phase encoding in Chapter 3.1.2. All of the element

of the Hδ,z,k coefficient matrix is either +1 or -1. The coil sensitivity information

matrix, SISδ,z ,k, is a complex-valued data point with real and imaginary component,

SC = SR + iSI , corresponding to the kth IPA process and the image shift process

at δth excitation and zth slice. The true voxel value, βISδ,z ,k, is a complex-valued

data point with real and imaginary component, βC = βR + iβI , corresponding to the

kth IPA process and the image shift process at δth excitation and zth slice. The

measurement error, εj,δ, is also a complex-valued data point with real and imaginary

component, εC = εR+iεI , corresponding to the δth time point and jth coil. Moreover,

the real and imaginary component of measurement error is specified to be a normal

distribution with mean E(εR, εI) = 0 and variance var(εR, εI) = σ2.

Considering the acquired aliased voxel in equation 3.3 across total Nc coils, Nα

time points and the Ns slices in the whole fMRI time series, the real-valued isomorphic

representation of equation 3.3 can be expressed similar to equation 1.1:

a = XAβ + ε. (3.4)



34

In equation 3.4, a = [aR; aI ] is a real-valued vector with dimension 2NcNα × 1. The

real-valued aliasing matrix XA = [(XA)R,−(XA)I ; (XA)I , (XA)R] is known prior in-

formation including the 2D Hadamard coefficients and the coil sensitivity information

across the Nc coils, Nα time points and the Ns slices. Thus, the dimension of the

aliasing matrix XA is 2NcNα×2Ns. For the δth excitation, the known aliasing matrix

(XA)δ across Nc coils and Ns slices is defined as:

(XA)δ =

Hδ,1


S1,1

...

SNc,1

 , . . . , Hδ,Nc


S1,Ns

...

SNc,Ns


 . (3.5)

Across the Nα excitations, the equation 3.5 can be expressed as:

X
′

A =

[
(XA)

′

1 , . . . , (XA)
′

Nα

]
. (3.6)

The true voxel value in equation 3.4, β = [βR; βI ], is a vector we want to estimate,

with dimension 2Ns × 1. The measurement error in equation 3.4, ε = [εR; εI ] has

the same dimension as the a vector. The real and imaginary component of the

measurement error is specified to be normal distributed with mean E(ε) = 0 and

covariance cov(ε) = σ2I2NcNα , where I2NcNα is the identity matrix.

Thus, in order to separate the aliased images and estimate the true voxel value

for each slice, the maximum likelihood estimation in equation 1.4 can be applied and

the estimated voxel value, β̂MLE, can be calculated by:

β̂MLE =
(
X

′

AXA

)−1

X
′

Aa. (3.7)
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Moreover, the covariance of the voxel value β̂, can be estimated by:

cov(β̂MLE) = σ2
(
X

′

AXA

)−1

. (3.8)

According to the methodology of the combination of image shift techniques and

the 2D Hadamard phase encoding technique, the novel proposed SMS method accel-

erates the image acquiring process along the TPA and the IPA dimension. However,

the relative short scan time leads to the less data information collected during the

image acquiring process compared with the traditional imaging technique without

acceleration techniques. Furthermore, it also leads to the ill-condition of the designed

aliasing matrix which will cause failure to calculate the inverse of X
′
AXA. Thus,

coming up with a technique that is capable to fix the ill-condition designed matrix

problem and hence calculate the inverse problem is the next priority. In this study, we

introduced the bootstrap sampling technique along with the artificial aliasing of the

calibration images technique to solve this problem. By applying these two techniques

into the novel image shift SMS technique, the designed aliasing matrix is made to be

full rank and invertible and the inter-slice signal leakage can be eliminated.

3.2 The Bootstrap Sampling and Artificial Aliasing of Calibration Images

Based on the discussion in the previous chapters, to make the designed aliasing

matrix to be full rank and invertible, slices information from the calibration images

can be utilized as the reference information. The bootstrap sampling technique is a

widely used tool which can decrease the correlation induced by the image separation

process and eliminate the inter-slice signal leakage. In the image separation process,

for each excitation, the bootstrap sampling technique will be applied to the calibration

images. The bootstrapping size for each excitation is related to the TPA factor, which

is equal to the number of aliased sliced for each excitation and the IPA factor. Thus,

for each excitation in the fMRI time series, NsR bootstrapped sampled slices will be
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randomly chosen from the fully sampled calibration image time series. The randomly

chosen slices will be averaged and the mean calibration images will be utilized for the

artificial aliasing process.

For each excitation, the same image shift pattern will be applied to both ac-

quired aliased images and the artificial aliased calibration images. But different 2D

Hadamard aliasing coefficient matrix will be applied to acquired aliased images and

the artificial aliased calibration images. Figure 3.4 shows the 2D Hadamard aliasing

coefficient for acquired aliased slices (red box) and the artificial aliased calibration

slices (blue box) for the first 4 TRs with Ns = 4. For each segment of each slice,

the white part means the Hadamard coefficient is +1, and the black part means the

Hadamard coefficient is -1. Moreover, the 2D Hadamard aliasing coefficient for ac-

quired aliased slices and artificial aliased calibration slices at time point TRNs+1 will

be identical as TR1. Based on the 2D Hadamard aliasing coefficients for acquired

aliased slices and the artificial aliased calibration slices, for each excitation, Ns − 1

combinations of 2D Hadamard aliasing coefficient remain for the artificial aliasing

process.

Similar to equation 3.4, for a single excitation, a single voxel, ν, from the artificial

aliasing calibration aliased slices located at (x, y) across Ns slices, measured through

Nc coils can be expressed as:

ν = Cν̄ = CAµ+ Cη. (3.9)

In equation 3.9, the artificial aliased voxel value, ν = [νR; νI ], is a vector with real

and imaginary component and dimension 2NsNc(Ns − 1) × 1. The mean bootstrap

sampled voxel, ν̄ = [ν̄R; ν̄I ], is a vector with dimension 2Ns × 1. The true calibration

voxel value, µ = [µR;µI ], and the measurement error, η = [ηR; ηI ], have the same

dimension with the mean bootstrap sampled voxel vector. Moreover, the mean of
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Figure 3.4: The the 2D Hadamard aliasing coefficients for acquired aliased slices
(red box) and the artificial aliased calibration slices (blue box) for the first 4 TRs
with Ns = 4.

the measurement error is E(Cη) = 0 and covariance is cov(Cη) = τ 2I2NsNc(Ns−1)

where I2NsNc(Ns−1) is the identity matrix. If the bootstrap sampling technique does

not incorporate, i.e. the same calibration images are keep using into the model, then

the covariance of the measurement error is τ 2 = 0, thus the correlation between the

reconstructed slices is induced by the image separation process. However, under the
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assistance of the bootstrap sampling technique, τ 2 = σ2, and the covariance of the

measurement error of the calibration image is cov(Cη) = σ2I2NsNc(Ns−1).

The artificial aliasing matrix, CA in equation 3.9, is a known prior information

including the 2D Hadamard coefficients for the artificial aliasing slices and the coil

sensitivity information across Nc coils, Nα time points and Ns slices. Thus, the

dimension of the artificial aliasing matrix, CA, is 2NsNc(Ns − 1)× 2Ns. For the δth

excitation, the known artificial aliasing matrix (CA)δ across Nc coils and Ns slices is

defined as:

(CA)δ =

Hδ,1


S1,1

...

SNc,1

 , . . . , Hδ,Nc


S1,Ns

...

SNc,Ns


 . (3.10)

The notation H indicates the remaining 2D Hadamard aliasing coefficient for each

excitation after removing the 2D Hadamard aliasing coefficient for the acquired aliased

images. Across the Nα excitations, the equation 3.10 can be expressed as:

C
′

A =

[
(CA)

′

1 , . . . , (CA)
′

Nα

]
. (3.11)

3.3 The Likelihood, Prior, and Joint Distribution

As discussed in Chapter 1.3, the acquired aliased voxel values across the whole

brain image are independent and identically distributed and the measurement error

for each acquired aliased voxel is specified to be Gaussian distributed. Thus, the

likelihood distribution (equation 1.3) of the acquired aliased voxel is:

P (a | XA, β, σ
2) ∝ (σ2)−

2NcNα
2 exp

[
− 1

2σ2
(a−XAβ)

′(a−XAβ)

]
. (3.12)
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Following the methodology of the Bayesian approach, the voxel value from calibration

images can be utilized as prior information. Moreover, in Chapter 1.3 the voxel value,

β, is specified to have a normal prior distribution. Therefore, the prior distribution

of the voxel value β ∼ N(µ, σ2(C
′
ACA)

−1):

P (β | CA, µ, σ
2) ∝ (σ2)−

2NsNr
2 exp

[
− 1

2σ2
(β − µ)′(C

′

ACA)(β − µ)

]
. (3.13)

Moreover, in Chapter 1.3, the variance of the measurement error, σ2 is specified to

have an inverse gamma prior distribution:

P (σ2 | λ, δ) ∝ (σ2)−(λ+1) exp

[
− δ

σ2

]
, (3.14)

where hyperparameters µ, λ and δ are assessed from the calibration images. The

posterior distribution of the voxel value, β, and the variance of the measurement

error, σ2, follows the joint distribution as equation 1.6:

P (β, σ2 | ·) ∝ P (a | XA, β, σ
2)P (β | CA, µ, σ

2)P (σ2 | λ, δ). (3.15)

3.4 The Hyperparameters Assessment

Before the image acquisition process of the novel proposed SMS model, a time

series of calibration images will be collected first. The calibration image time series

will be acquired through the traditional fMRI technique, and unlike the novel SMS

model incorporating with different image shift techniques and 2D Hadamard aliasing

coefficient. The calibration image time series is acquired without any image shift

techniques or aliasing coefficient, no task experiment will be executed during this time

series. As discussed in Chapter 3.3, the calibration images can be utilized as prior

information, hence the unknown hyperparameters can be assessed from calibration
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time series. In equation 3.15, the acquired aliasing matrix XA and the artificial

aliasing matrix CA are known prior information that we do not need to assess from

the calibration image time series. The hyperparameters µ, λ, and δ, on the other

hand, need to be assessed from the calibration image time series. As discussed in

Chapter 3.2, the hyperparameter µ is the averaged voxel value after the bootstrap

resampling process. For each excitation in the time series, Ns brain images will be

randomly chosen from the fully sampled calibration images and averaged to assess

the hyperparameter averaged voxel value µ = ν̄. The shape parameter λ and the

scale parameter δ from inverse gamma distribution in equation 3.14, also need to

be assessed from the calibration image time series. After the bootstrap resampling

process, the sample noise variance σ2
0 can be estimated from the calibration image

time series. Thus, the shape parameter can be assessed by λ = n0, and the scale

parameter can be assessed by δ = (n0 − 1)σ2
0, where n0 is the number of calibration

images and σ2
0 is sample noise variance.

3.5 The Posterior Estimation

According to the discussion in Chapter 1.3, Chapter 3.3, and Chapter 3.4, the

joint distribution (equation 3.15) of the likelihood distribution of acquired aliased

(equation 3.12), the prior distribution of the voxel value β (equation 3.13), and the

prior distribution of the noise variance σ2 (equation 3.14) can be calculated after

algebra:

P (β, σ2 | ·) ∝ (σ2)−
p
2 exp

[
− 1

2σ2
((β − β̂MPM)′(X

′

AXA + C
′

ACA)(β − β̂MPM) + w)

]
,

(3.16)

where p = 2NcNα+2NsNr−2λ−2, and w = a
′
a+µ

′
C

′
ACAµ−(X

′
Aa+C

′
ACAµ)

′
(X

′
AXA+

C
′
ACA)

−1(X
′
Aa+ C

′
ACAµ) + 2δ. Moreover, as discussed in Chapter 1.3, the posterior

distribution of the voxel value, β, and the noise variance, σ2 can be integrated through

the MPM technique. Therefore, the marginal posterior distribution of estimate voxel
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value β after integration is a student-t distribution β ∼ t(ν⋆):

f(β | ·) ∝
{
1 +

1

ν⋆
(β − β̂MPM)

′
[
(X

′
AXA + C

′
ACA)

τ 2

]
(β − β̂MPM)

} ν⋆+1
2

, (3.17)

with ν⋆ = p − 1 and τ 2 = w/ν⋆. The marginal posterior mean (MPM) for β̂ after

integration is:

E(β | ·) = β̂MPM = (X
′

AXA + C
′

ACA)
−1(X

′

Aa+ C
′

ACAµ). (3.18)

In equation 3.18, the matrix C
′
ACA acts as a regularizer for the matrix inverse to

improve the condition of the equation. Since the true voxel value from calibration

images is close to the true voxel value from acquired aliased images, equation 3.18

leads to E(β | ·) = β. The marginal posterior covariance of the voxel value β̂ is:

cov(β | ·) = ν⋆

ν⋆ − 2
τ 2(X

′

AXA + C
′

ACA)
−1, (3.19)

the separated voxel values are uncorrelated, meaning that there will not be signal

leakage between slices.

Moreover, the marginal posterior distribution of σ2 after integration is an inverse

gamma distribution, σ2 ∼ IG(γ, w/2):

f(σ2 | ·) ∝ (σ2)−
p
2
−1 exp

[
−w/(2σ2)

]
, (3.20)

with γ = (p− 1)/2. The MPM of the noise variance σ2 is:

E(σ2 | ·) = w/2

γ
, (3.21)
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and the marginal posterior variance of the noise variance is:

var(σ2 | ·) = w/2

(γ − 1)2(γ − 2)
. (3.22)
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CHAPTER 4: A GRAPPA APPROACH OF MSPECS-IPA-CAIPIVAT

In the previous two chapters, we discussed the mSPECS-CAIPIVAT model in

a Bayesian manner, incorporating the TPA acceleration technique and three image

shift techniques to reduce the total scan time in Chapter 2. The reconstructed image

results from the mSPECS-CAIPIVAT model outperform traditional image reconstruc-

tion methods, as will be presented in Chapter 5.2. We also discussed the mSPECS-

IPA-CAIPIVAT model in a Bayesian manner, integrating the IPA and TPA combined

acceleration technique to further decrease the total image acquisition time in Chap-

ter 3. This model applies image shift techniques corresponding to different shifting

directions. However, due to the further reduction in scan time, the dimension of

the acquired aliased image decreases, requiring greater consideration of the variety of

aliased voxel information. Moreover, as will be discussed in Chapter 5.3, the recon-

struction results from the mSPECS-IPA-CAIPIVAT model are sensitive to several fac-

tors, including brain image size and the location of the task signal. Therefore, careful

experimental design is necessary when applying the mSPECS-IPA-CAIPIVAT model.

In this chapter, we present the mSPECS-IPA-CAIPIVAT model in a GRAPPA frame-

work. This approach leverages the advantage of the mSPECS-CAIPIVAT model,

which does not require careful experimental design, while also benefiting from the

mSPECS-IPA-CAIPIVAT model’s reduced image acquisition time.

4.1 The GRAPPA Technique

As we briefly discussed in Chapter 1.1, the Generalized Autocalibrating Partially

Parallel Acquisitions (GRAPPA) method has been provided as a powerful technique

in the parallel MRI and functional MRI studies and is widely used among different

areas (Griswold et al. (2002)). Unlike the SENSitivity Encoding (SENSE) technique

mainly focus on the image domain by using the information of the coil sensitivities,
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the GRAPPA technique puts more attention to the k -space. Since the in-plane sub-

sampling technique is applied, partial lines in the k -space will be skipped and omitted

in the k -space to reduce the image scan time. The main purpose of the GRAPPA

algorithm is to estimate the missing k -space signals by linearly combining the infor-

mation from the undersampled k -space signals. The conventional GRAPPA method

fills the k -space by a linear combination of the acquired data, and the coefficients for

combination are estimated using some auto-calibration signal (ACS) lines usually ac-

quired in the central k -space. A specific size of the kernel will be designed around the

target missing data. Based on the local kernels in k -space, the GRAPPA algorithm

exploits the learned correlation between multiple channels in neighboring points in

k -space. Another GRAPPA technique filling the k -space matrix by combining the

spatial frequency information of the calibration reference images with full FOV. In

this chapter, the second approach will be the potential technique to estimate the

missing points in the k -space.

In order to estimate the coil weighting factors for each point from the calibra-

tion images, the first step is to determine the kernel size and chose a neighborhood.

Traditionally, the kernel size would be 2 × 1, 2 × 3, 4 × 1, 4 × 5, etc.. The size of

the kernel will influence the coil weight. After the kernel size is determined, the coil

weight matrix can be expressed as:

SCalib,δ =
∑

wi,j,δSi,j,δ. (4.1)

In equation 4.1, SCalib,δ is the signal of the k -space of calibration images from δth coil.

It is equal to the summation of the product of the coil weight, wi,j,δ, for the ith row,

jth column and δth coil, and the acquired signal on the same position, Si,j,δ. SCalib,δ

and Si,j,δ are complex value including the real and the imaginary components, and

can be known in the data acquiring process. The wight matrix for each coil, wi,j,δ, is
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Figure 4.1: The linear combination of the acquired data in the neighborhood of
kernel size equal to 2× 3 with in-plane acceleration of IPA = 2. The black dots are
acquired data, white dots are missing data, and the red dot is the known data from
the calibration images.

what we want to estimate from the calibration images and can be calculated as:

W = SCalibS
′(S ′S)−1. (4.2)

In equation 4.2, vector W contains signal from all coils and matrix S contains fre-

quency information for the surrounding points in the neighborhood. Figure 4.1 is

example to show linear combination of the acquired signals in the neighborhood of

kernel size equal to 2×3 with the in-plane acceleration of IPA = 2. The black points
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in Figure 4.1 are acquired data, the white points are missing data, and the red dot

is the signal from the calibration images. This process will be repeated for all coils

to construct the vector W in equation 4.2. After the coil weighting factors collected

from the full FOV calibration reference images, the missing data in the subsampled

k -space can be estimated by a linear combination of the neighborhood from all coils.

This process can be mathematically expressed as:

STarget,δ = WS. (4.3)

In equation 4.3, STarget,δ is the target missing signal we are trying to estimate, and it

equals to the summation of the weight matrix estimated from equation 4.2 times the

signal of the acquired data in the kernel. After the missing points are estimated and

the k -space was filled, the inverse Fourier transform is applied to acquire the image

of full FOV.

4.2 The GRAPPA Approach for mSPECS-IPA-CAIPIVAT

To properly combine the mSPECS-CAIPIVAT and mSPECS-IPA-CAIPIVAT

models while incorporating the GRAPPA technique, multiple steps are required. Fig-

ure 4.2 presents the flowchart of the mSPECS-IPA-CAIPIVAT model integrated with

the GRAPPA approach. The first two steps involve pre-scan calibration image ac-

quisition and hyperparameter assessment. During these steps, neither in-plane nor

through-plane acceleration techniques are applied, and image shift techniques are

also not incorporated. The reference reconstructed image can be estimated from the

calibration images using the SENSE model. Additionally, the coil sensitivity matrix

SCalib,δ in Equation 4.1 is assessed at this stage. Step 3 of the flowchart involves ac-

quiring aliased images based on the mSPECS-IPA-CAIPIVAT model, where the coil

sensitivity information of neighboring voxels, Si,j,δ in Equation 4.1, is determined.

In Step 4, the weight matrix, W , is estimated according to Equation 4.2, and the
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Figure 4.2: The flowchart of the GRAPPA approach of the mSPECS-IPA-
CAIPIVAT model.

missing frequency values in k -space are reconstructed following Equation 4.3. During

this step, the subsampled k -space is unfolded. The final step in the flowchart applies

the mSPECS-CAIPIVAT model to un-alias reconstruct the brain images.
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CHAPTER 5: SIMULATED RECONSTRUCTION RESULTS

In order to investigate performance and compare the reconstructed results of the

three approaches, we first apply the mSPECS-CAIPIVAT, mSPECS-IPA-CAIPIVAT,

and the GRAPPA approach for the mSPECS-IPA-CAIPIVAT model to simulated

fMRI data.

5.1 Simulated FMRI Data

The simulated fMRI time series is mimicking the real-world right hand finger

tapping experiment with the total time point of the 510 time series. According to

the methodology of the image shifted SMS technique, two separate fMRI time series

need to be simulated: the acquired fMRI time series and the calibration fMRI time

series. The acquired fMRI time series was simulated using the mSPECS-CAIPIVAT,

mSPECS-IPA-CAIPIVAT, GRAPPA approach for mSPECS-IPA-CAIPIVAT, as dif-

ferent image shift directions were applied. The calibration fMRI time series, however,

was simulated without any image shift technique or acceleration techniques. The cal-

ibration images were reconstructed by applying SENSE model. Since the simulated

fMRI time series mimics an in vivo experiment, the first 20 repetition times are omit-

ted to achieve a steady magnetic field, leaving a total time point of 490 time series.

In the simulated fMRI time series, total Ns = 8 axial brain images were included

in the acquired simulated fMRI time series and the calibration simulated fMRI time

series. In the calibration simulated time series, no simulated task block were added

to the brain images. On the other hand, the simulated task blocks were added to the

left motor cortex of the top 4 brain images. The simulated task blocks were added

according to the real-world right hand finger tapping experiment with 15 TRs off and

15 TRs on for 16 epochs, and the first 20 TRs and last 10 TRs off. The contrast-to-

noise ratio and the signal-to-noise ratio we choose also mimick the real-world fMRI
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Figure 5.1: A. The magnitude and phase for the true noiseless simulated axial brain
images with Ns = 8. B. The magnitude of the simulated sensitivity coils for slice 3
with Nc = 8.

experiment and SNR = 50 and CNR = 0.5. Thus, the mean magnitude added to each

simulated slice is 4 and the mean magnitude added to the simulated task blocks is

0.04. Moreover, a Gaussian distributed noise N(0, 0.0064) was added to each slice of

the simulated acquired fMRI time series and the simulated calibration fMRI time se-

ries. In order to increase the difference between each simulated slices, different phase

angles from 5◦ to 40◦ with 5◦ intervals were added to each slice. Different phase angles

were also added to different brain tissue with 7.5◦ for white matter (WM), 15◦ for

gray matter (GM), and 22.5◦ for cerebral spinal fluid (CSF).

In order to investigate the performance of different model with different accel-

eration factor, the IPA factor we used in the simulated acquired fMRI dataset is

R = 2, and different TPA factors were incorporated in the experiment with TPA = 2,

TPA = 4, and TPA = 8. Thus, the net acceleration factor is the product of the IPA

factor and the TPA factor with NET = 4, NET = 8, and NET = 16. For TPA = 2

situation, the slices aliasing situation is: packet 1: slice 1 and slice 5, packet 2: slice

2 and slice 6, packet 3: slice 3 and slice 7, packet 4: slice 4 and slice 8. For TPA = 4
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situation, the slices aliasing situation is: packet 1: even slices, packet 2: odd slices.

For TPA = 8 situation, all slices are aliased in one packet.

Figure 5.1A shows the true noiseless magnitude and phase for each slice of simu-

lated axial brain images with Ns = 8. A total number of Nc = 8 channel sensitivity

coils were simulated and applied according to the real right hand finger tapping ex-

periment. Figure 5.1B shows the magnitude and position for each coil corresponding

to slice 3. The mean magnitude for each simulated coil is 0.95, and to increase the

difference between each coil, different phase angles were added to the simulated coils

from 0◦ to 17.5◦ with 2.5◦ intervals.

Image Acquisition Time Comparison

To assess the efficiency improvements of the novel approaches, we compared

the image acquisition times of mSPECS-CAIPIVAT, mSPECS-IPA-CAIPIVAT, and

GRAPPA for mSPECS-IPA-CAIPIVAT approaches. Table 1 presents a comparison

of the total scan time across these methods with different acceleration factors. In

Table 1, TPA = 1 represents the non-accelerated case. For the mSPECS-CAIPIVAT

approach, the time repetition for each acceleration factor is the total time repeti-

tion divided by the TPA factor. For the mSPECS-IPA-CAIPIVAT and GRAPPA for

mSPECS-IPA-CAIPIVAT approaches, the time repetition is calculated by dividing

the total time repetition by the NET factor, which is the product of the IPA and

TPA factors.

5.2 mSPECS-CAIPIVAT

5.2.1 Non-Task Simulated Reconstruction Results

Following the methodology of the novel slice-wise image shift SMS technique, we

conducted the simulated experiment using different through-plane acceleration fac-

tors: TPA=2, TPA=4, and TPA=8. We compared the reconstruction results under
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Acceleration
Method TPA=1 TPA=2 TPA=4 TPA=8
mSPECS-CAIPIVAT 510 255 127.5 63.75
mSPECS-IPA-CAIPIVAT 510 127.5 63.75 31.875
GRAPPA for mSPECS-IPA-CAIPIVAT 510 127.5 63.75 31.875

Table 1: The comparison of total scan time among the mSPECS-CAIPIVAT,
mSPECS-IPA-CAIPIVAT, and GRAPPA for mSPECS-IPA-CAIPIVAT approaches
is presented with respect to different acceleration factors. Note that TPA = 1 repre-
sents the non-accelerated case.

the same acceleration factors from the mSPECS model and the standard SENSE

model. Figure 5.2 and Figure 5.3 shows the temporal mean magnitude and phase

of the 490 time points reconstructed images from SENSE, mSPECS, mSPECS-VAT,

mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model compared with the true

magnitude and the phase of the brain images for odd slices with acceleration factor

TPA=2. The temporal mean magnitude and phase were estimated according to Equa-

tion 2.22. To avoid the error from averaging temporal mean phase at (π,−π) bound-

ary, the temporal mean is calculated by ϕ̄ = angle(
∑

β̂MPM/|β̂MPM |). As shown

in Figure 5.2 and Figure 5.3, the mean magnitude and phase of the reconstructed

images from the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-

CAIPIVAT models closely match the true values, indicating that these three models

produce more accurate reconstructions. In contrast, the SENSE model yields the

poorest reconstructions, with noticeable signal leakage from other aliased slices. As

the acceleration factor increases to TPA=4 and TPA=8, the mSPECS, mSPECS-

VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models continue to provide

reconstructions that closely resemble the true images. However, the reconstruction

quality from the SENSE model significantly deteriorates, showing the worst perfor-

mance.

Figure 5.4 shows the temporal mean of the baseline signal variance of the recon-

structed voxel value for slice 3 from SENSE, mSPECS, mSPECS-VAT, mSPECS-
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Figure 5.2: The true noiseless simulated magnitude of the axial brain images com-
pared with the temporal mean magnitude and temporal mean phase from SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model
for odd slices with TPA=2.
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Figure 5.3: The true noiseless simulated phase of the axial brain images com-
pared with the temporal mean magnitude and temporal mean phase from SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model
for odd slices with TPA=2.
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Figure 5.4: The temporal mean of baseline signla variance of the voxel value for
slice 3 from SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and the
mSPECS-CAIPIVAT model with TPA=2, TPA=4, and TPA=8.

CAIPIRINHA, and the mSPECS-CAIPIVAT model with different acceleration fac-

tors. The variance of the reconstructed voxel value is calculated according to Equa-

tion 2.23. It also can be interpreted as the temporal mean of the variance of the base-

line signal. In Figure 5.4, the SENSE model generates a higher temporal variance of

the baseline signal compared to mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA,

and the mSPECS-CAIPIVAT model for each acceleration factor. The temporal vari-

ance of the reconstructed voxel from the SENSE model increases as the acceleration

factor increases, whereas the temporal variance of the reconstructed voxel from the

other four models decreases with increasing acceleration factors. Compared to the

mSPECS model, the models incorporating image shift techniques generate lower tem-

poral variance, with mSPECS-CAIPIVAT exhibiting the lowest temporal variance of

the baseline signal.

To further analyze the performance of each model, Figure 5.5 illustrates the tem-
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Figure 5.5: The temporal variance of the task signal of SENSE, mSPECS, mSPECS-
VAT, mSPECS-CAIPIRINHA, and mSEPCS-CAIPIVAT model with different accel-
eration factors of slice 3.

poral variance of the task signal of reconstructed images from the SENSE, mSPECS,

mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models at differ-

ent acceleration factors for slice 3. When comparing these four models, we observe

a decreasing temporal variance from the SENSE model to the mSPECS-CAIPIVAT

model at the same acceleration factor. As the acceleration factor increases, the tem-

poral variance decreases for the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA,

and mSPECS-CAIPIVAT models, while it increases for the SENSE model. Among

the three mSPECS-based models, the mSPECS-CAIPIVAT model achieves the lowest

temporal variance.

Figure 5.6 shows the temporal mean of the residual variance from the SENSE,

mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model

for slice 3 with TPA=2. The temporal mean of the residual variance is calculated ac-

cording to Equation 2.25. The results show a decreasing trend in the temporal mean
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Figure 5.6: The temporal mean of the residual variance for slice 3 from SENSE,
mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model
with TPA=2.

of the residual variance from SENSE to mSPECS-CAIPIVAT, with the mSPECS-

CAIPIVAT model yielding the lowest residual variance. Figure 5.7 shows the tem-

poral mean of the residual variance for slice 3 from SENSE, mSPECS, mSPECS-



57

Figure 5.7: The temporal mean of the residual variance for slice 3 from SENSE,
mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model
with acceleration factor TPA=4 and TPA=8.

CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model with TPA=4 and

TPA=8. From Figure 5.6 and Figure 5.7, as the acceleration factor increases, the

temporal mean of the residual variance increases for the SENSE model, whereas the

other four models maintain a steady residual variance. For each acceleration factor,

the mSPECS model exhibits a higher residual variance compared to models incor-

porating image shift techniques. Among these, the mSPECS-VAT and mSPECS-

CAIPIVAT models yield the lowest temporal residual variance. Figure 5.8 shows the

temporal variance of the residual variance of slice 3 from SENSE, mSPECS, mSPECS-

CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model with TPA=2. The

temporal variance of the residual variance is calculated according to Equation 2.26

in the main paper. Figure 5.9 shows the temporal variance of the residual vari-

ance of slice 3 from SENSE, mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and

mSPECS-CAIPIVAT model with TPA=4 and TPA=8. From Figure 5.8 and Fig-

ure 5.9, the temporal variance of the residual variance for all models is close to zero.

However, among these five models, the SENSE model produces the highest temporal

variance. Compared to the models incorporating image shift techniques, the mSPECS

model exhibits a higher temporal variance.
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Figure 5.8: The Temporal variance of the residual variance for slice 3 from SENSE,
mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model
with TPA=2.

To evaluate and compare the changes in SNR and g-factor values for each tissue

type across different methods and through-plane acceleration factors, Table 2 presents

the average SNR values for cerebral spinal fluid (CSF), gray matter (GM), and white
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Figure 5.9: The Temporal variance of the residual variance for slice 3 from SENSE,
mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model
with TPA=4 and TPA=8.

matter (WM), as well as the average g-factor penalty for the whole brain. From

Table 2, we observe that the average SNR for CSF and GM in the standard SENSE

model decreases slightly as the through-plane acceleration factor increases, while the

average SNR for WM remains unchanged. In contrast, the average SNR for all tissue

types in the other three models increases significantly with higher acceleration fac-

tors. Furthermore, the average g-factor for the SENSE model increases dramatically

as the acceleration factor increases, compared to the modest increase in the aver-

age g-factor observed in the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and

mSPECS-CAIPIVAT models. Notably, compared to the mSPECS model, the three

slice-wise image shift models, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-

CAIPIVAT, exhibit lower average g-factor penalties, with the mSPECS-CAIPIVAT

model showing the lowest average g-factor.

The SNR value and g-factor value were also compared across four models. The

temporal signal-to-noise ratio is defined as SNR = S̄/σN , where S̄ is the mean

magnitude value in the time series, and σN is the standard deviation of the noise.

The signal-to-noise ratio also can be expressed as SNR = β0/σN , where β0 is the

baseline signal, and σN is the standard deviation of the magnitude of the noise.
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SENSE
Acceleration CSF-SNR GM-SNR WM-SNR g-factor
TPA=2 2.25 1.95 1.92 14.21
TPA=4 1.96 1.92 1.91 21.28
TPA=8 1.91 1.91 1.91 30.13

mSPECS
Acceleration CSF-SNR GM-SNR WM-SNR g-factor
TPA=2 55.00 19.06 12.11 1.30
TPA=4 73.49 25.29 16.11 1.39
TPA=8 101.14 34.92 22.20 1.44

mSPECS-VAT
Acceleration CSF-SNR GM-SNR WM-SNR g-factor
TPA=2 58.81 20.46 13.13 1.22
TPA=4 74.75 26.32 16.91 1.36
TPA=8 104.44 36.27 23.36 1.38

mSPECS-CAIPIRINHA
Acceleration CSF-SNR GM-SNR WM-SNR g-factor
TPA=2 59.85 21.13 13.54 1.16
TPA=4 76.25 26.87 17.38 1.27
TPA=8 104.98 36.82 23.69 1.34

mSPECS-CAIPIVAT
Acceleration CSF-SNR GM-SNR WM-SNR g-factor
TPA=2 61.11 21.41 13.73 1.15
TPA=4 78.19 27.56 17.89 1.27
TPA=8 107.72 37.97 24.50 1.29

Table 2: The average SNR value for cerebrospinal fluid (CSF), gray matter (GM),
and white matter (WM) with the average g-factor value of the whole brain with
respect to SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT methods with through-plane acceleration factors TPA=2, TPA=4, and
TPA=8 for slice 3.

Based on the definition of SNR in Chapter 2.1.1, the g-factor can be calculated as

gaccelerate =
√
NsSNRfull/SNRaccelerate

√
R, where SNRfull is the SNR map from

model without acceleration technique, and R indicates the in-plane acceleration fac-

tor, which in this case R = 1. The g-factor also indicates the noise amplification level

of the model. Figure 5.10 shows the temporal SNR map and g-factor map for the

standard SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-

CAIPIVAT models with through-plane acceleration factors TPA=2, TPA=4, and
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TPA=8 for slice 3. From Figure 5.10, we observe that the standard SENSE model

produces a low SNR map and a high g-factor penalty for all acceleration factors

compared to the other four models. Increasing the through-plane acceleration factors

reduces the SNR value and significantly increases the g-factor penalty. Although

the mSPECS model offers a relatively good SNR map, the g-factor penalty in-

creases as the through-plane acceleration factors rise. The mSPECS-VAT, mSPECS-

CAIPIRINHA and mSPECS-CAIPIVAT models, however, provide better SNR and

g-factor maps, with higher SNR values and lower g-factor penalties. As the through-

plane acceleration factor increases, the SNR maps become brighter, indicating an

increase in SNR, while the g-factor penalties remain relatively steady, as shown in

Figure 5.10.

5.2.2 Task Simulated Reconstruction Results

We also applied the novel slice-wise image shift SMS models to the simulated

right-handed finger-tapping fMRI data with different through-plane acceleration fac-

tors TPA=2, TPA=4, and TPA=8, and compared the task activation results be-

tween each method. In the interest of further exploring the task detection ability

for each model, two important criteria, the contrast-to-noise (CNR) value and the

activation detection maps were also investigated. The CNR ratio is calculated as

CNR = β1/σN , where β1 represents the task activation signal contrast. Activa-

tion detection was performed using a complex-valued model to compute fMRI ac-

tivation (Rowe and Logan (2004)). Figure 5.11 shows the CNR map for SENSE,

mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model

for at TPA=2, and the average CNR value and standard deviation of CNR value

for region-of-interest (ROI). Since no simulated activation blocks were added to the

last four slices, CNR values were not captured from those regions. In Figure 5.11,

the SENSE model fails to capture any activation signal within the brain, while the
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Figure 5.10: A. The SNR maps for SENSE, mSPECS, mSPECS-VAT, mSPECS-
CAIPIRINHA and mSPECS-CAIPIVAT model with TPA=2, TPA=4, and TPA=8.
The higher SNR, the better model performs. B. The g-factor maps for SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model
with TPA=2, TPA=4, and TPA=8. The closer g-factor is to 1, the better model
performs.

mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models

successfully capture the simulated activation blocks with clear shapes and anatom-

ical details. When comparing the average CNR value of the ROI, the mSEPCS-

VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT models demonstrate slightly

higher values than the mSPECS model with TPA=2. To further examine the influ-

ence of the acceleration factor on activation detection, we compared the CNR maps of

the four models at different acceleration factors. Figure 5.12A displays the CNR maps

from the SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-

CAIPIVAT models for TPA=2, TPA=4, and TPA=8 in slice 3. As the accelera-
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tion factor increases, the average CNR value of the ROI decreases for the mSPECS,

mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models. How-

ever, the average CNR value in the three slice-wise image-shifting models remains

slightly higher than in the mSPECS model. In contrast, the SENSE model fails to

capture any simulated activation blocks at any acceleration factor. The mSPECS-

CAIPIVAT provides the highest average CNR of the ROI among the three slice-wise

image-shifting models with higher acceleration factors.

Concerning the main goal of this study is to improve the task activation detection

rate, we also examined the activation detection map across four models. Figure 5.13

shows the activation detection maps for odd slices from SENSE, mSPECS, mSPECS-

VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model for odd slices at accel-

eration factor TPA=2. Similar to the results observed in the CNR map, it is difficult

to capture the simulated task activation blocks by applying the SENSE model. Ad-

ditionally, the average z-score of the ROI from the SENSE model is the lowest among

five models. In contrast, the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and

mSPECS-CAIPIVAT models can capture the simulated task activation blocks with

complete shapes and anatomical structures. Comparing the average z-scores of the

ROI from these three models, the three slice-wise image-shifting models, mSPECS-

VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT, exhibit higher significance

levels than the mSPECS model. The mSPECS-CAIPIVAT model provides the high-

est average z-score of the ROI, indicating that it is more powerful in detecting ac-

tivation signals than the other models. Similarly, we applied the four models with

different acceleration factors to further investigate the activation detection process.

Fig. 5.12B shows the task activation detection maps from the SENSE, mSPECS,

mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models at accel-

eration factors of TPA=2, TPA=4, and TPA=8 for slice 3. As the acceleration factor

increases, the SENSE model fails to capture any task activation signals, and the
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Figure 5.11: The CNR map and the average CNR value and standard deviation
of CNR of ROI for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT model for odd slices with TPA=2.

average z-score of the ROI remains the lowest among the four models. The aver-

age z-score of the ROI from the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA,
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Figure 5.12: A. The CNR maps and average ROI CNR value from SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model
with respect to different acceleration factors TPA=2, TPA=4, and TPA=8 for slice
3. B. The task activation detection maps and average ROI z-score from SENSE,
mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with repect to
acceleration factor TPA=2, TPA=4 and TPA=8 for slice 3. The higher CNR and
z-score, the better model performs.

and mSPECS-CAIPIVAT models decreases with increasing acceleration factor, and

it becomes more challenging to capture the full shape of the task activation blocks.

However, consistent with the CNR map results, the three slice-wise image-shifting

models provide higher average z-scores of the ROI compared to the mSPECS model.

The mSPECS-CAIPIVAT model offers the highest average z-score, confirming that

it is more effective in detecting activation signals than the other models.
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Figure 5.13: The activation detection map and the average and standard deviation
of z-score of ROI for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT model for odd slices with TPA=2 situation.
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5.3 mSPECS-IPA-CAIPIVAT

5.3.1 Non-Task Simulated Reconstruction Results

Based on the methodology of the novel proposed image shift SMS techniques,

we conducted the simulated experiment with the same in-plane acceleration factor,

IPA = 2, and different through-plane acceleration factors with TPA = 2, TPA = 4,

and TPA = 8. The reconstructed results were compared between mSPECS-IPA

model (without image shift technique), mSPECS-IPA-CAIPIRINHA model (image

shift along vertical direction), mSPECS-IPA-VAT model (image shift along horizontal

direction), and mSPECS-IPA-CAIPIVAT (image shift along vertical and horizontal

direction). The reconstructed results were also compared with the true noiseless

simulated images. Figure 5.14 and Figure 5.15 show the mean magnitude and mean

phase from odd slices of the reconstructed images from mSPECS-IPA, mSPECS-IPA-

CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT, compared with

the magnitude and phase from true noiseless simulated images, and the through-

plane acceleration factor is 2. Figure 5.14 and Figure 5.15 are generated based on

Equation 3.18. Compared to the true magnitude, the mean magnitude from these

four models is closely aligned with the true value. No inter-slice signal leakage or

artifact distortions appear in the mean magnitude images. The mean phase of the

reconstructed images from these four models is also consistent with the phase value

of the true noiseless simulated image inside the brain. However, residuals are present

outside the brain in the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-

VAT, and mSPECS-IPA-CAIPIVAT models due to differences in the image shift

techniques and slice overlapping conditions in each model.

Figure 5.16 was generated according to Equation 3.19. The top-right corner

displays the overlapping indicator for each novel SMS image reconstruction model,

incorporating different TPA factors. It represents the slice overlapping and voxel
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Figure 5.14: The magnitude of the reconstructed images from mSPECS-IPA,
mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT,
compared with the magnitude and phase from true noiseless simulated images with
TPA=2.

aliasing situation for each approach and acceleration factor. When the acceleration

factor is low, IPA = 2 and TPA = 2, all four models have a low variance at the center
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Figure 5.15: The phase of the reconstructed images from mSPECS-IPA, mSPECS-
IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT, compared
with the magnitude and phase from true noiseless simulated images odd slices with
TPA=2.

of the brain image. However, due to a high overlapping indicator value at the anterior

and posterior regions, high variance is detected at these region. As the acceleration
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Figure 5.16: The variance of the baseline regression coefficient of slice 3 from re-
constructed images from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-
VAT, and mSPECS-IPA-CAIPIVAT model with different through-plane acceleration
factors. The top right corner is the slices aliasing situation for slice 3 with different
acceleration factors.

factor increases, models that do not incorporating with vertical image shift technique,

mSPECS-IPA and mSPECS-IPA-VAT model, show a decrease in task regression coef-

ficient variance. On the other hand, models that incorporate with the vertical image

shift technique, mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT model,

exhibit an increase in task regression coefficient variance in the anterior region of

the brain image. Among these four models, the mSPECS-IPA-CAIPIRINHA has the

highest task regression coefficient variance when IPA = 2 and TPA = 8. Figure 5.17

shows the temporal variance of task coefficient of slice 3 from the reconstructed
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Figure 5.17: The task regression coefficient variance of slices 3 from reconstructed
images from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and
mSPECS-IPA-CAIPIVAT model with different through-plane acceleration factors.
The top right corner is the slices aliasing situation for slice 3 with different acceleration
factors.

images corresponding to the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-

IPA-VAT, and mSPECS-IPA-CAIPIVAT with different through-plane acceleration

factors. The top right corner is the slice overlapping situation corresponding to the

average of first Nα time point for each model, indicating the voxel aliasing complexity

for each method. For TPA = 2 and IPA = 2, the voxel aliasing and slice overlap-

ping conditions are identical for the mSPECS-IPA and mSPECS-IPA-CAIPIRINHA

models, as well as for the mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT models.

Consequently, the temporal variance of the reconstructed images from mSPECS-
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Figure 5.18: The temporal mean of residual variance of brain images reconstructed
from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-
IPA-CAIPIVAT model with IPA = 2 and TPA = 2.

IPA is similar to that of mSPECS-IPA-CAIPIRINHA, while mSPECS-IPA-VAT ex-

hibits similar behavior to mSPECS-IPA-CAIPIVAT. Comparing temporal variance

across different models, mSPECS-IPA and mSPECS-IPA-CAIPIRINHA yield higher

variance values than mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT, particularly

in the posterior-to-anterior regions of the brain. When the through-plane acceler-

ation factor increases to 4 and 8, mSPECS-IPA-CAIPIRINHA exhibits the highest

temporal variance among the four models. Although the temporal variance in the

posterior region is lower for mSPECS-IPA-CAIPIVAT compared to mSPECS-IPA-

CAIPIRINHA, high temporal variance values are observed in the anterior region of

the brain in the mSPECS-IPA-CAIPIVAT model. The mSPECS-IPA and mSPECS-

IPA-VAT demonstrate better temporal variance performance compared to models

incorporating vertical shifts. Among the four models, mSPECS-IPA-VAT provides

the best temporal variance performance at high acceleration factors.

Figure 5.18 displays temporal mean of residual variance of brain images recon-
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structed from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and

mSPECS-IPA-CAIPIVAT model with IPA = 2 and TPA = 2. Figure 5.19 shows tem-

poral mean of residual variance for brain images reconstructed from same models but

with acceleration factors IPA = 2 and TPA = 4 and 8. Figure 5.18 and Figure 5.19 are

generated based on equation 3.21. For each acceleration factor, among the four mod-

els, mSPECS-IPA has the highest temporal mean of residual variance, whereas the

models incorporating the horizontal image shift technique, mSPECS-IPA-VAT and

mSPECS-IPA-CAIPIVAT, exhibit the lowest temporal mean of residual variance. As

the acceleration factor increases, the temporal mean of residual variance slightly de-

creases across all four models. Figure 5.20 and Figure 5.21. Figure 5.20 shows the

temporal variance of the residual variance for brain images reconstructed from four

SMS models: mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and

mSPECS-IPA-CAIPIVAT model with IPA = 2 and TPA = 2. Figure 5.21 shows the

temporal variance of the residual variance for brain images reconstructed from the

same model but with acceleration factor IPA = 2 and TPA = 4 and 8. Figure 5.20

and Figure 5.21 are generated from equation 3.22. For each acceleration factor, the

mSPECS-IPA model has the highest temporal variance of residual variance, while

Te
m

po
ra

l m
ea

n 
of

 s
ig

m
a2

Te
m

po
ra

l m
ea

n 
of

 s
ig

m
a2

TPA = 4 TPA = 8

Time point Time point

Figure 5.19: The temporal mean of residual variance of brain images reconstructed
from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-
IPA-CAIPIVAT model with IPA = 2 and TPA = 4 and 8.
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Figure 5.20: The variance of the baseline regression coefficient of slice 3 from re-
constructed images from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-
VAT, and mSPECS-IPA-CAIPIVAT model with different through-plane acceleration
factors.

the mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT models have the lowest, with

values approaching zero. Moreover, as the acceleration factor increases, the temporal

variance of residual variance decreases for all four models.
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Figure 5.21: The variance of the baseline regression coefficient of slice 3 from re-
constructed images from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-
VAT, and mSPECS-IPA-CAIPIVAT model with different through-plane acceleration
factors.
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Figure 5.22: A. The SNR value of slice 3 from reconstructed images for
mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-
CAIPIVAT model with different TPA factor. B. The g-factor value of slice 3 from
reconstucted images for mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-
VAT, and mSPECS-IPA-CAIPIVAT model with different TPA factor.

We also investigated the signal-to-noise ratio (SNR) and the geometric factor g-

factor values across mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT,

and mSPECS-IPA-CAIPIVAT models. The SNR can be calculated as SNR = β0/σN ,

where β0 represents the baseline signal for each location of the brain image, and σN

represents the standard deviation of the noise. The higher the SNR value is, the bet-

ter performance of the model. According to the definition of g-factor (equation 3.1) in

Chapter 3.1.1, the through-plane acceleration factor also need to be incorporated into

it. Thus, the g-factor can be calculated as gaccelerate =
√
NsSNRfull/SNRaccelerate

√
R,

where R = 2 indicating the in-plane acceleration factor. The closer g-factor is to 1,

the better reconstructed results the model will produce. Figure 5.22A shows the SNR

value of slice 3 for four models with different through-plane acceleration factors. The

top right corner is the slice overlapping situation corresponding to average of the
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first Nα time point for each model. As the TPA factor increases, the SNR value

for the mSPECS-IPA and mSPECS-IPA-VAT models also increases. Moreover, in

the mSPECS-IPA-VAT model, both the posterior and anterior regions of the brain

exhibit higher SNR values compared to the mSPECS-IPA model. In contrast, for the

mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT models, the SNR value

does not increase evenly across the entire brain image as the TPA factor increases. In

the mSPECS-IPA-CAIPIRINHA model, at higher TPA factors, the SNR in the mid-

dle brain region is lower than at lower TPA factors. A similar pattern is observed in

the left side of the brain image in the mSPECS-IPA-CAIPIVAT model. Figure 5.22B

shows the g-factor of slice 3 across different models with varying through-plane ac-

celeration factors. As the TPA factor increases, the g-factor in the mSPECS-IPA-

CAIPIRINHA and mSPECS-IPA-CAIPIVAT models increases dramatically, whereas

in the mSPECS-IPA and mSPECS-IPA-VAT models, it increases only slightly. Com-

paring the g-factor values between the mSPECS-IPA and mSPECS-IPA-VAT models,

the g-factor in the mSPECS-IPA-VAT model is closer to 1 in both the posterior and

anterior regions of the brain.

5.3.2 Task Simulated Reconstruction Results

In order to investigate the task activation detection performance of each model,

we applied the novel image shift SMS techniques to the simulated right-handed finger

tapping experiment with the same in-plane acceleration factor, IPA=2, and different

through-plane acceleration factors TPA=2, TPA=4, and TPA=8. For each voxel in

the brain image, the signal can be expressed as y = β0 + β1x + ϵ, where β0 is the

baseline signal of the voxel, β1 is the task signal, x is a vector with elements 0 and 1

indicating each time point with or without task activation. Therefore, the contrast-

to-noise ratio (CNR) can be calculated as CNR = β1/σN , and same as the definition

in SNR, σN stands for the standard deviation of the noise. The activation detec-
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tion rate for each model was also investigated by applying a complex-valued model

to compute fMRI activation (Rowe and Logan (2004)). Figure 5.23 shows the aver-

age and standard deviation of the CNR values in the region of interest (ROI) from

the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-

IPA-CAIPIVAT models with an acceleration factor of TPA = 2. The CNR value of

the ROI for slice 1 in the mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT models

is slightly higher than in the mSPECS-IPA and mSPECS-IPA-CAIPIRINHA models.

Meanwhile, the CNR value of the ROI for slice 3 is similar across all four mod-

els. Figure 5.24 shows the average task activation detection rate in the ROI from the

mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-

CAIPIVAT models with TPA = 2. Compared to the models with a horizontal image

shift, mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT, the models without hori-

zontal image shift, mSPECS-IPA and mSPECS-IPA-CAIPIRINHA, exhibit a lower

average z-score in the ROI. This indicates that the activation detection ability of

mSPECS-IPA and mSPECS-IPA-CAIPIRINHA is lower than that of the mSPECS-

IPA-VAT and mSPECS-IPA-CAIPIVAT models.

To assess the influence of a high acceleration factor on the task activation de-

tection ability of each model, we compared the CNR value and the task activation

detection rate of ROI for mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-

VAT, and mSPECS-IPA-CAIPIVAT models under different acceleration factors, TPA

= 2, TPA = 4, and TPA = 8. Figure 5.25A shows the average CNR value in the

ROI of slice 3 for the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-

VAT, and mSPECS-IPA-CAIPIVAT models with different acceleration factors. As

the acceleration factor increases, the average CNR value decreases across all four

models. However, at high acceleration factors, the average CNR value in the ROI is

higher in the mSPECS-IPA and mSPECS-IPA-VAT models compared to the models

incorporating vertical image shift, mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-
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Figure 5.23: The average CNR value of ROI for with acceleration factor
TPA=2 from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and
mSPECS-IPA-CAIPIVAT model.
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Figure 5.24: The average task activation rate (z-score) of ROI for with accelera-
tion factor TPA=2 from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-
VAT, and mSPECS-IPA-CAIPIVAT model.
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CAIPIVAT. Among these models, the model applies image shift only along the vertical

direction, mSPECS-IPA-CAIPIRINHA exhibits the lowest average CNR value in the

ROI. Figure 5.25B shows the activation detection rate (z-score) in the ROI of slice 3 for

the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-

IPA-CAIPIVAT models with different acceleration factors. As the acceleration factor

increases, it becomes more difficult to capture the entire simulated activation blocks

across all four models. However, at TPA = 8, the models without vertical image shift,

mSPECS-IPA and mSPECS-IPA-VAT, exhibit higher average z-scores in the ROI

compared to the models with vertical image shift, mSPECS-IPA-CAIPIRINHA and

mSPECS-IPA-CAIPIVAT. Although the models incorporating vertical image shift ex-

hibit lower average z-scores in the ROI, the mSPECS-IPA-CAIPIVAT model achieves

a higher average z-score compared to the mSPECS-IPA-CAIPIRINHA model. Among

all models, mSPECS-IPA-CAIPIRINHA provides the lowest activation detection rate,

indicating that it has the least ability to capture the simulated task activation blocks.

5.4 GRAPPA Approach for mSPECS-IPA-CAIPIVAT

5.4.1 Non-Task Simulated Reconstruction Results

Following the methodology of the GRAPPA approach for the mSPECS-IPA-

CAIPIVAT technique, as presented in Chapter 4.2, we applied the GRAPPA tech-

nique in conjunction with novel SMS multi-directional image shift techniques, using

an in-plane acceleration factor of IPA = 2 and varying through-plane acceleration

factors of TPA = 2, TPA = 4, and TPA = 8. The reconstructed results were com-

pared between GRAPPA for mSPECS-IPA model (without image shift technique),

GRAPPA for mSPECS-IPA-CAIPIRINHA model (image shift along vertical direc-

tion), GRAPPA for mSPECS-IPA-VAT model (image shift along horizontal direc-

tion), and GRAPPA for mSPECS-IPA-CAIPIVAT (image shift along vertical and

horizontal direction). The reconstructed results were also compared with the true



81

TPA=2 TPA=4 TPA=8

-4
4

TPA=2 TPA=4 TPA=8

TPA=2 TPA=4 TPA=8

TPA=2 TPA=4 TPA=8

0

Activation Detection (z-score)A. B.

Avg: 2.91
Sd: 0.99

Avg: 2.93
Sd: 0.90

Avg: 2.98
Sd: 0.99

Avg: 3.00
Sd: 0.99

Avg: 1.84
Sd: 1.11

Avg: 1.42
Sd: 0.93

Avg: 1.55
Sd: 0.82

Avg: 1.88
Sd: 0.82

Avg: 1.24
Sd: 0.99

Avg: 0.45
Sd: 1.10

Avg: 0.74
Sd: 0.94

Avg: 1.18
Sd: 0.94

m
SP
E
C
S-
IP
A

m
SP
E
C
S-
IP
A
-C
A
IP
IR
IN
H
A

m
SP
E
C
S-
IP
A
-C
A
IP
IV
AT

m
SP
E
C
S-
IP
A
-V
AT

CNR

C
N

R 
of

 R
O

I

TPA factors

Figure 5.25: A. The average CNR value of ROI for slice 3 from mSPECS-IPA,
mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT
model with acceleration factor TPA=2, TPA=4, and TPA=8. B. The average ac-
tivation detection rate (z-score) of ROI for slice 3 from mSPECS-IPA, mSPECS-
IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT model with
acceleration factor TPA=2, TPA=4, and TPA=8.

noiseless simulated images. Figure 5.26 and Figure 5.27 shows the mean magni-

tude and phase of the reconstructed images from GRAPPA approach for mSPECS-

IPA, GRAPPA approach for mSPECS-IPA-CAIPIRINHA, GRAPPA approach for

mSPECS-IPA-VAT, and GRAPPA approach for mSPECS-IPA-CAIPIVAT, and com-

pared with the magnitude and phase from true simulated images with IPA = 2 and

TPA = 2 situation. As shown in these figures, the mean magnitude of the recon-

structed images from all four models closely resembles the true noiseless magnitude

images. Similarly, the mean phase of the reconstructed images is consistent with

the true noiseless phase images within the brain region. However, Figure 5.27 re-

veals phase residues outside the brain images in models incorporating vertical image

shift techniques, namely mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT.

These phase residues arise because the image shift direction aligns with the in-plane
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Figure 5.26: The magnitude of the reconstructed images from GRAPPA ap-
proach for mSPECS-IPA, GRAPPA approach for mSPECS-IPA-CAIPIRINHA,
GRAPPA approach for mSPECS-IPA-VAT, and GRAPPA approach for mSPECS-
IPA-CAIPIVAT, compared with the magnitude from true noiseless simulated images
with TPA=2.
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Figure 5.27: The phase of the reconstructed images from GRAPPA ap-
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GRAPPA for mSPECS-IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT model
with different through-plane acceleration factors.

acceleration technique.

Similar to the previous chapter, we also investigated the variance of the task

signal from the reconstructed brain images. Figure 5.28 displays the task regression

coefficient variance of slices 3 from reconstructed images from GRAPPA for mSPECS-

IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT,

and GRAPPA for mSPECS-IPA-CAIPIVAT model with in-plane acceleration factor

IPA = 2 and different through-plane acceleration factors, TPA = 2, TPA = 4,

and TPA = 8. As shown in Figure 5.28, as the through-plane acceleration factor
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Figure 5.29: A. The SNR value of slice 3 from reconstructed images for GRAPPA for
mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-
IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT model with different TPA
factor. B. The g-factor value of slice 3 from reconstucted images for GRAPPA for
mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-
IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT model with different TPA
factor.

TPA increases, the variance of the task signal decreases. However, when comparing

the variance of the task signal across different models, the GRAPPA for mSPECS-

IPA-CAIPIVAT model exhibits the lowest variance among the four models. Moreover,

compared to the variance of the task signal from the mSPECS-IPA-CAIPIVAT model

(Figure 5.17), the variance of the task signal from the GRAPPA for mSPECS-IPA-

CAIPIVAT model (Figure 5.28) is lower. This difference is particularly evident when

incorporating vertical image shift techniques, the mSPECS-IPA-CAIPIRINHA and

mSPECS-IPA-CAIPIVAT models, where the variance of the task signal from the

GRAPPA approach remains lower at high through-plane acceleration factors.

We also investigated the signal-to-noise ratio (SNR) and the geometric factor
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g-factor values between GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-

CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT, and GRAPPA for mSPECS-IPA-

CAIPIVAT models. The SNR can be calculated as SNR = β0/σN , where β0 rep-

resents the baseline signal for each location of the brain image, and σN represents

the standard deviation of the noise. The higher the SNR value is, the better per-

formance of the model. The g-factor is same as the defination in Chapter 3.1.1,

and can be calculated as gaccelerate =
√
NsSNRfull/SNRaccelerate

√
R, where R = 2

indicating the in-plane acceleration factor. The closer g-factor is to 1, the better

reconstructed results the model will produce. Figure 5.29A shows the SNR value of

slice 3 for four models with an in-plane acceleration factor of IPA = 2 and different

through-plane acceleration factors: TPA = 2, TPA = 4, and TPA = 8. As the

TPA factor increases, the SNR value of the reconstructed brain images from all four

models also increases. Moreover, the GRAPPA approach applied to the novel SMS

techniques yields a higher SNR value than the mSPECS-IPA-CAIPIVAT model (Fig-

ure 5.22). When the TPA factor is high, the SNR images do not exhibit overlapping

artifacts in models incorporating the vertical image shift technique, mSPECS-IPA-

CAIPIRINHA and mSPECS-IPA-CAIPIVAT, when using the GRAPPA approach.

Figure 5.29B shows the g-factor of slice 3 for four models with an in-plane accelera-

tion factor of IPA = 2 and different through-plane acceleration factors: TPA = 2,

TPA = 4, and TPA = 8. As seen in Figure 5.29B, compared to the g-factor from

the mSPECS-IPA-CAIPIVAT model (Figure 5.22), the g-factor from the GRAPPA

approach remains stable as the TPA factor increases. Moreover, the g-factor from

the model incorporating the vertical image shift technique in the GRAPPA approach

does not exhibit overlapping artifacts, unlike the g-factor images from the mSPECS-

IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT models shown in Figure 5.22.
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5.4.2 Task Simulated Reconstruction Results

We also investigated the task activation detection performance of each model.

We applied the GRAPPA approach of the novel SMS techniques incorporating with

different directional image shift techniques to the simulated right-handed finger tap-

ping experiment with the same in-plane acceleration factor, IPA = 2, and different

through-plane acceleration factors TPA = 2, TPA = 4, and TPA = 8. Simi-

lar to the previous two models, for each voxel in the brain image, the signal can

be expressed as y = β0 + β1x + ϵ, where β0 is the baseline signal of the voxel, β1

is the task signal, x is a vector with elements 0 and 1 indicating each time point

with or without task activation. Therefore, the contrast-to-noise ratio (CNR) can

be calculated as CNR = β1/σN , and same as the definition in SNR, σN stands for

the standard deviation of the noise. The activation detection rate for each model

was also investigated by applying a complex-valued model to compute fMRI activa-

tion (Rowe and Logan (2004)). Figure 5.30 shows the average and standard devia-

tion of the CNR values in the region of interest (ROI) for the GRAPPA approach

for mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-

IPA-CAIPIVAT models, with an acceleration factor of IPA = 2 and TPA = 2. As

shown in Figure 5.30, the average CNR values in the ROI are very similar across the

four models. Moreover, when comparing the average CNR values in the ROI from the

mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-

CAIPIVAT models in Figure 5.23, the average CNR values from the models incorpo-

rating the GRAPPA technique are slightly lower under the IPA = 2 and TPA = 2

condition. Figure 5.31 shows the average task activation detection rate in the ROI for

the GRAPPA approach for mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-

IPA-VAT, and mSPECS-IPA-CAIPIVATmodels with IPA = 2 and TPA = 2. A sim-

ilar conclusion can be drawn from Figure 5.31. The average task activation detection

rate in the ROI for the novel SMS techniques incorporating the GRAPPA technique is
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nearly identical across models, and it is also slightly lower than the average task acti-

vation detection rate in the ROI for the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,

mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models in Figure 5.24 under the

IPA = 2 and TPA = 2 condition.

Similar to previous chapters, to assess the influence of a high acceleration factor

on the task activation detection ability of each model, we also compared the CNR

value and the task activation detection rate of ROI for GRAPPA for mSPECS-IPA,

GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT, and

GRAPPA for mSPECS-IPA-CAIPIVAT models under in-plane acceleration factor

IPA = 2, and different acceleration factors, TPA = 2, TPA = 4, and TPA = 8. Fig-

ure 5.32A shows the average CNR value in the ROI of slice 3 for the GRAPPA-applied

mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-

CAIPIVAT models with different acceleration factors. As the acceleration factor

increases, the average CNR value decreases across all four models. However, com-

pared to the average CNR value in the ROI for the mSPECS-IPA-CAIPIRINHA and

mSPECS-IPA-CAIPIVAT models in Figure 5.25A, the average CNR value in the ROI

for the novel SMS techniques incorporating the GRAPPA approach is higher, espe-

cially at high through-plane acceleration factors. Moreover, at high acceleration fac-

tors, the GRAPPA approach for mSPECS-IPA-CAIPIVAT exhibits a higher average

CNR value in the ROI compared to the other models. Figure 5.32B shows the aver-

age activation detection rate (z-score) in the ROI of slice 3 for the GRAPPA-applied

mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-

CAIPIVATmodels with different acceleration factors. Similar to what was observed in

the mSPECS-IPA-CAIPIVAT model, as the acceleration factor increases, it becomes

more challenging to capture the entire simulated activation blocks across all four mod-

els. However, compared to the average activation detection rate in the ROI for the

mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT models in Figure 5.25B,
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Figure 5.30: The average CNR value of ROI for with acceleration factor
TPA=2 situation from GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-
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CAIPIVAT model.
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Figure 5.32: A. The average CNR value of ROI for slice 3 from GRAPPA for
mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-
IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT model with acceleration factor
TPA = 2, TPA = 4, and TPA = 8. B. The average activation detection rate (z-
score) of ROI for slice 3 from GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-
IPA-CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT, and GRAPPA for mSPECS-
IPA-CAIPIVAT model with acceleration factor TPA = 2, TPA = 4, and TPA = 8.

the average activation detection rate in the ROI for the novel SMS techniques incor-

porating the GRAPPA approach is higher, particularly at high through-plane accel-

eration factors. Additionally, at high acceleration factors, the GRAPPA approach for

mSPECS-IPA-CAIPIVAT exhibits a higher average activation detection rate in the

ROI compared to the other models. Thus, among these four GRAPPA incorporated

SMS image shift techniques, the GRAPPA approach for mSPECS-IPA-CAIPIVAT is

the most effective model for capturing the task signal at high acceleration factors.
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CHAPTER 6: EXPERIMENTAL RECONSTRUCTION RESULTS

We also investigate performance and compare the in vivo reconstructed results of

the three approaches. The mSPECS-CAIPIVAT, mSPECS-IPA-CAIPIVAT, and the

GRAPPA approach for the mSPECS-IPA-CAIPIVAT model are applied to experi-

mental fMRI data.

6.1 Experimental FMRI Data

The real-world right-handed finger tapping fMRI experiment for a single object

was executed through a 3.0 T General Electric Signa LX MRI scanner. The flip

angel is 90◦ and the acquisition bandwidth is 125kHz in this experiment. The slice

thickness for the axial brain images is 2.5 mm. A total of nine slices were scanned.

However, since the dimension of the Hadamard and 2D Hadamard aliasing coefficient

must be a power of two, only eight slices were used in the proposed image-shifted SMS

techniques, with the most inferior axial brain slice disregarded. In this experiment,

an 8 channel receiver head coil was utilized with dimension 96 × 96 for a 24 cm full

field-of-view, with the phase encoding direction from posterior to anterior. In the

real-world right-handed finger tapping fMRI experiment, two fMRI time series were

acquired: the non-task calibration time series and the task time series. The right-

handed finger tapping experiment was designed with an initial 20s off rest, followed

by 15s off and 15s on for 16 epochs, and the final 10s of rest, resulting in a total

510s for the task time series. The first 20s of the task time series were disregarded to

achieve a steady magnetic field of the scanner, resulting in last 490s of the task time

series were applied to the novel proposed model.

The same acceleration factors from the simulated fMRI time series were ap-

plied in the real-world right-handed finger tapping experiment with IPA = 2, and

TPA = 2, 4, 8. The same net acceleration factors were achieved in the real-world
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experimental time series. The mSPECS-CAIPIVAT, mSPECS-IPA-CAIPIVAT and

GRAPPA approach for mSPECS-IPA-CAPIVAT were applied to the right-handed

finger tapping experiment fMRI time series. The SENSE method was also applied to

the calibration fMRI time series, and the reconstructed images were utilized as the

reference images. The reconstructed results from the novel image shift SMS technique

were compared with the reference images. All of the reconstruction and the analysis

process were finished through the MATLAB programming software.

6.2 mSPECS-CAIPIVAT

6.2.1 Non-Task Experimental Reconstruction Results

In order to investigate the performance of the new slice-wise image shift SMS mod-

els on a real-world experiment, we applied mSPECS-VAT, mSPECS-CAIPIRINHA

and mSPECS-CAIPIVAT model to the right-handed finger-tapping fMRI experiment

time series. Reconstructed axial brain images were obtained from these three im-

age shifting models and compared with the reconstruction results from SENSE and

mSPECS models; reference images were also included in the comparison. We also

investigated the model performance of the new slice-wise image shift models with

different acceleration factors TPA=2, TPA=4 and TPA=8, and compared the recon-

struction results with the SENSE and mSPECS model. Figure 6.1 and Figure 6.2

show the temporal mean magnitude and mean phase of the reconstructed images

from the reference, SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and

mSPECS-CAIPIVAT model for odd slices with acceleration factor TPA = 2. From

Figure 6.1 and Figure 6.2, compared with the reference brain images, the recon-

structed images from the SENSE model exhibit strong signal leakage from aliased

slices, making anatomical structures difficult to discern. In contrast, the reconstructed

images from the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-

CAIPIVAT models closely resemble the reference images, with clear anatomical struc-
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Figure 6.1: The temporal mean magnitude of the axial brain images from the
reference, SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT with acceleration factor TPA=2.

tures.
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Figure 6.3: The temporal variance of SENSE, mSPECS, mSPECS-VAT, mSPECS-
CAIPIRINHA, and mSEPCS-CAIPIVAT model with different acceleration factors of
slice 3.

Figure 6.3 shows the temporal variance of the task signal of the reconstructed im-

ages from SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSEPCS-

CAIPIVAT model with different acceleration factors of slice 3. From Figure 6.3, we

observe that the temporal variance from the SENSE model increases with increasing

acceleration factor, whereas the temporal variance from the mSPECS, mSPECS-

VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models decreases as the

acceleration factor increases. Furthermore, when comparing the mSPECS model

with the three slice-wise image shift techniques, the mSPECS-VAT, the mSPECS-

CAIPIRINHA and mSPECS-CAIPIVAT models provide lower temporal variance,

with the mSPECS-CAIPIVAT model yielding the lowest temporal variance results.

Similar to the simulation reconstruction results, we also investigated the SNR and

g-factor values of the reconstructed axial brain images of the four models. Fig. 6.4

shows the average and standard deviation of SNR and g-factor values of the ROI of
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reconstructed images for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA,

and mSPECS-CAIPIVATmodel with different acceleration factors. From Figure 6.4A,

as the acceleration factor increases, the average SNR value of the ROI from the

SENSE model decreases, whereas the average SNR values from the other three mod-

els increase. Comparing the mSPECS and the two slice-wise image shift techniques,

the mSPECS-CAIPIVAT model provides the highest average SNR value of the ROI

among these three models. From Figure 6.4B, as the acceleration factor increases,

the average g-factor value of the ROI from the SENSE model increases dramati-

cally. On the other hand, similar to the results from the simulation reconstruction

study, the average g-factor values of the ROI from the mSPECS, mSPECS-VAT,

mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models increase slightly, with the

mSPECS-CAIPIVAT model providing the lowest average g-factor value among the

four models.

6.2.2 Task Experimental Reconstruction Results

We also investigated the activation signal detection of the new proposed slice-wise

image shift model by analyzing the CNR value map and the activation detection maps

and comparing the reconstructed results with the SENSE and mSPECS model. We

compared the average CNR value of the ROI between different models with different

acceleration factors. Figure 6.5 shows the CNR value map for odd axial brain slices

from the SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-

CAIPIVAT models with an acceleration factor of TPA=2. The average and standard

deviation of the CNR values for the ROI are also shown in Figure 6.5. From Fig. 6.5,

it is evident that the SENSE model cannot detect any activation blocks in the right

motor cortex brain area. In contrast, the other three models, mSPECS, mSPECS-

VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT can detect clear activation

blocks with detailed anatomical structures. When comparing the average CNR values
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Figure 6.4: A. The SNR maps for SENSE, mSPECS, mSPECS-VAT, mSPECS-
CAIPIRINHA and mSPECS-CAIPIVAT model with TPA=2, TPA=4, and TPA=8.
B. The g-factor maps for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA
and mSPECS-CAIPIVAT model with TPA=2, TPA=4, and TPA=8.

of the ROI, the three slice-wise image shift techniques, mSPECS-VAT, mSPECS-

CAIPIRINHA and mSPECS-CAIPIVAT, have higher values than mSPECS model.

Figure 6.6 presents the activation block detection maps from the four models with

an acceleration factor of TPA=2. The average and standard deviation of the z-

scores for the ROI are also shown in Figure 6.6. Similar to the CNR maps, the

SENSE model fails to detect any activation blocks within the brain. The mSPECS,

mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models capture

the activation signals with clear shapes and anatomical structures. The average z-

score of the ROI from the two slice-wise image shift techniques is higher than that

of the mSPECS model, with the mSPECS-CAIPIVAT model providing the highest
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Figure 6.5: The CNR map and the average CNR value and standard devia-
tion of CNR of ROI for SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-
CAIPIVAT model with TPA=2.

average z-score for the ROI. A similar conclusion can be drawn from the CNR maps

and task activation detection maps for even slices of the experimental reconstructed
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Figure 6.6: The activation detection map and the average and standard devia-
tion of z-score of ROI for SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-
CAIPIVAT model with TPA=2.

images.

Figure 6.7A shows the CNR map for SENSE, mSPECS, mSPECS-VAT, mSPECS-
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CAIPIRINHA, and mSPECS-CAIPIVAT model with TPA=2, TPA=4, and TPA=8.

As the acceleration factor increases, the SENSE model cannot capture any activation

signals. Furthermore, the average CNR value of the ROI decreases for the mSPECS,

mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models as the ac-

celeration factor increases, indicating that as the number of aliasing slices increases,

the activation blocks become harder to detect. However, the two slice-wise image-

shifting techniques still provide higher average CNR values for the ROI than the

mSPECS model, with the mSPECS-CAIPIVAT model providing the highest score.

This means that the mSPECS-CAIPIVAT model is more powerful than the other

three models in detecting activation blocks. The activation detection maps were also

investigated. Figure 6.7B shows the activation detection map and the average z-score

of the ROI from four models with different acceleration factors TPA=2, TPA=4, and

TPA=8. The SENSE model cannot detect any activation blocks with any acceler-

ation factor. Additionally, as the acceleration factor increases, the average z-score

of the ROI decreases for the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and

mSPECS-CAIPIVAT models, indicating that detecting activation blocks becomes

more challenging with more aliasing slices. However, when comparing the mSPECS

model with the image-shifting techniques, the slice-wise image-shifting models pro-

vide higher average z-scores of the ROI, with the mSPECS-CAIPIVAT model having

the highest average z-score. Thus, we reach the same conclusion as in the simula-

tion study: the mSPECS-CAIPIVAT model is more powerful in detecting activation

signals compared to the other models.

6.3 mSPECS-IPA-CAIPIVAT

6.3.1 Non-Task Experimental Reconstruction Results

To investigate the performance of the proposed novel image-shifted SMS tech-

niques in a real-world fMRI experiment, we applied four models to an in vivo right-
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Figure 6.7: A. The CNR maps and average ROI CNR value from SENSE, mSPECS,
mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with re-
spect to different acceleration factors TPA=2, TPA=4, and TPA=8 for slice 3.
B. The task activation detection maps and the average ROI z-score from SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model
with respect to acceleration factor TPA=2, TPA=4 and TPA=8 for slice 3. The
higher CNR and z-score, the better model performs.

handed finger-tapping fMRI time series. The reconstruction results from these mod-

els were compared with reference axial brain images, reconstructed using the SENSE

technique from the calibration axial brain image time series. Additionally, we ap-

plied the novel image-shifted SMS techniques with the same in-plane acceleration

factor, IPA = 2, and varying through-plane acceleration factors, TPA = 2, TPA =

4, and TPA = 8, to examine the impact of acceleration on each model. Figure 6.8

and Figure 6.9 show the mean magnitude and mean phase of the reconstructed with

TPA = 2 from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT,
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and mSPECS-IPA-CAIPIVAT models, compared to the mean magnitude and mean

phase of the reference image from the calibration images. Compared to the mean

magnitude of the reference image, the mean magnitude from the four image-shifted

SMS models is closely aligned with the reference image. No inter-slice signal leakage

or artifactual brain distortions from other slices were observed in the reconstructed

images. Compared to the mean phase of the reference image, the mean phase of the re-

constructed images from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-

IPA-VAT, and mSPECS-IPA-CAIPIVAT models exhibits a highly similar pattern

inside the brain. However, residual artifacts appear outside the brain, particularly in

the mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT models, which can

be attributed to voxel aliasing, slice overlapping, and image shift techniques applied

in different models.

Figure 6.10 shows the temporal variance of the reconstructed image of slice 3 for

each model under different acceleration factors. As the acceleration factor increases,

the temporal variance increases significantly in the mSPECS-IPA-CAIPIRINHAmodel.

The temporal variance in the mSPECS-IPA-CAIPIVAT model also increases, particu-

larly in the central region of the brain, as the acceleration factor increases. However, in

the two models without vertical image shift techniques, mSPECS-IPA and mSPECS-

IPA-VAT, the temporal variance decreases. Moreover, in a comparison between these

two models, the mSPECS-IPA-VAT model exhibits lower temporal variance in the

left and right motor cortex regions of the brain as the acceleration factor increases.

Similar to the simulation-based reconstructed axial brain image analysis, we also

investigate the signal-to-noise ratio (SNR) and the geometric factor (g-factor) in

the reconstructed brain images from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,

mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models under different accelera-

tion factors. The SNR value and the g-factor are calculated as described in Chap-
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Figure 6.8: The mean magnitude from reconstructed image with through-
plane acceleration factor TPA=2 corresponding to mSPECS-IPA, mSPECS-IPA-
CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT model.

ter 5.3.1. Figure 6.11A shows the average SNR value for slice 3 in the mSPECS-IPA,

mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVATmod-
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Figure 6.9: The mean phase from reconstructed image with through-plane accel-
eration factor TPA=2 corresponding to mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,
mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT model.

els with acceleration factors TPA = 2, TPA = 4, and TPA = 8. As the acceleration

factor increases, the average SNR in the mSPECS-IPA and mSPECS-IPA-VAT mod-
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Figure 6.10: The temporal variance of reconstructed image for slice 3 from
mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-
CAIPIVAT model with different acceleration factor TPA=2, TPA=4, and TPA=8.

els also increases. The mSPECS-IPA-VAT model exhibits a higher average SNR at

the edges of the brain image compared to the mSPECS-IPA model. Conversely,

in the models incorporating vertical image shift (mSPECS-IPA-CAIPIRINHA and

mSPECS-IPA-CAIPIVAT), the average SNR initially increases as the acceleration

factor increases from TPA = 2 to TPA = 4 but decreases at TPA = 8. Compar-

ing the average SNR of the reconstructed axial brain images across the four models,

the mSPECS-IPA-VAT model provides the highest SNR value. Figure 6.11B shows

the g-factor of the reconstructed image of slice 3 for the mSPECS-IPA, mSPECS-

IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models un-
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Figure 6.11: A. The SNR value of reconstructed brain images slice 3 from
mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-
CAIPIVAT model with different acceleration factors. B. The g-factor value of re-
constructed brain images slice 3 from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,
mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT model with different acceleration
factors.

der different acceleration factors. Although the g-factor increases across all four

models as the acceleration factor increases, the mSPECS-IPA-VAT model exhibits

the lowest g-factor compared to the other three models. In contrast, the mSPECS-

IPA-CAIPIRINHA model has the highest g-factor among the four models at TPA =

8.

6.3.2 Task Experimental Reconstruction Results

To analyze the activation detection ability of the proposed image-shifted SMS

technique in a real-world right-handed finger-tapping fMRI experiment, we also in-

vestigate the contrast-to-noise ratio (CNR) and the activation detection rate (z-score)

of ROI of the reconstructed axial brain images from the mSPECS-IPA, mSPECS-IPA-



108

CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models under dif-

ferent acceleration factors. Since the right-handed finger-tapping fMRI experiment

was conducted, the task activation area was expected to be in the left motor cortex

of the brain. Figure 6.12 shows the average CNR value in the ROI for odd slices

of the reconstructed images from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,

mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models with an acceleration fac-

tor of TPA = 2. Compared to models without horizontal image shift, mSPECS-

IPA and mSPECS-IPA-CAIPIRINHA, models incorporating horizontal image shift,

mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT, exhibit a higher average CNR

value in the ROI, with mSPECS-IPA-VAT achieving the highest CNR value among

the four models. Figure 6.13 shows the task activation detection rate for odd slices

of the reconstructed images from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,

mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models with TPA = 2. Similar to

the conclusion drawn from the average CNR in the ROI, the mSPECS-IPA-VAT and

mSPECS-IPA-CAIPIVAT models exhibit a higher average z-score in the ROI of the

left motor cortex compared to the mSPECS-IPA and mSPECS-IPA-CAIPIRINHA

models. Among these four models, the mSPECS-IPA-VAT model provides the best

activation detection map at TPA = 2, indicating that mSPECS-IPA-VAT is the most

sensitive model for detecting task activation blocks.

The average CNR value in the ROI and the task activation detection rate were

also analyzed for the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-

VAT, and mSPECS-IPA-CAIPIVAT models under different acceleration factors. Fig-

ure 6.14A shows the average CNR value in the ROI of slice 3 for the four models,

compared at different acceleration factors, TPA = 2, TPA = 4, and TPA = 8. As the

acceleration factor increases, the average CNR decreases significantly across all four

models. However, among them, the mSPECS-IPA-VAT model provides the highest

average CNR in the ROI, while the mSPECS-IPA-CAIPIRINHA model exhibits the
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Figure 6.12: The average CNR value of ROI for odd slices of reconstructed images
from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-
IPA-CAIPIVAT model with TPA=2.
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Figure 6.13: The task activation detection (z-score) map of ROI for odd slices of
reconstructed images from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-
IPA-VAT and mSPECS-IPA-CAIPIVAT model with TPA=2.
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Figure 6.14: A. The average CNR value of ROI for slice 3 from mSPECS-IPA,
mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT
model with acceleration factor TPA=2, TPA=4, and TPA=8. B. The average ac-
tivation detection rate (z-score) of ROI for slice 3 from mSPECS-IPA, mSPECS-
IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT model with
acceleration factor TPA=2, TPA=4, and TPA=8.

lowest average CNR. Moreover, models incorporating horizontal image shift exhibit a

higher average CNR in the ROI compared to models without horizontal image shift.

Figure 6.14B shows the average task activation detection map for the ROI of slice

3 across the four models with different acceleration factors. As the acceleration fac-

tor increases, the average z-score in the ROI decreases significantly for each model.

Among these four models, the mSPECS-IPA-VAT model provides the highest average

z-score in the ROI, while the mSPECS-IPA-CAIPIRINHA model exhibits the low-

est. Additionally, models incorporating vertical image shift exhibit a lower average

z-score compared to models without vertical image shift. The mSPECS-IPA-VAT

model demonstrates the strongest ability to detect task activation blocks in brain

images.
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6.4 GRAPPA Approach for mSPECS-IPA-CAIPIVAT

6.4.1 Non-Task Experimental Reconstruction Results

We investigated the performance of the proposed GRAPPA approach novel image-

shifted SMS techniques in a real-world fMRI experiment, hence, similar to the previ-

ous chapters, we also applied four models to an in vivo right-handed finger-tapping

fMRI time series. The reconstruction results from these models were compared with

reference axial brain images, reconstructed using the SENSE technique from the cal-

ibration axial brain image time series. Additionally, we applied the novel image-

shifted SMS techniques with the same in-plane acceleration factor, IPA = 2, and

varying through-plane acceleration factors, TPA = 2, TPA = 4, and TPA = 8,

to examine the impact of acceleration on each model. Figure 6.15 and Figure 6.16

show the mean magnitude and mean phase of the reconstructed with TPA = 2

from the GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA,

GRAPPA for mSPECS-IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT mod-

els, compared to the mean magnitude and mean phase of the reference image from

the calibration images. Compared to the mean magnitude of the reference image, the

mean magnitude from the four GRAPPA applied image-shifted SMS models is closely

aligned with the reference image. No inter-slice signal leakage or artifactual brain dis-

tortions from other slices were observed in the reconstructed images. Compared to

the mean phase of the reference image, the mean phase of the reconstructed images

from the GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA,

GRAPPA for mSPECS-IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT mod-

els exhibits a highly similar pattern inside the brain. Moreover, when comparing

with the mean phase of the reconstructed images from Figure 6.9, the residual arti-

facts are significantly eliminated outside the brain, particularly in the GRAPPA for

mSPECS-IPA-CAIPIRINHA and GRAPPA for mSPECS-IPA-CAIPIVAT models.
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Figure 6.15: The mean magnitude from reconstructed image with in-plane acceler-
ation factor IPA = 2 through-plane acceleration factor TPA = 2 corresponding to
GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA
for mSPECS-IPA-VAT and GRAPPA for mSPECS-IPA-CAIPIVAT model.

Figure 6.17 shows the temporal variance of the task signal from the reconstructed

image of slice 3 for each model under an in-plane acceleration factor of IPA = 2
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Figure 6.16: The mean phase from reconstructed image with in-plane accelera-
tion factor IPA = 2 through-plane acceleration factor TPA = 2 corresponding to
GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA
for mSPECS-IPA-VAT and GRAPPA for mSPECS-IPA-CAIPIVAT model.

and different through-plane acceleration factors. As the acceleration factor increases,

the temporal variance of the task signal decreases significantly across all four models.
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However, the temporal variance of the task signal at the central region of the recon-

structed brain image from the GRAPPA applied mSPECS-IPA-CAIPIRINHA model

increases compared to the other three models, despite the overall decreasing trend.

In the posterior and anterior regions of the brain, the variance of the task signal

from the GRAPPA applied mSPECS-IPA-CAIPIRINHA model decreases as the ac-

celeration factor increases. Among these four models, the mSPECS-IPA-CAIPIVAT

model provides the lowest temporal variance of the task signal at high acceleration

factors. Furthermore, compared to the temporal variance of the task signal from

the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-

IPA-CAIPIVAT models in Figure 6.10, the temporal variance of the task signal from

the GRAPPA applied novel SMS image shift techniques decreases significantly.

We also investigate the signal-to-noise ratio (SNR) and the geometric factor

(g-factor) in the reconstructed brain images from the GRAPPA for mSPECS-IPA,

GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT, and

GRAPPA for mSPECS-IPA-CAIPIVAT models under different acceleration factors.

The SNR value and the g-factor are calculated same as described in Chapter 5.3.1.

Figure 6.18A shows the average SNR value for slice 3 in the GRAPPA for mSPECS-

IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT,

and GRAPPA for mSPECS-IPA-CAIPIVAT models with in-plane acceleration factor

IPA = 2 and through-plane acceleration factors TPA = 2, TPA = 4, and TPA = 8.

As the through-plane acceleration factor increases, the average SNR across the four

models also increases significantly. In the posterior and anterior regions of the brain

image, the GRAPPA for mSPECS-IPA-CAIPIVAT model exhibits the highest aver-

age SNR among these four models. However, in the peripheral regions of the brain,

the GRAPPA-applied SMS image shift technique incorporating the vertical image

shift technique shows a lower average SNR. Moreover, compared to the average SNR

in Figure 6.11A, the average SNR in Figure 6.18A is higher. Figure 6.18B shows the
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Figure 6.17: The temporal variance of task signal from reconstructed image for
slice 3 from GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA,
GRAPPA for mSPECS-IPA-VAT and GRAPPA for mSPECS-IPA-CAIPIVAT model
with in-plane accelertion factor IPA = 2 different acceleration factor TPA = 2,
TPA = 4, and TPA = 8.

g-factor of the reconstructed image of slice 3 for the GRAPPA for mSPECS-IPA,

GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT, and

GRAPPA for mSPECS-IPA-CAIPIVAT models with an in-plane acceleration factor

of IPA = 2 and different through-plane acceleration factors: TPA = 2, TPA = 4,

and TPA = 8. As the through-plane acceleration factor increases, the g-factor of

the reconstructed images from all four models also increases. The GRAPPA applied

mSPECS-IPA-CAIPIVAT model exhibits a lower g-factor in the posterior and ante-

rior regions of the brain image. However, in the central region of the brain image,
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Figure 6.18: A. The SNR value of reconstructed brain images slice 3 from
GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA
for mSPECS-IPA-VAT and GRAPPA for mSPECS-IPA-CAIPIVAT model with in-
plane acceleration factor IPA = 2 and different through-plane acceleration factors,
TPA = 2, TPA = 4, and TPA = 8. B. The g-factor value of reconstructed
brain images slice 3 from GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-
CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT and GRAPPA for mSPECS-IPA-
CAIPIVAT model with in-plane acceleration factor IPA = 2 and different through-
plane acceleration factors, TPA = 2, TPA = 4, and TPA = 8.

the g-factor from the GRAPPA applied mSPECS-IPA-CAIPIVAT and mSPECS-

IPA-CAIPIRINHA models is higher than that of the other two models. Overall, the

g-factor in Figure 6.18B is lower than the g-factor in Figure 6.11B, particularly in

models incorporating vertical image shift techniques at high through-plane accelera-

tion factors.

6.4.2 Task Experimental Reconstruction Results

We also investigates the contrast-to-noise ratio (CNR) and the activation detection

rate (z-score) of ROI of the reconstructed axial brain images from the GRAPPA for

mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-
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Figure 6.19: The average CNR value of ROI of reconstructed images from
GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA
for mSPECS-IPA-VAT and GRAPPA for mSPECS-IPA-CAIPIVAT model with
IPA = 2 and TPA = 2.
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Figure 6.20: The task activation detection (z-score) map of ROI of recon-
structed images from the GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-
CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT, and GRAPPA for mSPECS-IPA-
CAIPIVAT models with IPA = 2 and TPA = 2.
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IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT models with same in-plane

acceleration factor and different acceleration factors, in order to analyze the activa-

tion detection ability of the proposed image-shifted SMS technique in a real-world

right-handed finger-tapping fMRI experiment. Since the right-handed finger-tapping

fMRI experiment was conducted, the task activation area was expected to be in the

left motor cortex of the brain. Figure 6.19 shows the average CNR value in the

ROI of the reconstructed images from GRAPPA for mSPECS-IPA, GRAPPA for

mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT and GRAPPA for

mSPECS-IPA-CAIPIVAT model with IPA = 2 and TPA = 2. Compared to mod-

els without horizontal image shift, GRAPPA for mSPECS-IPA and GRAPPA for

mSPECS-IPA-CAIPIRINHA, models incorporating horizontal image shift, GRAPPA

for mSPECS-IPA-VAT and GRAPPA for mSPECS-IPA-CAIPIVAT, exhibit a higher

average CNR value in the ROI. However, compared with the average CNR value in the

ROI from Figure 6.12, the average CNR value in the ROI from Figure 6.19 has slightly

lower value when though-plane acceleration factor is low. Figure 6.20 shows the task

activation detection rate for ROI of the reconstructed images from the GRAPPA for

mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-

IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT models with IPA = 2 and

TPA = 2. Similar to the conclusion drawn from the average CNR in the ROI,

the GRAPPA applied mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT models ex-

hibit a higher average z-score in the ROI of the left motor cortex compared to the

GRAPPA applied mSPECS-IPA and mSPECS-IPA-CAIPIRINHA models. More-

over, consistent with the findings from the average CNR values in Figure 6.19, the

average z-score value in the ROI from Figure 6.20 is slightly lower than that in Fig-

ure 6.13 when the through-plane acceleration factor is low.

We also investigated the average CNR value in the ROI and the task activa-

tion detection rate and analyzed for the GRAPPA for mSPECS-IPA, GRAPPA for
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Figure 6.21: A. The average CNR value of ROI for slice 3 from GRAPPA for
mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-
IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT model with in-plane acceler-
ation factor IPA = 2 and though-plane acceleration factor TPA = 2, TPA = 4, and
TPA = 8. B. The average activation detection rate (z-score) of ROI for slice 3 from
GRAPPA for mSPECS-IPA, GRAPPA for mSPECS-IPA-CAIPIRINHA, GRAPPA
for mSPECS-IPA-VAT, and GRAPPA for mSPECS-IPA-CAIPIVAT model with in-
plane acceleration factor IPA = 2 and though-plane acceleration factor TPA = 2,
TPA = 4, and TPA = 8.

mSPECS-IPA-CAIPIRINHA, GRAPPA for mSPECS-IPA-VAT, and GRAPPA for

mSPECS-IPA-CAIPIVAT models with same in-plane acceleration factor and differ-

ent through-plane acceleration factors. Figure 6.21A shows the average CNR value

in the ROI of slice 3 for the four models, compared at different acceleration factors,

TPA = 2, TPA = 4, and TPA = 8. As the acceleration factor increases, the average

CNR decreases significantly across all four models. However, among them, GRAPPA

applied mSPECS-IPA-VATmodel provides the highest average CNR in the ROI, while

the GRAPPA applied mSPECS-IPA-CAIPIRINHA model exhibits the lowest average

CNR. Moreover, models incorporating horizontal image shift exhibit a higher aver-

age CNR in the ROI compared to models without horizontal image shift. Moreover,
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when the through-plane acceleration factor is high, the average CNR in the ROI from

the GRAPPA-applied SMS image shift model incorporating the vertical image shift

technique (Figure 6.21A) is higher than that from the mSPECS-IPA-CAIPIRINHA

model in Figure 6.14. Figure 6.21B shows the average task activation detection map

for the ROI of slice 3 across the four models with same in-plane acceleration factor and

different through-plane acceleration factors. As the acceleration factor increases, the

average z-score in the ROI decreases significantly for each model. Among these four

models, the GRAPPA applied mSPECS-IPA-VAT model provides the highest average

z-score in the ROI, while the GRAPPA applied mSPECS-IPA-CAIPIRINHA model

exhibits the lowest with high through-plane acceleration factor. Furthermore, when

the through-plane acceleration factor is high, the average z-score in the ROI from

the GRAPPA applied SMS image shift model incorporating the vertical image shift

technique (Figure 6.21A) is higher than that from the mSPECS-IPA-CAIPIRINHA

model in Figure 6.14.
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CHAPTER 7: DISCUSSION

7.1 mSPECS-CAIPIVAT

Since fMRI studies were first introduced by Ogawa et al. (1990), efforts have been

made to enhance the efficiency of the signal acquisition procedure but still be able

to achieve the goal of reconstructing brain images with high resolution, and improve

the accuracy to capture the brain activation signal. Parallel imaging reconstruction

methods, like SENSE, can be a potential solution to shorten the scan time with a

through-plane subsampling technique. However, it is easily influenced by the high

similarity of weighted coil sensitivity information of two aliased voxels, which leads

to a singular matrix and a inter-slice signal leakage problem in the reconstruction

process. In the interest of decreasing the similarity and increasing the independence

of the weighted information of aliased voxels, slice-wise imaging shift techniques,

CAIPIRINHA and CAIPIVAT, can increase the physical distance of the aliased vox-

els. Compared to techniques without the image-shifting method, like SENSE and

mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT meth-

ods provide reconstructed images with more anatomic details and reduced temporal

variance.

We also compared the average SNR values for different tissue types and the average

g-factor values of these four models with respect to the different through-plane acceler-

ation factors (Table 2). Moreover, comparing the g-factor penalty among four models

with respect to different acceleration factors, the mSPECS-CAIPIVAT model has the

lowest value, which means that the mSPECS-CAIPIVAT model has a lower noise am-

plification level compared with other models. Thus, the image reconstruction method

with slice-wise image shift techniques, mSPECS-VAT, mSPECS-CAIPIRINHA and

mSPECS-CAIPIVAT, produce better results by increasing the SNR values and de-
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creasing the variance of the reconstructed images. However, as shown in Figure 5.12,

increasing the through-plane acceleration factor leads to a loss in the average CNR

values and the mean activation values of the task block when comparing the mSPECS,

mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models. With

TPA increasing from 2 to 8, the mSPECS model shows a 63% decrease in CNR and

a 62% decrease in mean activation. For the mSPECS-VAT model, CNR decreases by

66% and mean activation by 66%, the mSPECS-CAIPIRINHA model, CNR decreases

by 63% and mean activation by 58%, while the mSPECS-CAIPIVAT model shows de-

creases of 54% for both CNR and mean activation. Thus, when comparing these four

models, the SENSE model yields the worst results with strong inter-slice signal leak-

age. Compared to the mSPECS model, the slice-wise image shift SMS models have

higher SNR and CNR values with lower g-factor penalty under the circumstance with

high acceleration factors. Similar conclusions can be made from Figure 6.7, compared

with the mSPECS model, the slice-wise image shift techniques provide us higher SNR

value for the ROI and lower g-factor penalty under the circumstance with high accel-

eration factor like TPA=8. However, we still need to face the situation where, with

the high acceleration factor, the loss of the CNR value and the activation detection

rate becomes significant. Therefore, by comparing the average CNR values for the

ROI and activation detection maps among the four models, the mSPECS-CAIPIVAT

model provides us the best CNR and activation detection map.

In this study, we discussed SMS models employing different slice-wise image shift

techniques. Intuitively, the smaller the overlapping area between aliased slices, the

easier it is to separate them. Therefore, we compared the completely overlapping

case, mSPECS model, with slice-wise image shift techniques, including mSPECS-VAT

(horizontal), mSPECS-CAIPIRINHA (vertical), and mSPECS-CAIPIVAT (horizon-

tal and vertical). Compared to slice-wise image shift techniques that operate in

only one direction, as in mSPECS-VAT and mSPECS-CAIPIRINHA, the mSPECS-
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CAIPIVAT model utilizes shifts in both directions, resulting in a smaller overlapping

area and consequently better reconstruction results. By comparing the results from

the simulation reconstruction section and the experimental reconstruction section of

the mSPECS-VAT, the mSPECS-CAIPIRINHA model and the mSPECS-CAIPIVAT

model and to make a fair decision through a trade-off of the increment in the SNR

and decrement of the CNR value and the activation detection with respect to differ-

ent acceleration factors, we suggest the optimal through-plane acceleration factor to

be TPA=4. Under this circumstance, the mSPECS-CAIPIVAT model can provide

reconstructed images with high SNR information, but still be able to capture the

activation signal. Our suggestion is consistent with the optimal multiband factor MB

= 4 from previous work (Risk et al. (2021)).

7.2 mSPECS-IPA-CAIPIVAT

In traditional fMRI image acquisition techniques, images were collected slice-by-

slice during the early development of fMRI studies. As imaging techniques advanced,

researchers focused on improving the efficiency of the image acquisition process while

maintaining the ability to reconstruct high-resolution brain images. Two primary

techniques have been developed to achieve this goal: through-plane acceleration and

in-plane acceleration. Parallel imaging is one of the through-plane acceleration tech-

niques, allowing multiple brain images to be acquired at each time point in an fMRI

time series. Previous studies suggest that an optimal multiband factor for resting-

state fMRI is MB = 4 (Risk et al. (2021)). A widely used in-plane acceleration

technique, GRAPPA, can also reduce scan time by acquiring a subsampled k -space.

In this study, through-plane acceleration and in-plane acceleration were combined to

further shorten image scan time. However, due to the high similarity of coil sensitiv-

ity information in aliased voxels, additional techniques such as 2D Hadamard phase

encoding and image shift were incorporated to mitigate the influence of the g-factor.
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As discussed in Chapter 3.1.2, the number of aliased brain images should be a power

of 2 due to the constraints of the 2D Hadamard coefficient aliasing matrix. However,

if an odd number of images are aliased, the orthogonal contrast aliasing matrix design

can be incorporated into the model to maintain the orthogonality of the design ma-

trix. In this study, we not only investigated the influence of net acceleration factors

and image shift directions on model performance but also assessed the task activation

detection ability of each model.

In this study, we first investigated the influence of high acceleration factors on

the performance of the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-

VAT, and mSPECS-IPA-CAIPIVAT models. Based on the simulated reconstructed

results in Chapter 5.3 and the experimentally reconstructed results in Chapter 6.3,

high acceleration factors had a positive impact on the SNR of the reconstructed im-

ages in the mSPECS-IPA and mSPECS-IPA-VAT models. As shown in Figure 5.17

and Figure 6.11, as the acceleration factor increased, the average SNR also increased.

However, in models incorporating vertical image shift, the SNR of the reconstructed

images decreased as the acceleration factor increased. This effect occurs because

image shift in the same direction as the in-plane acceleration results in a more com-

plex slice-overlapping pattern than in models without vertical image shift. A similar

conclusion can be drawn from the g-factor plot. The g-factor penalty in the mSPECS-

IPA and mSPECS-IPA-VAT models is more stable compared to the mSPECS-IPA-

CAIPIRINHA and mSPECS-IPA-CAIPIVAT models. As shown in Figure 5.25 and

Figure 6.14, a high acceleration factor negatively affects the average CNR in each

model. As the acceleration factor increased, the average CNR in the ROI decreased

significantly across all models. However, among the four models, the mSPECS-IPA-

VAT model exhibited the highest average CNR across different acceleration factors. A

similar trend was observed in the task activation detection maps for each model under

different acceleration factors. As the acceleration factor increased, the average z-score
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in the ROI decreased, indicating that capturing task activation signals became more

difficult for all models at high acceleration factors. However, the mSPECS-IPA-VAT

model maintained the highest average z-score in the ROI, making it the most sensi-

tive model for detecting activation signals compared to the other models. Overall,

increasing the acceleration factor has a positive effect on SNR in reconstructed brain

images but a negative effect on CNR and activation detection rates. This presents

a trade-off in fMRI image acquisition, where a lower acceleration factor is generally

more desirable.

We also investigated the influence of the image shift direction on the performance

of each model. There are four different directions: mSPECS-IPA has no image shift

technique, mSPECS-IPA-CAIPIRINHA has vertical image shift technique, mSPECS-

IPA-VAT has horizontal image shift technique and the mSPECS-IPA-CAIPIVAT has

vertical and horizontal image shift technique. Comparing the SNR, average CNR

plot, and task activation detection maps, models incorporating vertical image shift,

mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT exhibited worse results

in the reconstructed brain images. This is due to the increased voxel aliasing com-

plexity when image shift occurs in the same direction as the in-plane acceleration

(i.e., the phase encoding direction). Therefore, to avoid degraded reconstruction per-

formance, it is recommended that image shift be applied in a direction different from

the in-plane acceleration direction. Moreover, other factors may also influence the

performance of the novel image shift SMS technique, such as the location of the task

activation signal and the size of the brain image. For example, if the task activation

signal is generated in the posterior or anterior region of the brain, the mSPECS-IPA-

VAT model is expected to perform better than the other models. In conclusion, the

novel image-shifted SMS technique is recommended to be used with a lower accel-

eration factor, and the image shift direction should be different from the in-plane

acceleration direction to achieve optimal performance.
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7.3 The GRAPPA Approach for mSPECS-IPA-CAIPIVAT

In Chapter 4.2, we discussed the motivation for this study: to combine the advan-

tages of the mSPECS-CAIPIVAT model, which does not require careful experimental

design, while also benefiting from the mSPECS-IPA-CAIPIVAT model’s reduced im-

age acquisition time. To evaluate the performance of our novel GRAPPA applied SMS

image shift model, we first applied models incorporating different image shift direc-

tions to simulated fMRI data. Comparing the mean magnitude and mean phase of the

reconstructed images across the three studies, all models generated high-resolution

reconstructed brain images with detailed anatomical information, and no inter-slice

signal leakage was observed. Comparing the variance of the task signal across the

three studies, the variance from GRAPPA applied SMS image shift techniques was

the lowest (Figure 5.28), whereas the second study exhibited the highest task signal

variance (Figure 5.17), particularly in models incorporating vertical image shift tech-

niques. Additionally, when comparing the average SNR and g-factor across the three

studies, the GRAPPA-applied SMS image shift techniques exhibited the highest SNR

value (Figure 5.29) and the lowest g-factor value. In contrast, the second study had

the lowest SNR and the highest g-factor (Figure 5.22), especially in models incor-

porating vertical image shift techniques. A similar conclusion can be drawn when

comparing the reconstructed results from the three studies after applying the models

to the real-world right-handed finger tapping experimental fMRI data.

We also investigated the reconstructed results of the three studies by applying

them to real-world fMRI time series data from a right-handed finger-tapping exper-

iment. We analyzed the average CNR value in the ROI and the task activation

detection (z-score) rate from each study. Similar to the conclusions drawn from the

simulated reconstructed results, the reconstructed brain images from all models were

high-resolution with detailed anatomical structures. No inter-slice signal leakage was
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observed in any of the three models. Comparing the average CNR value in the

ROI across the three studies, the mSPECS-CAIPIVAT model exhibited the highest

average CNR value (Figure 6.7), whereas the second study had the lowest average

CNR value (Figure 5.17), particularly in models incorporating vertical image shift

techniques, such as the mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT

models. Furthermore, when comparing task activation detection across the three

studies, the mSPECS-CAIPIVAT model incorporating image shift techniques exhib-

ited the highest task activation detection value (Figure 6.7). In contrast, the second

study had the lowest activation detection value (Figure 6.14), particularly when ver-

tical image shift techniques were incorporated into the model.

7.4 Future Work

In this dissertation, we discussed novel SMS multi-directional image shift tech-

niques incorporating in-plane and through-plane acceleration methods and presented

them in a Bayesian manner. However, there is still more work to be done in the future

to further develop our novel SMS models.

For the first two studies, mSPECS-CAIPIVAT and mSPECS-IPA-CAIPIVAT, we

analyzed the reconstructed brain images and investigated the task activation detec-

tion ability of each model. However, due to the characteristics of the Hadamard phase

encoding technique and the newly proposed 2D Hadamard phase encoding technique,

the number of aliased slices per excitation must be a power of 2. If an experiment

requires an odd number of aliased slices per excitation, the Hadamard phase encoding

technique and the 2D Hadamard phase encoding technique would not be appropriate

methods. Instead, an orthogonal contrast experiment design should be considered.

Furthermore, to gain a better understanding of brain function, we also need to in-

vestigate the correlation between different brain regions. There are three traditional

approaches for studying these correlations: the seed-based correlation technique, the
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independent component analysis (ICA) technique, and graph theory. These tech-

niques are commonly used to analyze brain connectivity. In future studies, we could

also integrate these techniques to examine the correlation of the reconstructed brain

images from our studies.

For the third study, the GRAPPA approach for the mSPECS-IPA-CAIPIVAT

model, we presented our model in a sequential manner, where the mSPECS-IPA-

CAIPIVAT, GRAPPA, and mSPECS-CAIPIVAT models need to be applied in order.

However, to improve the methodology of the third study, a design matrix incorpo-

rating all voxel aliasing information needs to be considered. Moreover, similar to the

first two projects, we could also incorporate the orthogonal contrast experiment design

method to address the issue of aliased slices with an odd number and to investigate

the correlation between different regions of the reconstructed brain image.
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