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ARTICLE INFO ABSTRACT
Keywords: FMRI has been a safe medical imaging tool to study brain function by demonstrating the spatial and temporal

fMRI changes in brain metabolism in recent decades. To capture brain functionality more efficiently, efforts focus

SMS on accelerating image acquisition acquired per unit of time that create each volume image without losing
Th:oulél;-_r]ane full anatomical structure. The Simultaneous Multi-Slice (SMS) technique provides a reconstruction method
Bayesian where multiple slices are acquired and aliased concurrently. Traditional imaging techniques such as SENSE

and GRAPPA can reconstruct an image from less measured data but have their drawbacks. The Controlled
Aliasing in Parallel Imaging (CAIPI) and view angle tilting (VAT) techniques achieve slice-wise image shift to
decrease the influence of the geometry factor (g-factor) of coil sensitivities and prevent the singular problem of
the design matrix. In this paper, a Bayesian CAIPIVAT approach for multi-coil separation of parallel encoded
complex-valued slices (mSPECS-CAIPIVAT) with a novel SMS approach is presented and combined with the
Hadamard phase-encoding method for image separation. Qur proposed approach was applied to simulation and
experimental studies showing a decrease in the influence of the g-factor while increasing the brain activation
detection rate. The signal-to-noise ratio and the contrast-to-noise ratio are also improved by our approach.

1. Introduction resolution of the reconstructed images by incorporating the anatomical

information from prior distributions into the k-space [6,7]. Other in-

As a powerful and non-invasive medical imaging tool, functional
Magnetic Resonance Imaging (fMRI) has played a dominant role in
brain imaging studies since 1990 [1]. Neuronal activity cannot be di-
rectly detected but correlates with the Blood Oxygen Level Dependence
(BOLD) contrast signal which is used as a proxy. By detecting task-
related changes in the BOLD signal inside our brain, the magnetic
resonance (MR) scanner can map our brain with a unique radio fre-
quency (RF) pulse sequence [1,2]. In structural and functional MRI
studies, the time to measure a volume image is dependent upon how
rapidly the amount of data necessary to reconstruct an image can
be measured. In order to accelerate the number of images measured
per unit time, a topic of study has been to measure less data but
still be able to reconstruct a high-quality image. To reconstruct im-
ages using less data, multiple receiver coils are used where each coil
measures sensitivity-weighted images [3]. Initially, accelerated imaging
was aimed at In-Plane Acceleration (IPA) where spatial frequency
data are partially skipped, and each coil measured fewer lines of
the spatial frequency array. Parallel imaging techniques, such as Sen-
sitivity Encoding (SENSE) and Generalized Autocalibrating Partially
Parallel Acquisitions (GRAPPA) [4,5], can be incorporated with the
IPA techniques. Bayesian techniques have been applied to improve the
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plane imaging acceleration techniques like partial Fourier imaging
technique [8,9] can acquire half of the lines in the k-space. However,
considering some fixed time blocks in the data-acquiring process, for
instance, imaging encoding and the proper time for T contrast in
one excitation, the scan time will not decrease significantly in IPA
techniques. More recently, Simultaneous Multi-Slice (SMS) techniques
(Fig. 1) were developed and discussed [10-12]. The SMS technique
is extensively used in fMRI studies, and it allows for acquiring fMRI
data with high resolution by using a multiband (MB) radiofrequency
(RF) within a reduced repetition time (TR). Compared with conven-
tional parallel imaging techniques, in SMS techniques, multiple slices
are acquired concurrently and aliased together in one excitation, and
hence, the image-acquiring time will decrease with a factor of the total
number of aliased slices. Thus, a Through-Plane Acceleration (TPA) is
achieved by SMS techniques and allows for a more efficient approach
to acquiring images.

Since multiple slices are acquired at the same time for one exci-
tation of the TPA technique, a short distance between aliased slices
will lead to a high similarity of voxel and coil sensitivity informa-
tion. When applying the standard SENSE method, this may cause
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Fig. 1. The 3D view (left) and 2D view (right) of an example for SMS technique with four slices and four coils.

a singular matrix problem and strong inter-slice signal leakage will
appear on the reconstructed images. To decrease the influence of
the geometry properties of the coil sensitivity maps, techniques like
“controlled aliasing in parallel imaging results in higher acceleration”
(CAIPIRINHA), “blipped-CAIPIRINHA" (Blipped-CAIPI), and Hadamard
phase-encoding provide other possible ways to minimize the influence
of the geometric factor (g-factor) and increase the conditioning of the
slices aliasing matrix [13,14]. By modulating the phase for each line
in k-space and imparting each line with a specific angle, the field-of-
view (FOV) is shifted in the phase-encoding direction (PE, vertically in
this paper). Applying a unique phase modulation amount to each slice
in the aliased image-acquiring process increases the physical distance
between the aliased voxels. Therefore, the difference of coil sensitivity
for each slice will increase and the influence of the g-factor for each
excitation is minimized. Moreover, to further increase the physical dis-
tance between two aliased voxels and expose more information beneath
the coil sensitivities, the FOV cannot only be moved along the vertical
PE direction but also the horizontal readout direction (RO, horizontally
in this paper). The study “multislice CAPIPRINHA using view angle
tilting technique” (CAIPIVAT) [15,16] proposes a method combining
the CAIPIRINHA technique and View Angle Tilting (VAT) [17] tech-
nique together by applying a unique compensation gradient of VAT.
The inter-slice signal leakage can be reduced using the slice-GRAPPA
and split slice-GRAPPA approaches by applying GRAPPA kernels to
the k-space of the aliased slices [14,18]. Other techniques to solve
the singular matrix problem of the design matrix, like the “simultane-
ous multi-slice acquisition” (SIMA) [10] method discussed a powerful
tool, the Hadamard phased-encoding technique in the reconstruction
process. By incorporating a specific coefficient from the Hadamard
matrix for each aliasing slice, different combinations for each voxel
is achieved. For example, the summation of two desired voxels will
not only be acquired but also the difference between two voxels is
collected. Moreover, the Hadamard phase-encoding technique has been
proved to be a significant method to minimize the residual correlation
between the unaliased images and improve the temporal signal-to-noise
ratio (tSNR) [19,20]. In the “Separation of parallel encoded complex-
valued slices (SPECS) from a single complex-valued aliased coil image”
and “multi-coil separation of parallel encoded complex-valued slices”
(mSPECS) studies, the Hadamard phase encoding technique is also the
essential idea [21,22].

In the Bayesian Controlled Aliasing in Parallel Imaging with View
Angle Tilting approach for multi-coil Separation of Parallel Encoded
Complex-valued Slices (mSPECS-CAIPIVAT) model, we incorporate

slice-wise image shift techniques and the Hadamard phase-encoding
technique together in which different voxel combinations is acquired
for each excitation. It provides a solution to significantly reduce the
scan time with a high acceleration factor, meanwhile providing high-
resolution and  high-quality  reconstruction images. The
mSPECS-CAIPIVAT model would not only advance the methodology
of Bayesian fMRI image reconstruction but also benefit clinical and
practical applications. In the mSPECS-CAIPIVAT model, since multiple
slices are acquired concurrently, the total image acquisition time is
reduced by a factor corresponding to the number of aliased slices per
excitation. This reduction in acquisition time greatly improves the effi-
ciency of fast-imaging protocols and alleviates discomfort for patients,
such as those with claustrophobia, during fMRI experiments. Moreover,
compared with traditional multiband fMRI acquisition methods, the
mSPECS-CAIPIVAT model provides a higher activation detection rate
in task-related brain areas in less time.

2. Theory
2.1. The data acquiring process

2.1.1. CAIPIRINHA and CAIPIVAT

As mentioned in Section 1, the physical distance between two
aliased voxels can be increased by applying the VAT, the CAIPIRINHA
and the CAIPIVAT techniques to achieve slice-wise image shifts, thus
reducing the dependence on the geometry of the coil array. The CAIPIR-
INHA technique can move the FOV along the PE direction (vertical) by
modulating the phase for each line in k-space. Whereas the CAIPIVAT
technique can shift the FOV along two directions, PE (vertical) and
RO (horizontal), by applying a unique compensation gradient of VAT.
Through these two image shift techniques along with the Hadamard
slice encoding technique, the g-factor of the reconstructed images can
be reduced. Since the g-factor is related to the signal-to-noise ratio
(SNR), in SMS studies, giving the definition of the SNR:

SNRyys = SNR;;;;:/(S\{EL (1

where R is the IPA factor [23]. From Eq. (1), the SN Rgy, s is strongly
influenced by the geometric properties of the coil array, g-factor. It
depends on the number and location of the coils, the phase-encoding
direction, the voxel location, etc. Thus, the g-factor is not a constant
value but varies across each voxel within the images [24]. A short
physical distance between two aliased voxels will increase the g-factor
value because of their intensity and sensitivity similarity which will
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decrease the SNR. Therefore, increasing the physical distance between
two aliased voxels is one of our strategies. The VAT technique, the
CAIPIRINHA technique, and the CAIPIVAT technique can reduce the
influence of the g-factor by applying a partial in-plane image shift.
Considering the 1D inverse discrete Fourier transform, a periodic time
series y(f) sampled at n time points A: apart is described as below:
37! e
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where 4v is the temporal frequency resolution and 4Av = 1/(ndr). It is
the summation of the Fourier amplitude coefficients at multiple various
frequencies. In Eq. (2), y(pAr) and f(gAv) are complex-valued quantities
with real and imaginary components. When we shift the whole time
series from pAt to p’Ar, where y(p’Ar) is same as y(pAr) sampled at n
time points Ar apart with a different order from y(pAr), a field-of-view
shift Ay occurs and is:
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for p = 1,... ,n. The FOV shift only depends on the phase change in
k-space, which equals —2xp'g/n. If half of the image is shifted in the
PE direction (FOV/2), p' = n/2, the modulation of phase should be
—ng. Therefore, the phase of even lines in k-space should impart = and
the phase of odd lines should impart 0. If the FOV/4 shift of the image
needs to be achieved, the modulation of the phase for each line in the
k-space needs to be adjusted. Fig. 2A is an illustration to explain the
CAIPIRINHA process. Applying the discrete Fourier transform to each
excitation in the time series to obtain the k-space, modulating the phase
for each line in the k-space with a unique angle, after the inverse dis-
crete Fourier transform, we will have an in-plane image shifted effect.
Compared with the on-resonance spins of the CAIPIRINHA technique,
during the slice-selection process, the CAIPIVAT technique allows off-
resonance spins at different locations. Fig. 2B is an illustration to
explain the VAT process. The VAT technique projects the excited spins
along a unique view angle to map the brain with a specific spatial
shift on the image plane. Fig. 2C is an illustration to explain the
CAIPIVAT process. After the Fourier transform to acquire the k-space of
the original image, the CAIPIRINHA technique is applied to the k-space
of each slice. A global phase modulation is added to each slice at the
same time.

In this paper, the principal idea of the CAIPIRINHA technique is
applied first. For each slice within each excitation, we imply Ay =
(I - )FOV /N, in-plane image shift, where / = 1, ..., N, and N, is the
total number of aliased slices. On the TR dimension, we also imply the
CAIPIRINHA technique for each excitation by 4y = (m — )FOV /N,
in-plane image shift, where m = 1,..., N,. Thus, with the in- and
through-excitation image shift, at the TR = N, + | excitation time
point, the aliased artifacts should be the same as the TR = 1 excitation
time point. Fig. 3A shows an example of an in- and through-excitation
image shift process with N, = 4 incorporating with the CAIPIRINHA
technique. When TR = 5, the image shift pattern for each slice should
be the same as the time point TR = 1. Furthermore, the principal
idea of the CAIPIVAT technique will also be applied. Similar to the
CAIPIRINHA technique, Ay = (I — 1)FOV /N, for the in-plane image
shift and Ay = (m — 1)FOV /N, for the through-plane image shift is
applied to each excitation along the PE direction. For each slice within
each excitation, a unique image shift will appear horizontally on the
RO direction with the support of the CAIPIVAT technique. The shift
distance for each slice along the RO direction can be calculated and
depends on the distance between the desired aliased slices, the com-
pensation gradient, and the RO gradient. A modest slice-wise shift is
applied for each excitation to ensure the brain image is not outside the
FOV. Fig. 3B displays an example of in- and through-excitation image
shift process of N, = 4 incorporating with the CAIPIVAT technique.

Besides the same amount of the FOV shift in- and through-excitation
on the PE direction as CAIPIRINHA technique, Slice 1 and Slice 3
will have a FOV shift to the left and Slice 2 and Slice 4 will have a
FOV shift to the right on the RO direction according to the CAIPIVAT
technique. Thus, comparing with the CAIPIRINHA technique approach,
the overlapping area between two desired aliased images will decrease
and the independence of the sensitivity for each coil will increase.

2.1.2. The Hadamard phase encoding

The Hadamard encoding technique is a well-developed volume
excitation method. The conventional MR imaging techniques have been
limited by the size of the matrix for the acquired aliased images. The
Hadamard phase-encoding method allows the increment of the size
of the acquired aliased image matrix by aliasing in both frequency
and phase encoding dimensions. With the support of this simultaneous
binary-encoded technique, the TR will decrease, and the SNR ratio will
improve. The Hadamard matrix is given by:

H n—1 H"m—] l l
Hy =] 2 2 =H,® Hyw,and H, = [1] ,H, = R
2 [Hz.._. —HZ,._.] 2® Hyr,and Hy = 1], 7, [1 —l]

)]

where ® denotes the Kronecker product. It is an orthogonal and
full rank matrix with elements of either +1 or -1. In the mSPECS-
CAIPIVAT study, each excitation is sequentially coordinated with a
unique Hadamard aliasing pattern. To improve the computational
efficiency, we select the size of the Hadamard phase-encoding matrix
to be the same as the number of the aliased slices. Thus, the size of the
Hadamard phase-encoding matrix is N; X N,. In this aim, H;, is the
6th row and zth column element of Hadamard matrix corresponding
to zth slice in 6th TR. Same as the sequential properties of image
shifts, the Hadamard phase-encoding aliasing pattern will cycle through
along the TR dimension. For example, the Hadamard aliasing pattern
of TR = N, + 1 should be the same as TR = 1. Fig. 4 shows an
example of the Hadamard aliasing pattern when N, = 4. Fig. 4A shows
a 4 x 4 Hadamard matrix, Fig. 4B shows the Hadamard coefficients
for each slice in the fMRI time series, Fig. 4C shows the phantom
brain images multiplied by Hadamard aliasing coefficients at the first 4
TRs. In order to increase the distance between two aliased voxels and
reduce the influence of the g-factor, slices can be interleaved for each
excitation in the SMS technique, with odd number slices placed in one
packet to prevent signal saturation [14]. Thus, under a circumstance
with N, = 8 and N, = 2, we put odd number slices into one packet
(i.e., Slice 1, Slice 3, Slice 5, and Slice 7), and even number slices into
another packet (i.e., Slice 2, Slice 4, Slice 6, and Slice 8). For each
excitation, all slices in one packet are measured simultaneously as one
single array. Therefore, we will have 2 packets in this situation, and
both packets will coordinate with the same Hadamard phase-encoding
aliasing pattern. With the help of the packet technique, the slice-to-slice
signal leakage artifacts will diminish.

2.2. A single aliased voxel

Given a single aliased voxel, a;, 5, at the location (x, y) of aliased
images, with §th Hadamard aliasing pattern and yth matrix rotation
operation, measured at coil j, is defined as the summation equation:

N?
aj,5= Z H;.R, .S .P. +¢;. (5)
z=1
In Eq. (5), a iy s is a 2 x 1 complex-valued vector with the real and
imaginary components of the acquired aliased voxel value measured at
coil j, with rotating operation y and Hadamard phase-encoding aliasing
pattern 6. The Hadamard phase-encoding aliasing pattern, H, ,, is the
same as the definition in Section 2.1.2, where parameter § corresponds
to the order of Hadamard coefficients pattern, and parameter z corre-
sponds to the slice number. The coefficients of Hy, is either +1 or -1.
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Fig. 2. A. An illustration of the CAIPIRINHA technique. B. An illustration of the VAT process. C. An illustration of the CAIPIVAT technigue.
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Fig. 3. A. An illustration of image shift process with N, =4 of the CAIPIRINHA technique. B. An illustration of image shift process with N, = 4 of the CAIPIVAT
technique.

The matrix rotation operator, R, ., is closely related to the definition of slices. The coil sensitivity matrix, S, ,, is a 2 X 2 skew symmetric
of Section 2.1.1. Subscript y denotes the order of the matrix rotation matrix with the real and imaginary components at coil j for slice z,
operation for each TR, and parameter z corresponds to the number S = [Sg—S1: 51, Sgl; .- The true voxel value, f, = [f,z; ], is a



K. Xu and D.B. Rowe

Slice 1
A + o+ o+ o+ c.
|+ =+ = )
He=|t 7t C TR=1
+o- - 4
B 1 2 3 4
TR=2
R=1 | + + +
2 |+ - 4
3 |+ + - -
4 | + - - 4 | TR=3
5 |+ + + 4+
6 | + - + -
7 |+ + - - | TR
8 | + - - +

Slice 2

Acquired aliased
images

Slice 4

Slice 3

Fig. 4. An illustration of Hadamard phase-encoding aliasing pattern when N, = 4. A. shows F, matrix: (+) denotes 1, (-) denotes -1. B. shows sequential
Hadamard aliasing coefficient for each slice in the fMRI time series. C. shows the phantom brain images are multiplied by the Hadamard aliasing coefficients at

the first 4 TRs.

2 x 1 vector with the real and imaginary parts of the aliased voxel in
slice z, and the real part is stacked on the top of the imaginary part.
The measurement noise, £; = [£z:£,], is a 2 X 1 vector with real and
imaginary parts stacked. The mean of measurement noise is E(g;) = 0,
and the covariance of error is cou(g ;) = 62 I,, where I is a 2 x 2 identity
matrix.

Considering the measured aliased voxel in Eq. (5) across the N, coils
for N, aliased slices with N, time-points in the fMRI time series, Eq. (5)
can be expressed as:

a=X,f+e. 6)

N, denotes the number of sequential time-points of the Hadamard
encoded pattern, and it is an integer between 1 and N,. Therefore,
the net acceleration of the fMRI time series acquisition is defined as
A = N,/N,. In Eq. (6), the dimension of a is 2N_N, x 1 including
the real and imaginary components. The measurement error, £, has
the same dimension as a with the mean E(¢) = 0 and covariance
cov(e) = 6% 1 n,N, - The dimension of the aliasing matrix, X 4, is 2NN, x
2N,N,, where N, is an indicator of the number of matrix rotation
operations. In this study, we generally assign N, = N, to improve the
computational efficiency. The true voxel value, f, has the dimension of
2N, N, x 1, including the real and imaginary value for each voxel. For
the 6th Hadamard aliasing pattern and yth matrix rotating operation,
the aliasing matrix (X 4), 5 across N, coils is defined as:

(Xa)ys = [HSJRLI ( S Sn0 ) ----- H; N Ry N, ( Singi o SN, )]
)

R, , is the image shift indicator which operates on coil sensitivity maps
for each slice, and not matrix multiplication. Across the N, excitations,
the aliasing matrix X , is written as:

Xa= () ()| ®

Since the measurement error has a Gaussian distribution, the like-
lihood of the acquired aliased voxel for the N, coils and the N,
excitations is:

2N, Ny
P(a| X4, p.67) x(6%) 2 exp|-(a—X4p) (a—X4)/(267)]. 9

To separate the aliased images and estimate the voxel value for
each slice, the least square estimation method is used. The estimated
separate voxel value, f, can be calculated by:

Byre =X, X" X a. (10)

Eq. (10) also can be used to calculate the reconstructed brain im-
ages in the SENSE model. In general, the determinant of X, is close
to zero, det(X,) = 0, which leads to failure in calculating the in-
verse of X', X ;. Thus, a bootstrap sampling method incorporated with
artificial aliasing of reference calibration images technique are com-
bined with the mSPECS-CAIPIVAT model. This combined technique
can eliminate the inter-slice signal leakage artifacts by quantifying
prior information in calibration images in a Bayesian model. More
details is shown in the following section. Fig. 5 illustrates the data-
acquiring process of the mSPECS technique (without any image shifts),
the mSPECS-CAIPIRINHA technique, the mSPECS-VAT technique and
the mSPECS-CAIPIVAT technique.

2.3. The bootstrap sampling and artificial aliasing of calibration images

In the previous simultaneous multi-slice (SMS) study, bootstrap
sampling and artificial aliasing of calibration reference image tech-
niques have been proven as powerful tools to support the separation
and reconstruction process of aliased images. By increasing the size
of the aliasing matrix and adding a regularizer into the least square
estimation function, the correlation induced by the separation process
will decrease and the slice-to-slice signal leakage eliminated. In the
fMRI time series, for each excitation, N, bootstrap sampled coil slice
images are randomly chosen from fully sampled calibration reference
images. The mean calibration image is calculated for each slice and is
artificially aliased, which is then repeated for each TR.

Given a single TR, the calibration images will have the same shift
pattern as acquired images, thus, the total number of different com-
binations for different voxels should be N, which is equal to the rank
of the chosen Hadamard matrix. After removing the combination of the
acquired aliasing pattern from the full voxel combination pattern, N,—1
different combinations remain. Therefore, for a single excitation, a
voxel across N slices, measured through N, coils, v, can be represented
as a vector with the dimension of 2N N, (N, —1)x1 with the real compo-
nent stacked on the top of the imaginary component, corresponding to
the remaining combinations without the acquired aliasing combination.
The mean bootstrap sampled voxel, v, is the same dimension as v for
each time point. The artificial aliasing calibration images, v, across N
slices measured through N, coils at N, sequential time point can be
expressed as:

v=Cv=Cyu+Cn. 11)
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Fig. 5. The data-acquiring process of the mSPECS technique (without any image shifts), the mSPECS-CAIPIRINHA technique (shift vertically), the mSPECS-VAT
technique (shift horizontally), and the mSPECS-CAIPIVAT technique (shift vertically and horizontally).

The dimension of the measurement error vector, #, is the same size as
the vector v. The mean of the measurement error for the calibration
images is E(y) = 0, and the covariance is cov(Crn) = rZIZN: Ny (N,~1)»
where Iy y (v,-1) is the identity matrix. It is assumed that there
is no correlation between the real and imaginary components of the
calibration images. The true voxel value vector, y, is constructed with
the real and imaginary components of the calibration voxel with the
dimension 2N, x 1. The artificial aliasing matrix, C,, is following the
same aliasing rules as acquired images do, rotating by the matrix
rotation operation and multiplying the Hadamard encoding aliasing
coefficients. Due to the combination of acquired aliasing voxel removed
from the full combinations, the dimension of the artificial aliasing
matrix is 2N N,(N, —1)x2N,. Same as the assumption in the acquired
aliasing images, we assign N, = N, to improve the computational
efficiency. For example, considering a situation with N, =4and N, = 4,
for each time point, N, — 1 = 3 combinations should be applied for
the calibration images. Thus, for a given excitation, the 6th Hadamard
aliasing pattern and yrh matrix rotating operation, the aliasing matrix
(Cy), 5 across N, coils is:

. ( Sppse i8N, )

(CA),.s = [”5.1 R, ,

1 SN,N, )] -

(12)

Hs n Ry w, ( SN

The notation H R denotes the remaining combination for the Hadamard
encoding aliasing pattern with the matrix rotation pattern after remov-
ing the combination of the acquired aliasing pattern. Incorporating N,

sequential time points, the artificial aliasing matrix, C, is:

Cy= [(CA)I

Thus, the prior distribution of the artificial aliased calibration voxel is:

CAME (13)

INe Na(Ns—1)

P|Cppt) (2?7 2 exp|—(v—Cyu)(v—Cau)/2t%)].

14
The Egs. (6) and (11) can be combined together, which will generate:

y= |a;v| = |XA,‘3;CA_M|+|£;CW|, (15)

Based on the previous section, the covariance for the acquired aliasing
measurement error is cov(e) = "zlzwt. N and the covariance for the
artificial aliasing measurement error is cov(Cn) = rZIZNf N (N,-1)» the
covariance for vector, y, consisting of the acquired aliasing voxel value
and the artificial aliasing voxel value is:
coot) = |7 e O : (16)
TN NN
Without the support of the bootstrapping technique, there is no varia-
tion in the artificial aliasing calibration images, i.e. the same calibration
reference images is artificially aliased for each TR, which will lead to
2 = 0. However, by applying the bootstrapping technique, for each ex-
citation, the N, calibration images are randomly selected and averaged
to obtain v, and hence 72 = ¢2. Thus, the covariance for vector, y, is:

cov(y) = UZIZN:N‘,N_\,‘ a7
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2.4. Bayesian framework

2.4.1. The prior distribution

To estimate the reconstructed voxel value separated from the aliased
slices, the voxels § are specified to have a normal prior distribution
B ~ N(u,c*(C,C,)™"), therefore:

INgNe
P(Blo* u,Cp e (62 2 exp|—(— ) (CLCHB— /26| . (18)

The measurement error variance o>

gamma prior distribution:

is specified to have an inverse

P(c? | 4,8) x (67 * D exp [-5/57], (19)

where hyperparameters u, 4 and & are assessed from the calibration
images.

2.4.2. The hyperparameters assessment

Following the Bayesian process, the unknown hyperparameters can
be assessed using the prior calibration images. In the image acquisition
process of the mSPECS-CAIPIVAT model, two series of brain images
from two different fMRI experiments are acquired: the calibration
images and the aliased images. The aliased images correspond to
the mSPECS-CAIPIVAT model, whereas the calibration images, on the
other hand, are obtained using the traditional method without any
image shift techniques or acceleration factors. Thus, the calibration
images can be treated as prior information, and hyperparameters can
be estimated from them. According to our Bayesian mSPECS-CAIPIVAT
model, to estimate the voxel value f, we need to estimate the hy-
perparameters y, A, and é. In Eq. (18), the artificial aliasing matrix
C, is known information and it strictly follows the artificial aliasing
rules in Section 2.3. The hyperparameter u represents the averaged
voxel value after the bootstrap resampling process, and its estimation
is described in detail in Section 2.3. The hyperparameters 4 and é are
the shape parameter and the scale parameter of the inverse-gamma dis-
tribution and we can assess them from calibration images. As discussed
in Section 2.3, for each excitation, N, brain images will be randomly
chosen from the fully sampled calibration images and averaged to
assess hyperparameter p. Moreover, the calibration reference images
can be utilized to estimate sample noise variance “:2)' Therefore, the
hyperparameters u, A and 6 can be assessed by u = ¥, 4 = n; and
6 = (ng — I)r.rn, where ny is the number of calibration images and o’tz)
is sample noise variance.

2.4.3. The posterior estimation

Following Section 2.4.1 and Section 2.4.2, the joint posterior distri-
bution for the voxel values # and the noise variance &2 can be obtained
by combining the likelihood equation (Eq. (9)), the prior distribution
of f (Eq. (18)) and the prior distribution of ot (Eq. (19)) together along
with algebra to become:

P(B,0? | )
@)% exp |[~((B — Batpaa) (X, Xp + CLCAB — Bag pag) + 10)/(267)
(20)

where p=2N,_N,+2N,N —24-2, and w=d'a+ p'C\Cyp — (X a +
CLCup) (X! X 4 + CLCH (X ya + C|Cyp) + 25. After mtegratlon the
marginal posterior distribution of estimate voxel value f is a student-t
distribution f ~ t(v*):

v 41

(X, X, +C,Cp) 2
#](ﬂ m.m)} . @D

FBl )“{]‘F_(ﬂ Prrm) [

with v¥ = p— 1 and 7% = w/v*. The marginal posterior mean (MPM)
for f is:

EB|-) = Pupm = (X X4 +C\Cy) (X ,a+C,Cyp). (22)

The matrix C,C, acts as a regularizer for the matrix inverse to im-
prove the condition of the equation. Since the true voxel value from
calibration images is close to the true voxel value from acquired aliased
images, Eq. (22) leads to E(f | -) = . The marginal posterior covariance
of the voxel value f is:

*

covf 1) = ——

X X4+ CLC7 (23)

the separated voxel values are uncorrelated, meaning that there will
not be signal leakage between slices. Moreover, the marginal posterior
distribution of ¢2 is an inverse gamma distribution, 62 ~ IG(y, w/2):

f@* 1) (az)‘ff exp [~w/(26%), 24)

with y = (p — 1)/2. The MPM of the noise variance o2 is:
w 2
E@*|) = l (25)
I4
and the marginal posterior variance of the noise variance is:
w/f2
var(e? | )= ———————. (26)
(r—-D*r-2)

3. Simulation study
3.1. Simulated FMRI data

To investigate the performance of our proposed novel SMS tech-
nique, the mSPECS-VAT, the mSPECS-CAIPIRINHA and the mSPECS-
CAIPIVAT model were applied to simulated fMRI data, and the results
were compared with the mSPECS method. The simulated fMRI data
has TR = 510 time points and mimics the real-world right hand finger
tapping fMRI experiment. The first 20 time points will be omitted, thus
leaving the simulated fMRI data with 490 time points. To replicate
the full process of the real right-handed finger-tapping experiment,
two time series were generated from the true noiseless axial view
data: the calibration simulated data, and the task simulated data. The
calibration simulated data includes Ny = 8 axial brain images without
any simulated task activation blocks for each image. The task simulated
data, in contrast, includes Ny = 8 axial brain images with simulated
task activation blocks on the left motor cortex for the first 4 slices. No
simulated activation blocks were added to the other 4 slices. The simu-
lated activation blocks were added according to the in vivo experiment
design, with the first 20 TRs off, following 15 TRs on and 15 TRs off
for 16 epochs, and the last 10 TRs off. To achieve the CNR = 0.5, a
mean magnitude offset of 0.04 was added to the simulated activation
blocks for the first 4 slices. The mean magnitude of 4, to achieve
SNR = 50, and different phase angles from 5° to 40° with 5° intervals
were added to each image. In order to further increase the distinction
of the spatial information for different tissue type, angle 7.5 was added
to white matter (WM), 15° was added to gray matter (GM), and 22.5°
was added to the cerebral spinal fluid (CSF). Gaussian distribution noise
N(0,0.0064) was added for each image of the calibration simulated data
and the task simulated data separately. Fig. 6A shows the true noiseless
simulated magnitude and true phase information for Ny = 8 axial brain
images.

A total of N = 8 channel coil sensitivity profiles were simulated
to weight each axial brain image. A mean magnitude of 0.95 and the
different phase angles from 0° to 17.5° with 2.5° intervals were applied
to each coil sensitivity. Fig. 6B shows the simulated magnitude and
phase information of the N = 8 channel coil sensitivity profiles for the
third axial brain image (Slice 3). In the interest of investigating our new
proposed SMS techniques under different MB factors, we applied our
model to three acceleration scenarios: TPA = 2 (packet 1: Slice 1 and
5, packet 2: Slice 2 and 6, packet 3: Slice 3 and 7, and packet 4: Slice 4
and 8), TPA = 4 (packet 1: Slice 1, 3, 5 and 7, packet 2: Slice 2, 4, 6 and
8), and TPA = 8 (all slices into one packet), with TPA indicating the
MB factor for each excitation. The number of packets multiplied by the
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Fig. 6. A. The true noiseless simulated magnitude and true phase information for axial brain images. B. The simulated magnitude and phase information of

N = 8 channels coil for Slice 3.

acceleration factor equals the total number of images. All experiments
were performed on MATLAB programming software.

3.2. Non-task simulated reconstruction results

Following the methodology of the novel slice-wise image shift SMS
technique, we conducted the simulated experiment using different
through-plane acceleration factors: TPA = 2, TPA = 4, and TPA = 8.
We compared the reconstruction results under the same acceleration
factors from the mSPECS model and the standard SENSE model. Fig. 7
shows the temporal mean magnitude and phase of the 490 time points
reconstructed images from SENSE, mSPECS, mSPECS-VAT, mSPECS-
CAIPIRINHA and mSPECS-CAIPIVAT model compared with the true
magnitude and the phase of the brain images for odd slices with
acceleration factor TPA = 2. The temporal mean magnitude and phase
were estimated according to Eq. (22). To avoid the error from averaging
temporal mean phase at (x, —x) boundary, the temporal mean is cal-
culated by ¢ = angle(Y. frspar /| Pas pas|)- The simulated reconstruction
results for even slices of the four models can be found in Appendix A.1
Fig. A.14. As shown in Fig. 7, the mean magnitude and phase of
the reconstructed images from the mSPECS, mSPECS-VAT, mSPECS-
CAIPIRINHA, and mSPECS-CAIPIVAT models closely match the true
values, indicating that these three models produce more accurate re-
constructions. In contrast, the SENSE model yields the poorest recon-
structions, with noticeable signal leakage from other aliased slices. As
the acceleration factor increases to TPA = 4 and TPA = 8, the mSPECS,
mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models
continue to provide reconstructions that closely resemble the true
images. However, the reconstruction quality from the SENSE model
significantly deteriorates, showing the worst performance.

The SNR value and g-factor value were also compared across four
models. The temporal signal-to-noise ratio is defined as SNR = S/oy,
where S is the mean magnitude value in the time series, and oy is
the standard deviation of the noise. The signal-to-noise ratio also can
be expressed as SNR = fj,/o,, where f, is the baseline signal, and
oy is the standard deviation of the magnitude of the noise. Based on
the definition of SNR in Section 2.1.1, the g-factor can be calculated
aS Zucceterae = VNSN Ryu/SN Rm‘cefrrui‘zﬁ) where SNR;,;, is the
SNR map from model without acceleration technique, and R indicates
the in-plane acceleration factor, which in this case R = 1. The g-
factor also indicates the noise amplification level of the model. Fig. 8
shows the temporal SNR map and g-factor map for the standard SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT
models with through-plane acceleration factors TPA = 2, TPA = 4,

and TPA = 8 for Slice 3. From Fig. 8, we observe that the standard
SENSE model produces a low SNR map and a high g-factor penalty for
all acceleration factors compared to the other four models. Increasing
the through-plane acceleration factors reduces the SNR value and sig-
nificantly increases the g-factor penalty. Although the mSPECS model
offers a relatively good SNR map, the g-factor penalty increases as
the through-plane acceleration factors rise. The mSPECS-VAT, mSPECS-
CAIPIRINHA and mSPECS-CAIPIVAT models, however, provide better
SNR and g-factor maps, with higher SNR values and lower g-factor
penalties. As the through-plane acceleration factor increases, the SNR
maps become brighter, indicating an increase in SNR, while the g-factor
penalties remain relatively steady, as shown in Fig. 8.

3.3. Task simulated reconstruction results

We also applied the novel slice-wise image shift SMS models to
the simulated right-handed finger-tapping fMRI data with different
through-plane acceleration factors TPA = 2, TPA = 4, and TPA = 8, and
compared the task activation results between each method. In the inter-
est of further exploring the task detection ability for each model, two
important criteria, the contrast-to-noise (CNR) value and the activation
detection maps were also investigated. The CNR ratio is calculated as
CNR = f, /oy, where f, represents the task activation signal contrast.
Activation detection was performed using a complex-valued model to
compute fMRI activation [25]. Fig. 9A shows the CNR map for SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT
model for odd slices at TPA = 2, and the average CNR value and
standard deviation of CNR value for region-of-interest (ROI), compared
with the CNR of the ROI from the reference images. The reference im-
ages were reconstructed from the fully sampled task-based simulation
time series using the SENSE approach. CNR and the average CNR value
and standard deviation of CNR value for region-of-interest (ROI) for
four model of even slices can be found in Appendix A.2 Fig. A.21A.
Since no simulated activation blocks were added to the last four slices,
CNR values were not captured from those regions. In Fig. 9A, the
SENSE model fails to capture any activation signal within the brain,
while the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT models successfully capture the simulated activation blocks
with clear shapes and anatomical details. When comparing the average
CNR value of the ROI, the mSEPCS-VAT, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT models demonstrate slightly higher values than
the mSPECS model with TPA = 2. To further examine the influ-
ence of the acceleration factor on activation detection, we compared
the CNR maps of the four models at different acceleration factors.
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Fig. 7. The true noiseless simulated magnitude and phase of the axial brain images compared with the temporal mean magnitude and temporal mean phase from
SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model for odd slices with TPA = 2.
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Fig. 8. A. The SNR maps for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with TPA = 2, TPA = 4, and TPA = B. The
higher SNR, the better model performs. B. The g-factor maps for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with TPA
= 2, TPA = 4, and TPA = B. The closer g-factor is to 1, the better model performs.
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Fig. 9. A. The CNR map and the average CNR value and standard deviation of CNR of ROI for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT model for odd slices with TPA = 2, compared with CNR from reference images. B. The activation detection map and the average and standard
deviation of z-score of ROI for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model for odd slices with TPA = 2, compared with

z-score of ROI from reference images.

Fig. 10A displays the CNR maps from the SENSE, mSPECS, mSPECS-
VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models for TPA
= 2, TPA = 4, and TPA = 8 in Slice 3. As the acceleration factor
increases, the average CNR value of the ROI decreases for the mSPECS,
mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models.
However, the average CNR value in the three slice-wise image-shifting
models remains slightly higher than in the mSPECS model. In contrast,
the SENSE model fails to capture any simulated activation blocks at
any acceleration factor. The mSPECS-CAIPIVAT provides the highest
average CNR of the ROI among the three slice-wise image-shifting
models with higher acceleration factors.

Concerning the main goal of this study is to improve the task
activation detection rate, we also examined the activation detection
map across four models. Fig. 9B shows the activation detection maps for
odd slices from SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA
and mSPECS-CAIPIVAT model for odd slices at acceleration factor
TPA = 2, compared with the z-score of the ROI from the reference
images. The reference images were reconstructed from the fully sam-
pled task-based simulation time series using the SENSE approach. The
activation detection maps for even slices from four models can be
found in Appendix A.2 Fig. A.21B. Similar to the results observed in
the CNR map, it is difficult to capture the simulated task activation
blocks by applying the SENSE model. Additionally, the average z-score
of the ROI from the SENSE model is the lowest among five mod-
els. In contrast, the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and
mSPECS-CAIPIVAT models can capture the simulated task activation
blocks with complete shapes and anatomical structures. Comparing the
average z-scores of the ROI from these three models, the three slice-
wise image-shifting models, mSPECS-VAT, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT, exhibit higher significance levels than the mSPECS
model. The mSPECS-CAIPIVAT model provides the highest average
z-score of the ROI, indicating that it is more powerful in detecting
activation signals than the other models. Similarly, we applied the

four models with different acceleration factors to further investigate
the activation detection process. Fig. 10B shows the task activation
detection maps from the SENSE, mSPECS, mSPECS-VAT, mSPECS-
CAIPIRINHA, and mSPECS-CAIPIVAT models at acceleration factors of
TPA = 2, TPA = 4, and TPA = 8 for Slice 3. As the acceleration factor
increases, the SENSE model fails to capture any task activation signals,
and the average z-score of the ROI remains the lowest among the four
models. The average z-score of the ROI from the mSPECS, mSPECS-
VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models decreases
with increasing acceleration factor, and it becomes more challenging to
capture the full shape of the task activation blocks. However, consistent
with the CNR map results, the three slice-wise image-shifting models
provide higher average z-scores of the ROI compared to the mSPECS
model. The mSPECS-CAIPIVAT model offers the highest average z-
score, confirming that it is more effective in detecting activation signals
than the other models.

4. Experimental FMRI study
4.1. Experimental FMRI data

A 3.0 T General Electric Signa v «/[RI scanner was used to perform
a right-handed finger-tapping fMRI experiment on a single object. A flip
angle of 90° with an acquisition bandwidth of 125 kHz was applied in
this experiment. The thickness of the axial brain slices was 2.5 mm with
9 slices for each time repetition. Due to the nature of the Hadamard
phase-encoding method, 8 slices were used to the new proposed re-
construction models and compared with the existing models. The most
interior axial brain slice was disregarded. An 8 channel receiver coil
was applied with dimension 96 x 96 for a 24 cm full FOV. The phase
encoding direction is posterior to anterior. In the experiment, two time
series were acquired: a non-task calibration series and a task series. The
task design began with 20 TRs of rest, followed by 16 epochs of alter-
nating blocks with 15 TRs off and 15 TRs on, and ended with 10 TRs of
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Fig. 10. A. The CNR maps and average ROI CNR value from SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with respect to
different acceleration factors TPA = 2, TPA = 4, and TPA = 8 for Slice 3. B. The task activation detection maps and average ROI z-score from SENSE, mSPECS,
mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with respect to acceleration factor TPA = 2, TPA = 4 and TPA = 8 for Slice 3. The higher CNR and z-score,

the better model performs.

rest, yielding a total of 510 TRs. Both time series used identical echo
time (TE) settings divided into three segments. The TE was 42.7 ms
for the first 10 TRs and the final 490 TRs. From the 11th to the 20th
TR, the TE values cycled through 42.7 ms, 45.2 ms, 47.7 ms, 50.2 ms,
and 52.7 ms, repeated twice. To ensure magnetic field stability, the
first 20 TRs of the task series were discarded, leaving the remaining
490 TRs for analysis with the proposed model. In order to acquire the
‘true’ reconstruction brain images and activation signals, the SENSE
model was applied to each time repetition without any through-plane
acceleration method, and the reconstructed images were treated as
reference reconstruction images. Reconstruction results from SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
model were compared to the reference reconstruction images.

In the right-handed finger-tapping fMRI experiment, aliased task
images were not directly acquired, as the study was methodological
in nature. Instead, they were artificially generated from the fully sam-
pled task time series using procedures analogous to those applied for
simulated aliased data. Different image shift techniques and Hadamard
encoding coefficients were applied to create the aliased slices, which
were subsequently summed to form the final aliased images.

4.2. Non-task experimental reconstruction results

In order to investigate the performance of the new slice-wise image
shift SMS models on a real-world experiment, we applied mSPECS-
VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model to the right-
handed finger-tapping fMRI experiment time series. Reconstructed axial
brain images were obtained from these three image shifting models
and compared with the reconstruction results from SENSE and mSPECS
models; reference images were also included in the comparison. We
also investigated the model performance of the new slice-wise image
shift models with different acceleration factors TPA = 2, TPA = 4 and

TPA = 8, and compared the reconstruction results with the SENSE
and mSPECS model. Fig. 11 shows the temporal mean magnitude and
mean phase of the reconstructed images from the reference, SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
model for odd slices with acceleration factor TPA = 2. The temporal
mean magnitude and mean phase for even slices of four models can
be found in Appendix A.3 Fig. A.22. From Fig. 11, compared with
the reference brain images, the reconstructed images from the SENSE
model exhibit strong signal leakage from aliased slices, making anatom-
ical structures difficult to discern. In contrast, the reconstructed images
from the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT models closely resemble the reference images, with clear
anatomical structures.

Similar to the simulation reconstruction results, we also investigated
the SNR and g-factor values of the reconstructed axial brain images
of the four models. Fig. 12 shows the average and standard deviation
of SNR and g-factor values of the ROI of reconstructed images for
SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT model with different acceleration factors. From Fig. 12A,
as the acceleration factor increases, the average SNR value of the ROI
from the SENSE model decreases, whereas the average SNR values
from the other three models increase. Comparing the mSPECS and the
two slice-wise image shift techniques, the mSPECS-CAIPIVAT model
provides the highest average SNR value of the ROI among these three
models. From Fig. 12B, as the acceleration factor increases, the average
g-factor value of the ROI from the SENSE model increases dramati-
cally. On the other hand, similar to the results from the simulation
reconstruction study, the average g-factor values of the ROI from the
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models increase slightly, with the mSPECS-CAIPIVAT model providing
the lowest average g-factor value among the four models.
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Fig. 11. The temporal mean magnitude and temporal mean phase of the axial brain images from the reference, SENSE, mSPECS, mSPECS-VAT, mSPECS-
CAIPIRINHA, and mSPECS-CAIPIVAT for odd slices with acceleration factor TPA = 2.
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Fig. 12. A. The SNR maps for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with TPA = 2, TPA = 4, and TPA = 8. B. The
g-factor maps for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with TPA = 2, TPA = 4, and TPA = 8.
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Fig. 13. A. The CNR maps and average ROl CNR value from SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with respect
to different acceleration factors TPA = 2, TPA = 4, and TPA = 8 for Slice 3. B. The task activation detection maps and the average ROI z-score from SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with respect to acceleration factor TPA = 2, TPA = 4 and TPA = 8 for Slice 3. The

higher CNR and z-score, the better model performs.

4.3. Task experimental reconstruction results

We also investigated the activation signal detection of the new pro-
posed slice-wise image shift model by analyzing the CNR value map and
the activation detection maps and comparing the reconstructed results
with the SENSE and mSPECS model. We compared the average CNR
value of the ROI between different models with different acceleration
factors. Fig. 13A shows the CNR map for SENSE, mSPECS, mSPECS-
VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT model with TPA
= 2, TPA = 4, and TPA = 8. As the acceleration factor increases, the
SENSE model cannot capture any activation signals. Furthermore, the
average CNR value of the ROI decreases for the mSPECS, mSPECS-VAT,
mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models as the accelera-
tion factor increases, indicating that as the number of aliasing slices
increases, the activation blocks become harder to detect. However, the
two slice-wise image-shifting techniques still provide higher average
CNR values for the ROI than the mSPECS model, with the mSPECS-
CAIPIVAT model providing the highest score. This means that the
mSPECS-CAIPIVAT model is more powerful than the other three models
in detecting activation blocks.

The activation detection maps were also investigated. Fig. 13B
shows the activation detection map and the average z-score of the ROI
from four models with different acceleration factors TPA = 2, TPA =
4, and TPA = 8. The SENSE model cannot detect any activation blocks
with any acceleration factor. Additionally, as the acceleration factor
increases, the average z-score of the ROI decreases for the mSPECS,
mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models,
indicating that detecting activation blocks becomes more challenging
with more aliasing slices. However, when comparing the mSPECS
model with the image-shifting techniques, the slice-wise image-shifting
models provide higher average z-scores of the ROI, with the mSPECS-
CAIPIVAT model having the highest average z-score. Thus, we reach

the same conclusion as in the simulation study: the mSPECS-CAIPIVAT
model is more powerful in detecting activation signals compared to the
other models.

5. Discussion

Since fMRI studies were first introduced by [1], efforts have been
made to enhance the efficiency of the signal acquisition procedure
but still be able to achieve the goal of reconstructing brain images
with high resolution, and improve the accuracy to capture the brain
activation signal. Parallel imaging reconstruction methods, like SENSE,
can be a potential solution to shorten the scan time with a through-
plane subsampling technique. However, it is easily influenced by the
high similarity of weighted coil sensitivity information of two aliased
voxels, which leads to a singular matrix and a inter-slice signal leakage
problem in the reconstruction process. In the interest of decreasing the
similarity and increasing the independence of the weighted information
of aliased voxels, slice-wise imaging shift techniques, CAIPIRINHA
and CAIPIVAT, can increase the physical distance of the aliased vox-
els. Compared to techniques without the image-shifting method, like
SENSE and mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-
CAIPIVAT methods provide reconstructed images with more anatomic
details and reduced temporal variance.

We also compared the average SNR values for different tissue types
and the average g-factor values of these four models with respect to the
different through-plane acceleration factors (Appendix A.1 Table A.1).
Moreover, comparing the g-factor penalty among four models with
respect to different acceleration factors, the mSPECS-CAIPIVAT model
has the lowest value, which means that the mSPECS-CAIPIVAT model
has a lower noise amplification level compared with other models.
Thus, the image reconstruction method with slice-wise image shift tech-
niques, mSPECS-VAT, mSPECS-CAIPIRINHA and
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Fig. A.15. The temporal variance of SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSEPCS-CAIPIVAT model with different acceleration factors of

Slice 3.

mSPECS-CAIPIVAT, produce better results by increasing the SNR values
and decreasing the variance of the reconstructed images. However,
as shown in Fig. 10, increasing the through-plane acceleration factor
leads to a loss in the average CNR values and the mean activation
values of the task block when comparing the mSPECS, mSPECS-VAT,
mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models. With MB factor
increasing from 2 to 8, the mSPECS model shows a 63% decrease

in CNR and a 62% decrease in mean activation. For the mSPECS-
VAT model, CNR decreases by 66% and mean activation by 66%, the
mSPECS-CAIPIRINHA model, CNR decreases by 63% and mean activa-
tion by 58%, while the mSPECS-CAIPIVAT model shows decreases of
54% for both CNR and mean activation. Thus, when comparing these
four models, the SENSE model yields the worst results with strong
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Fig. A.16. The temporal mean of variance of the voxel value for Slice 3 from SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and the mSPECS-CAIPIVAT

model with TPA = 2, TPA = 4, and TPA = 8.

inter-slice signal leakage. Compared to the mSPECS model, the slice-
wise image shift SMS models have higher SNR and CNR values with
lower g-factor penalty under the circumstance with high acceleration
factors. Similar conclusions can be made from Fig. 13, compared with
the mSPECS model, the slice-wise image shift techniques provide us
higher SNR value for the ROI and lower g-factor penalty under the
circumstance with high acceleration factor like TPA = 8. However, we
still need to face the situation where, with the high acceleration factor,
the loss of the CNR value and the activation detection rate becomes sig-
nificant. Therefore, by comparing the average CNR values for the ROI
and activation detection maps among the four models, the mSPECS-
CAIPIVAT model provides us the best CNR and activation detection
map. However, in terms of computational cost, the mSPECS approach
requires less runtime than the mSPECS-CAIPIRINHA, mSPECS-VAT, and
mSPECS-CAIPIVAT models. The other three models take up to twice the
runtime of mSPECS, but still complete the entire reconstruction process
within minutes.

Although the image acquisition time can be greatly reduced using
the SMS image reconstruction model as the MB factor increases, an
extremely high acceleration factor is not desirable. A high acceleration
factor sacrifices the CNR value and reduces activation detection in
task-related regions, while also inducing a high g-factor penalty. This
penalty arises from the short distance and high similarity of the sen-
sitivity profiles of aliased slices when an excessively high acceleration
factor is applied. In this study, we only conducted an internal compari-
son among different variants of the proposed model. A comparison with
state-of-the-art techniques, such as slice-GRAPPA or split slice-GRAPPA,
will be one of the main goals of future research. Moreover, other
limitations may also exist in practical fMRI experiments when applying
the mSPECS-CAIPIVAT model. Since the main concept is to reduce
the overlap between aliased slices, both the brain image size and the
distance each slice must be shifted are critical factors in the experiment.
Therefore, careful experimental design is essential. Another limitation
of this study is that the experimentally acquired images were artificially
shifted and aliased, similar to the process used for the simulated images.
Therefore, acquiring directly simultaneous aliased images would be a
future direction of this research.

In this study, we discussed SMS models employing different slice-
wise image shift techniques. Intuitively, the smaller the overlapping

area between aliased slices, the easier it is to separate them. There-
fore, we compared the completely overlapping case, mSPECS model,
with slice-wise image shift techniques, including mSPECS-VAT (hori-
zontal), mSPECS-CAIPIRINHA (vertical), and mSPECS-CAIPIVAT (hor-
izontal and vertical). Compared to slice-wise image shift techniques
that operate in only one direction, as in mSPECS-VAT and mSPECS-
CAIPIRINHA, the mSPECS-CAIPIVAT model utilizes shifts in both direc-
tions, resulting in a smaller overlapping area and consequently better
reconstruction results. By comparing the results from the simulation
reconstruction section and the experimental reconstruction section of
the mSPECS-VAT, the mSPECS-CAIPIRINHA model and the mSPECS-
CAIPIVAT model and to make a fair decision through a trade-off of
the increment in the SNR and decrement of the CNR value and the
activation detection with respect to different acceleration factors, we
suggest the optimal through-plane acceleration factor to be TPA = 4.
Under this circumstance, the mSPECS-CAIPIVAT model can provide
reconstructed images with high SNR information, but still be able to
capture the activation signal. Our suggestion is consistent with the
optimal multiband factor MB=4 from previous work [26].
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Fig. A.17. The temporal mean of the residual variance for Slice 3 from SENSE,

with TPA = 2.

Appendix A. Supplement to simulation study and experimental
fmri study
A.1. Non-task simulated reconstruction results

In Section 3.2, we presented the temporal mean magnitude and
temporal phase of the reconstructed axial brain images from odd
slices using the SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA,
and mSPECS-CAIPIVAT models, and compared them with the true
noiseless magnitude and phase. Fig. A.14 displays the temporal
magnitude and temporal mean phase for the even slices of the recon-
structed axial brain images with TPA = 2. Significant signal leakage
can be observed in the reconstructed images from the SENSE model,
whereas the temporal mean magnitude and temporal phase
from the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT models closely match the true noiseless magnitude and
phase.
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mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model

To further analyze the performance of each model, Fig. A.15 il-
lustrates the temporal variance of the reconstructed images from the
SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT models at different acceleration factors for Slice 3. When
comparing these four models, we observe a decreasing temporal vari-
ance from the SENSE model to the mSPECS-CAIPIVAT model at the
same acceleration factor. As the acceleration factor increases, the
temporal variance decreases for the mSPECS, mSPECS-VAT, mSPECS-
CAIPIRINHA, and mSPECS-CAIPIVAT models, while it increases for the
SENSE model. Among the three mSPECS-based models, the mSPECS-
CAIPIVAT model achieves the lowest temporal variance.

Fig. A.16 shows the temporal mean of the variance of the recon-
structed voxel value for Slice 3 from SENSE, mSPECS, mSPECS-VAT,
mSPECS-CAIPIRINHA, and the mSPECS-CAIPIVAT model with different
acceleration factors. The variance of the reconstructed voxel value is
calculated according to Eq. (23). It also can be interpreted as the
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Fig. A.18. The temporal mean of the residual variance for Slice 3 from SENSE, mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model

with acceleration factor TPA = 4 and TPA = 8.

temporal mean of the variance of the baseline signal. In Fig. A.16, the
SENSE model generates a higher temporal variance of the baseline sig-
nal compared to mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and the
mSPECS-CAIPIVAT model for each acceleration factor. The temporal
variance of the reconstructed voxel from the SENSE model increases as
the acceleration factor increases, whereas the temporal variance of the
reconstructed voxel from the other four models decreases with increas-
ing acceleration factors. Compared to the mSPECS model, the models
incorporating image shift techniques generate lower temporal variance,
with mSPECS-CAIPIVAT exhibiting the lowest temporal variance of the
baseline signal. Fig. A.17 shows the temporal mean of the residual vari-
ance from the SENSE, mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT,
and mSPECS-CAIPIVAT model for Slice 3 with TPA = 2. The temporal
mean of the residual variance is calculated according to Eq. (25).
The results show a decreasing trend in the temporal mean of the
residual variance from SENSE to mSPECS-CAIPIVAT, with the mSPECS-
CAIPIVAT model yielding the lowest residual variance. Fig. A.18 shows
the temporal mean of the residual variance for Slice 3 from SENSE,
mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT
model with TPA = 4 and TPA = 8. From Fig. A.17 and Fig. A.18, as
the acceleration factor increases, the temporal mean of the residual
variance increases for the SENSE model, whereas the other four models
maintain a steady residual variance. For each acceleration factor, the
mSPECS model exhibits a higher residual variance compared to models
incorporating image shift techniques. Among these, the mSPECS-VAT
and mSPECS-CAIPIVAT models yield the lowest temporal residual vari-
ance. Fig. A.19 shows the temporal variance of the residual variance
of Slice 3 from SENSE, mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT,
and mSPECS-CAIPIVAT model with TPA = 2. The temporal variance
of the residual variance is calculated according to Eq. (26) in the main
paper. Fig. A.20 shows the temporal variance of the residual variance of
Slice 3 from SENSE, mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and
mSPECS-CAIPIVAT model with TPA = 4 and TPA = 8. From Fig. A.19
and Fig. A.20, the temporal variance of the residual variance for all
models is close to zero. However, among these five models, the SENSE
model produces the highest temporal variance. Compared to the models
incorporating image shift techniques, the mSPECS model exhibits a
higher temporal variance.

To evaluate and compare the changes in SNR and g-factor val-
ues for each tissue type across different methods and through-plane
acceleration factors, Table A.1 presents the average SNR values for
cerebral spinal fluid (CSF), gray matter (GM), and white matter (WM),
as well as the average g-factor penalty for the whole brain and mean
CNR value of the task-related region. From Table A.1, we observe
that the average SNR for CSF and GM in the standard SENSE model
decreases slightly as the through-plane acceleration factor increases,
while the average SNR for WM remains unchanged. In contrast, the

Table A.1

The average SNR wvalue for cerebrospinal fluid (CSF), gray matter (GM),
and white matter (WM) with the average g-factor for the whole brain and
mean CNR value of the task-related region with respect to SENSE, mSPECS,
mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT methods with
through-plane acceleration factors TPA = 2, TPA = 4, and TPA = 8 for Slice 3.

SENSE
CSF-SNR GM-SNR WM-SNR g-factor CNR

TPA = 2 2.25 1.95 1.92 14.21 0.02
TPA = 4 1.96 1.92 1.91 21.28 0.001
TPA = 8 1.91 1.91 1.91 30.13 0.009
Acceleration mSPECS

CSF-SNR GM-SNR WM-SNR g-factor CNR
TPA = 2 55.00 19.06 1211 1.30 0.33
TPA = 4 73.49 25.29 16.11 1.39 0.19
TPA = 8 101.14 34.92 22.20 1.44 0.12
Acceleration mSPECS-VAT

CSF-SNR GM-SNR WM-SNR g-factor CNR
TPA = 2 58.81 20.46 13.13 1.22 0.33
TPA = 4 74.75 26.32 16.91 1.36 0.20
TPA = 8 104.44 36.27 23.36 1.38 0.11
Acceleration mSPECS-CAIPIRINHA

CSF-SNR GM-SNR WM-SNR g-factor CNR
TPA = 2 59.85 21.13 13.54 1.16 0.33
TPA = 4 76.25 26.87 17.38 1.27 0.21
TPA = 8 104.98 36.82 23.69 1.34 0.14
Acceleration mSPECS-CAIPIVAT

CSF-SNR GM-SNR WM-SNR g-factor CNR
TPA = 2 61.11 21.41 13.73 1.15 0.33
TPA = 4 78.19 27.56 17.89 1.27 0.21
TPA = 8 107.72 37.97 24.50 1.29 0.15

average SNR for all tissue types in the other three models increases
significantly with higher acceleration factors. Furthermore, the average
g-factor for the SENSE model increases dramatically as the acceleration
factor increases, compared to the modest increase in the average g-
factor observed in the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA,
and mSPECS-CAIPIVAT models. Notably, compared to the mSPECS
model, the three slice-wise image shift models, mSPECS-VAT, mSPECS-
CAIPIRINHA and mSPECS-CAIPIVAT, exhibit lower average g-factor
penalties, with the mSPECS-CAIPIVAT model showing the lowest av-
erage g-factor.
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Fig. A.19. The temporal variance of the residual variance for Slice 3 from SENSE, mSPECS, mSPECS-CAIPIRINHA, mSPECS-VAT, and mSPECS-CAIPIVAT model

with TPA = 2.

A.2. Task simulated reconstruction results

In Section 3.3, we presented the CNR map for the SENSE, mSPECS,
mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models
for odd slices at TPA = 2, along with the average CNR value and
standard deviation for the region of interest (ROI). Fig. A.21 displays
the CNR maps and task activation maps for even slices for the SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models with an acceleration factor of TPA = 2. Similar to the con-
clusion drawn in the main paper, the CNR maps and task activation
maps show that the SENSE model struggles to capture the activation
signal in the left-hand side motor cortex within the brain images. In
contrast, the other three models effectively capture the clear simulated
activation blocks. Additionally, the slice-wise image shift techniques
yield a higher average z-score for the ROI compared to the mSPECS

model. The mSPECS-CAIPIVAT model provides the highest average z-
score for the ROL, indicating that it performs best in detecting activation
signals.

A.3. Non-task experimental reconstruction results

In Section 4.2 of the main paper, we display the temporal mean
magnitude and mean phase of the reconstructed images from the
reference, SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and
mSPECS-CAIPIVAT models for odd slices with an acceleration factor
of TPA = 2. Fig. A.22 presents the temporal mean magnitude and
mean phase of the even slices of axial brain images from the reference,
SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT models with TPA = 2. Aliased artifacts from other slices
are clearly visible in the magnitude and phase reconstructed brain
images from the SENSE model, whereas the mean magnitude and
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Fig. A.21. A. The CNR map and the average CNR value and standard deviation of CNR of ROI for SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT model for even slices with TPA = 2. B. The activation detection map and the average and standard deviation of z-score of ROI for SENSE,
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model for even slices with TPA = 2.

mean phase from the mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA,
and mSPECS-CAIPIVAT models are closely aligned with the reference
magnitude and phase. From Fig. A.23, we observe that the temporal
variance from the SENSE model increases with increasing acceleration
factor, whereas the temporal variance from the mSPECS, mSPECS-
VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models decreases
as the acceleration factor increases. Furthermore, when comparing
the mSPECS model with the three slice-wise image shift techniques,
the mSPECS-VAT, the mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT
models provide lower temporal variance, with the mSPECS-CAIPIVAT
model yielding the lowest temporal variance results.

A.4. Task experimental reconstruction results

Fig. A.24A shows the CNR value map for odd axial brain slices
from the SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and
mSPECS-CAIPIVAT models with an acceleration factor of TPA = 2. The
average and standard deviation of the CNR values for the ROI are also
shown in Fig. A.24A. From Fig. A.24A, it is evident that the SENSE
model cannot detect any activation blocks in the right motor cortex

brain area. In contrast, the other three models, mSPECS, mSPECS-
VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT can detect clear
activation blocks with detailed anatomical structures. When comparing
the average CNR values of the ROI, the three slice-wise image shift tech-
niques, mSPECS-VAT, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT,
have higher values than mSPECS model. Fig. A.24B presents the acti-
vation block detection maps from the four models with an acceleration
factor of TPA = 2. The average and standard deviation of the z-scores
for the ROI are also shown in Fig. A.24B. Similar to the CNR maps, the
SENSE model fails to detect any activation blocks within the brain. The
mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models capture the activation signals with clear shapes and anatomical
structures. The average z-score of the ROI from the two slice-wise
image shift techniques is higher than that of the mSPECS model, with
the mSPECS-CAIPIVAT model providing the highest average z-score
for the ROL A similar conclusion can be drawn from the CNR maps
and task activation detection maps for even slices of the experimental
reconstructed images.



K. Xu and D.B. Rowe

Magnitude Phase

Slice 8 ice 2 Slice 4

Reference

Slice 6

=
&
b7
E

mSPECS-VAT

Slice 4

mSPECS-CAIPIVAT mSPECS-CAIPIRINHA

Fig. A.22. The temporal mean magnitude and temporal mean phase of the axial brain images from the reference, SENSE, mSPECS, mSPECS-VAT, mSPECS-
CAIPIRINHA, and mSPECS-CAIPIVAT for even slices with acceleration factor TPA = 2.

SENSE mSPECS mSPECS-VAT mSPECS-CAIPIRINHA mSPECS-CAIPIVAT

TPA=4 TPA= TPA=4

TPA=8 , . . TPA=8

Fig. A.23. The temporal variance of SENSE, mSPECS, mSPECS-VAT, mSPECS-CAIPIRINHA, and mSEPCS-CAIPIVAT model with different acceleration factors of
Slice 3.



K. Xu and D.B. Rowe

A CNR

SENSE

mSPECS

Slice 1

mSPECS-VAT

mSPECS-CAIPIVAT mSPECS-CAIPIRINHA

Mo ROI

mSPECS-VAT

1 .
zE
I__
]
&=
=
by
&
%
E
I‘l:.
b
&
=
g
1=
B
H -

Task Activation (z-score)

Slice 3 -]

No ROI

Fig. A.24. A. The CNR map and the average CNR value and standard deviation of CNR of ROI for SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT
model for odd slices with TPA = 2. B. The activation detection map and the average and standard deviation of z-score of ROI for SENSE, mSPECS, mSPECS-
CAIPIRINHA and mSPECS-CAIPIVAT model for odd slices with TPA = 2.

References

(1]

[2]

3]

14]

[5]

16]

171

18]

191

[10]

[11]

112]

[13]

Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging
with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA
1990;87(24):9721-868. http://dx.doi.org/10.1073/pnas.87.24.9868.

Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin
N Am 2011;22(2):133-9. http://dx.doi.org/10.1016/j.nec.2010.11.001, vii.
Hyde JS, Jesmanowicz A, Froncisz W, Kneeland JB, Grist TM, Campagna NF.
Parallel image acquisition from noninteracting local coils. J Magn Reson
1986;70(3):512-7. http://dx.doi.org/10.1016/0022-2364(86)90146-0.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity
encoding for fast MRL. Magn Reson Med 1999;42:952-62. htip://dx.doi.org/10.
1002/(SICI)1522-2594(199911)42:5<952:: AID-MRM16>3.0.C0O;2-5.

Griswold MA, Jamob PM, Heidemann RM, Nikkka M, Jellus V, Wang J, et al.
Generalized autocalibrating partially parallel acquisition (GRAPPA). Magn Reson
Med 2002;47:1202-10. http://dx.doi.org/10.1002/mrm.10171.

Kornak J, Young K, Schuff N, Du A, Maudsley AA, Weiner MW. K-Bayes
reconstruction for perfusion MRI I Concepts and application. J Digit Imaging
2010;23:277-86. htip://dx.doi.org/10.1007/s10278-009-9183-y.

Kornak J, Boylan R, Young K, Wolf A, Cobigo Y, Rosen H. Bayesian image
analysis in Fourier space using data-driven priors (DD-BIFS). Inf Process Manag
Uncertain Knowl.-Based Syst 2020;May 16:380-90. http://dx.doi.org/10.1007/
978-3-030-50153-2 29, 1239.

Feinberg DA, Hale JD, Watts JC, Kaufman L, Mark A. Halving MR imaging
time by conjugation: demonstration at 3.5 kG. Radiology 1986;161(2):527-31.
http://dx.doi.org/10.1148/radiology.161.2.3763926.

Noll DC, Nishimura DG, Macovski A. Detection in magnetlic resonance imag-
ing. IEEE Trans Med Imaging 1991;10(2):154-63. http://dx.doi.org/10.1109/42.
79473.

Souza SP, Szumowskim J, Dumoulin CL, Plewes DP, Glover G. SIMA - simulta-
neous multislice acquisition of MR images by Hadamard-encoded excitation. J
Comput Assist Tomogr 1988;12:1026-30, URL https://pubmed.nebi.nlm.nih.gov/
3183105/,

Rowe DB, Nencka AS, Jesmanowicz A, Hyde JS. Separation of two simultaneously
encoded slices with a single coil. Proc Intl Soc Magn Reson Med 2013;21:0123,
URL https://ismrm.gitlab.io/2013/0123.html.

Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice
(SMS) imaging techniques. Magn Reson Med 2016;75(1):63-81. htip://dx.doi.
org/10.1002/mrm.25897.

Breuer FA, Blai M, Heid in RM, Mueller MF, Griswold MA, Jakob PM.
Controlled aliasing in parallel imaging results in higher acceleration (CAIPIR-
INHA) for multi-slice imaging. Magn Reson Med 2005;53(3):684-91. hitp://dx.
doi.org/10.1002/mrm.20401.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-
controlled aliasing in parallel imaging (blipped-CAIPI) for simultaneous multi-
slice EPI with reduced g-factor penalty. Magn Reson Med 2012;67(5):1210-24.
http://dx.doi.org/10.1002/mrm.23097.

Jungmann PM, Ganter C, Schaeffeler CJ, Bauer JS, Baum T, Meier R, et al. View-
angle tilting and slice-encoding metal artifact correction for artifact reduction in
MRI: Experimental sequence optimization for orthopaedic tumor endoprostheses
and clinical application. PLoS One 2015;10(4):e0124922. http://dx.doi.org/10.
1371/journal.pone.0124922.

Kim M-0O, Hong T, Kim D-H. Multislice CATPIRINHA using view angle tilting
technique (CAIPIVAT). Tomography 2016;43-8. hiip://dx.doi.org/10.18383/].
tom.2016.00109.

Kim M-0, Zho 5-Y, Kim D-H. 3D imaging using magnelic resonance tomosynthe-
sis (MRT) technique. Med Phys 2012;39(8):4733-41. hup://dx.doi.org/10.1118/
1.4737111.

Cauley SF, Polimeni JR, Bhat H, Wald LL, Setsompop K. Interslice leakage artifact
reduction technique for simultaneous multislice acquisitions. Magn Reson Med
2014;72(1):93-102. http://dx.doi.org/10.1002/mrm.24898.

Nencka AS, Shefchik DL, Huettner AM, Jesmanowicz A. Auto-calibrated multi-
band imaging with phase tagging and Hadamard encoding. In: ISMRM Workshop
on Data Sampling and Image Reconstruction. Sedona: AZ; 2013, 16, hiips:
//stan.jesmanowicz.com/andrzej/andre/refs/AJa_167.pdf.

Nencka AS, Jesmanowicz A. Moving window auto-calibrated multiband imaging
for minimized residual correlation. In: ISMRM workshop on data sampling
and image reconstruction. Sedona: AZ; 2013, 11, hups://stan.jesmanowicz.com/
andrzej/andre/refs/AJa_161.pdf.

Rowe DB, Bruce IP, Nencka AS, Hyde JS, Kociuba MC. Separation of parallel
encoded complex-valued slices (SPECS) from a signal complex-valued aliased
coil image. Magn Reson Imaging 2016;34(3):359-69. htip://dx.doi.org/10.1016/
jmri.2015.11.003.

Kociuba CM. A Fourier deseription of covariance, and separation of simultane-
ously encoded slices with in-plane acceleration in FMRI [Ph.D. Dissertation], Mil-
waukee, Wisconsin, USA: Marquette University, hitps://epublications.marquette.
edu/dissertations mu/684/.

Welvaert M, Rosseel Y. On the definition of signal-to-noise ratio and contrast-
to-noise ratio for fMRI data. J PloS One 2013;8(11). hup://dx.doi.org/10.1371/
journal.pone.0077089, e77089.

Preibisch C, Castrillon G, J G, Biihrer M, Riedl V. Evaluation of multiband
EPI acquisitions for resting state fMRI. PLoS One 2015;10(9):e0136961. htip:
//dx.doi.org/10.1371/journal. pone.0136961.

Rowe DB, Logan BR. A complex way to compute fMRI activation. Neuroimage
2004;23(3):1078-92. hitp://dx.doi.org/10.1016/j.neuroimage.2004.06.042.

Risk BB, Murden RJ, Wu J, Nebel MB, Venkataraman A, Zhang Z, et
al. Which multiband factor should you choose for your resting-state fMRI
study? MNeuroimage 2021;234:117965. htip://dx.doi.org/10.1016/j.neuroimage.
2021.117965.



