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Abstract 

Functional Magnetic Resonance Imaging (fMRI) enables researchers to study brain functions and 

advance understanding in human sciences. By detecting the Blood Oxygen Level Dependent (BOLD) 

contrast signal, spatial and temporal changes in brain metabolism are represented in the frequency 

domain, known as k-space. Traditional MRI methodologies require full k-space information, which 

follows a unique data acquisition sequence to reconstruct the complete image. This process presents 

a time-consuming obstacle for medical imaging techniques. Therefore, the primary focus of our 

study is to propose a novel imaging reconstruction method that improves the efficiency of the data 

acquisition process while maintaining high accuracy in activation detection. In our approach, we 

introduce a novel two-dimensional acceleration method to expedite the imaging acquisition process. 

Multiple imaging shift techniques and a new two-dimensional Hadamard aliasing pattern were 

incorporated to reduce the dependency on aliased voxels and increase the diversity of the acquired 

information. By applying our approach to both simulated and experimental fMRI data, we 

successfully reduced the total scan time while achieving higher signal-to-noise ratio (SNR) and 

contrast-to-noise ratio (CNR) in regions of interest (ROI). Moreover, compared with traditional 

imaging reconstruction techniques, our method significantly improves the activation detection rate. 
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1. Background 

 

In the functional magnetic resonance imaging (fMRI) study field, the topic of improving the 

efficiency of data acquisition in the image scanning process has been gaining researchers’ interest 

since 1990. As a noninvasive medical imaging technique, the blood-oxygen-level dependent (BOLD) 

contrast signal was detected as the proxy reflecting the neuron activation changes through time 

(Ogawa et al., 1990). In order to acquire the fully sampled spatial frequency space called k-space, 

the gradient echo echo-planer imaging (GRE-EPI) pulse sequence is applied to shorten the scan time 

and reduce the respiratory artifacts in one excitation (Mansfield, 1977; Rzedzian et al., 1983; 
Stehling, Turner, and Mansfield, 1991). For each excitation of the GRE-EPI pulse sequence, a zig-

zag data-collecting pattern is followed sequentially to form the full k-space with each data point 

representing complex-valued average spatial frequency information within each image. Figure 1 

shows the three-dimensional view of the brain image scanning process and the unique data-acquiring 

sequential pattern in the k-space of the GRE-EPI pulse sequence (Sakitis, Brown, and Rowe, 2024). 

However, to conduct an fMRI experiment, multiple brain images need to be acquired at different 



positions, known as volume-image. Thus, it takes a relatively long time to acquire a volume-image 

fMRI time series in favor of gaining a steady and reliable task-related activation signal.  

 
Figure 1. A. The three-dimensional view of brain image acquisition process with one single coil. B. The zig-

zag data collecting pattern of GRE-EPI pulse sequence.  

 

In 1986, Hyde introduced a parallel image acquisition technique that incorporated multiple coils, 

and each coil measured partial sensitivity-weighted spatial frequencies (Hyde et al., 1986). The full 

brain image can be reconstructed by applying the Sensitivity Encoding (SENSE) approach to 

combine weighted spatial frequencies from each coil into one single k-space array (Pruessmann et 

al., 1999). In order to reduce the total image scan time, the data acquisition can be accelerated along 

two dimensions: the in-plane dimension and the through-plane dimension. The in-plane acceleration 

(IPA) method aims at expediting the single slice readout process by skipping partial lines in the k-

space. As an alternative to SENSE, the unacquired spatial frequency point can be estimated by the 

application of the generalized autocalibrating partially parallel acquisition (GRAPPA) approach 

(Griswold et al., 2002). Prior information on missing data in the k-space can be acquired from the 

calibration images. Figure 2 shows the three-dimensional view of the brain image acquisition 

process with four receiver coils and the subsampled spatial frequence domain for IPA approach with 

acceleration factor 𝐼𝑃𝐴 = 2 (Sakitis, Brown, and Rowe, 2024). In Figure 2B, every other line in the 

k-space, black dots, is acquired, and the white dots line is skipped. However, the total scan time does 

not decrease with the factor of the IPA due to fixed time blocks in the data-acquiring process like 

proper time to 𝑇2
∗  contrast and imaging encoding time in one excitation. The through-plane 

acceleration (TPA) approach, on the other hand, focuses on expediting the image acquisition process 

by acquiring multiple images simultaneously in one excitation. The spatial information for multiple 

images is not acquired separately, instead, is aliased into one single k-space for each excitation. 

Techniques like the simultaneous multi-slice (SMS) approach can be incorporated with the TPA 

approach by applying a multiband (MB) radiofrequency (RF) within a reduced repetition time (TR) 

(Souza et al., 1988; Rowe et al., 2013; Barth et al., 2016; Rowe et al., 2016). Compared with the 

IPA approach, the TPA approach can improve the efficiency of the data-acquiring process more 

significantly, with the total scan time being reduced with a fraction of the TPA acceleration factor.  

 

To further reduce the total image scan time and achieve the ultimate goal of our study, we introduce 

a novel SMS image reconstruction technique called a controlled aliasing in parallel imaging with 

view angle tilting approach and in-plane acceleration method for multi-coil separation of parallel 

encoded complex-valued slices (mSPECS-IPA-CAIPIVAT) will be presented and discussed. This 

study is developed upon the mSPECS-IPA approach with TPA and IPA acceleration techniques 

combined into a two-dimensional acceleration technique (Kociuba, 2016). Through the two-

dimensional acceleration technique, a higher acceleration factor can be achieved. In the novel image 



reconstruction method, we incorporate an image shift technique into the model to decrease the 

similarity of the coil sensitivity information for the aliased voxels. More detail will be discussed in 

the Section 2. 

 
Figure 2. A. The three-dimensional view of brain image acquisition process with four coils. B. The subsampled 

spatial frequency domain incorporated with IPA approach and the acceleration factor equal to 2.  

  

2. Theory 

 

2.1 Data Acquiring Process  

2.1.1 Image Shift Techniques 

As discussed in Section 1, the SMS technique can acquire images of multiple brain slices 

concurrently and the total volume scan time can be reduced dependent on the selected TPA factor. 

Figure 3 shows the 3D and 2D view of the image acquiring process with four slices and four coils. 

Different from the single slice acquisition process, the multiple slice acquisition process leads to the 

short physical distance between aliased images. When applying the SENSE approach to reconstruct 

brain images and capture the activity signal, an ill conditioned matrix problem occurs caused by the 

high similarity of the coil sensitivity information between the short-distanced aliased voxels. Thus, 

a strong inter-slice signal and anatomical structure from other slices will appear on the reconstructed 

images. To determine the performance of the image reconstruction method with high acceleration 

factors, the noise amplification factor or geometry factor, g-factor, is defined by (Setsompop et al., 

2012; Welvaert and Rosseel, 2013): 

𝑔𝑆𝑀𝑆 =
𝑆𝑁𝑅𝑓𝑢𝑙𝑙

𝑆𝑁𝑅𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒√𝑅
.                                                       (1) 

In Eq. 1, 𝑆𝑁𝑅𝑓𝑢𝑙𝑙  is the signal-to-noise (SNR) ratio for the reconstructed images from techniques 

without acceleration factors, 𝑆𝑁𝑅𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒   is the SNR value for the reconstructed images with 

acceleration factors, and R is the IPA factor. According to Eq. 1, high similarity of coil sensitivity 

information induces the high 𝑔𝑆𝑀𝑆 value, which leads to a reduction of the 𝑆𝑁𝑅𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒  ratios for 

the reconstructed images. Thus, to increase the 𝑆𝑁𝑅𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒  value and improve the performance 

of the novel acceleration technique, we introduce the image shift methods to manually increase the 

physical distance between aliased voxels. 

 



 
Figure 3. A. The 3D view of SMS technique with four slices and four coils acquisition process at one excitation. 

B. The 2D view for the same process with four slices and four coils. 

 

For each excitation, the brain image can be shifted along three directions: the phase-encoding (PE) 

direction (vertically in this study, notation “↑” and “↓” means image shift up and down), the readout 

(RO) direction (horizontally in this study, notation “←” and “→” means image shift left and right), 

and PE and RO direction (vertically and horizontally at the same time in this study, notation “↗”, 

“↖”, “↘”, “↙” indicates the direction images shift to). To decrease the influence of the geometric 

properties of the coil sensitivity maps, techniques like “controlled aliasing in parallel imaging results 

in higher acceleration” (CAIPIRINHA) and “blipped-CAIPIRINHA” (Blipped-CAIPI) provide 

other possible ways to minimize the influence of the g-factor and maximize the physical distance of 

the aliased voxels (Breuer et al., 2005; Setsompop et al., 2012). The CAIPIRINHA approach can 

shift the images along the PE direction by modulating the phase for each line in the k-space and 

imparting each line with a specific angle. Applying a unique phase modulation amount to each slice 

in the aliased image-acquiring process increases the physical distance between the aliased voxels. 

Therefore, the independence of coil sensitivity for each slice will increase, and the influence of the 

g-factor for each excitation will be minimized. Moreover, to shift the brain image along the RO 

direction, a technique like the view angle tilting (VAT) approach applies compensation gradients to 

the slice selection direction to correct the chemical-shift artifacts in the image scanning process 

(Cho, Kim, D. J., and Kim, Y. K., 1988; Min-Oh Kim et al., 2012). The distance shifted along the 

RO direction is relate to the view angle 𝜃 in the data acquisition process. The CAIPIRINHA and the 

VAT technique can be combined, and thus the study “multislice CAPIPRINHA using view angle 

tilting technique” (CAIPIVAT) proposed (Jungmann et al., 2015; Min-Oh Kim et al., 2016). Through 

this technique, the FOV can be shifted along the PE and RO direction by applying different amounts 

of phase modulation to each line in the k-space and the compensation gradients on the slice selection 

direction together for each excitation. Figure 4 shows the k-space for CAIPIRINHA and CAIPIVAT 

techniques along the reconstructed brain images after the inverse Fourier transform.  



 
Figure 4. A. An illustration of the CAIPIRINHA process.  B. An illustration of the CAIPIVAT process. 

 

In this study, the principal idea of the CAIPIRINHA technique will be applied first. For each slice 

within each excitation, we imply Δ𝑦 = (𝑙 − 1)𝐹𝑂𝑉/𝑁𝑠  in-plane image shift, where 𝑙 = 1, … , 𝑁𝑠 

and 𝑁𝑠 is the total number of aliased slices. On the TR dimension, we also imply the CAIPIRINHA 

technique for each excitation by Δ𝑦 = (𝑚 − 1)𝐹𝑂𝑉/𝑁𝑠 in-plane image shift, where 𝑚 = 1, … , 𝑁𝑠. 

Thus, with the in- and through-excitation image shift, at 𝑇𝑅 = 𝑁𝑠 + 1 excitation time point, the 

aliased artifacts should be the same as the 𝑇𝑅 = 1  excitation time point. Figure 5A shows an 

example of an in- and through-excitation image shifts process with 𝑁𝑠 = 4 incorporating with the 

CAIPIRINHA technique. When 𝑇𝑅 = 5, the image shift pattern for each slice should be the same 

as the time point 𝑇𝑅 = 1. Furthermore, the principal idea of the CAIPIVAT technique will also be 

applied. Similar to the CAIPIRINHA technique, Δ𝑦 = (𝑙 − 1)𝐹𝑂𝑉/𝑁𝑠 for the in-plane image shift 

and by Δ𝑦 = (𝑚 − 1)𝐹𝑂𝑉/𝑁𝑠 for the through-plane image shift will be applied to each excitation 

along the PE direction. For each slice within each excitation, a unique image shift will appear 

horizontally on the RO direction with the support of the CAIPIVAT technique. The shift distance 

for each slice along the RO direction can be calculated and depends on the distance between the 

desired aliased slices, the compensation gradient, and the RO gradient. A modest slice-wise shift 

will be applied for each excitation to ensure the brain image is not outside the FOV. Figure 5B 

displays an example of in- and through-excitation image shift process of 𝑁𝑠 = 4 incorporating with 

the CAIPIVAT technique. Besides the same amount of the FOV shift in- and through-excitation on 

the PE direction as the CAIPIRINHA technique, slice 1 and slice 3 will have a FOV shift to the left 

as well as slice 2 and slice 4 will have a FOV shift to the right on the RO direction according to the 

CAIPIVAT technique. Thus, compared with the CAIPIRINHA technique approach, the overlapping 

area between two desired aliased images will decrease and the independency of the sensitivity for 

each coil will increase. Moreover, based on the sequential properties, the image shift pattern for 

each slice should be the same as the time point 𝑇𝑅 = 1 when 𝑇𝑅 = 5. 



 
Figure 5. A. An example of in- and through-excitation image shift process with 𝑁𝑠 = 4  by applying the 

CAIPIRINHA technique. B. An example of in- and through-excitation image shift process with 𝑁𝑠 = 4  by 

applying the CAIPIVAT technique. 

 

2.1.2 Two-Dimensional Hadamard Phase Encoding 

The Hadamard encoding technique is a well-developed volume excitation method (Souza et al., 

1988). The conventional magnetic resonance (MR) imaging techniques have been limited by the 

size of the matrix for the acquired aliased images. The Hadamard phase encoding method allows 

the increment of the size of the acquired aliased image matrix by aliasing in both frequency and 

phase encoding dimensions. With the support of this simultaneous binary-encoded technique, the 

TR will decrease, and the SNR ratio will improve. The Hadamard matrix is given by: 

𝐻2𝑛 = [
𝐻2𝑛−1 𝐻2𝑛−1

𝐻2𝑛−1 −𝐻2𝑛−1
] = 𝐻2 ⊗ 𝐻2𝑛−1 , 𝑤𝑖𝑡ℎ 𝐻1 = [1], 𝐻2 = [

1    1
1 −1

],             (2) 

where ⊗ denotes the Kronecker product. It is an orthogonal and full rank matrix with elements of 

either +1 or -1. In this study, since the TPA approach and the IPA approach are combined to further 

decrease the total image scan time, and the image shift techniques are incorporated to decrease the 

influences of the geometry properties, we introduce a novel two-dimensional Hadamard phase 

encoding technique to our approach. The novel two-dimensional Hadamard phase encoding 

technique is developed and based upon the Hadamard phase encoding technique with elements of 

either +1 or -1. However, different from the Hadamard phase encoding technique, in order to 

guarantee the orthogonality property for each aliased image, different Hadamard coefficients will 

be assigned to different segments for different slices. Figure 6 shows the two-dimensional Hadamard 

phase encoding aliasing coefficient for 𝑁𝑠 = 2 and 𝑁𝑠 = 4 situations. First, for each excitation or 

each TR, the through-plane Hadamard coefficient will be assigned to different slices. Second, for 

each segment of each slice, the in-plane Hadamard coefficient will be assigned to a different 

excitation. To maintain the orthogonality property for each segment of each slice, the in-plane 

Hadamard coefficient starts from the second column of the Hadamard coefficient for the first 

excitation. At the last TR of the cycle, the in-plane Hadamard coefficient is the first column of the 

Hadamard matrix. Finally, the two-dimensional Hadamard coefficient will be the product of the 

through-plane and in-plane Hadamard coefficient for each segment of each slice and each excitation. 

The size of the in-plane and through-plane Hadamard coefficient matrix is equal to the number of 

aliased slices for each excitation 𝑁𝑠.  



 
Figure 6. A. The two-dimensional Hadamard phase encoding coefficient for 𝑁𝑠 = 2. B. The two-dimensional 

Hadamard phase encoding coefficient for 𝑁𝑠 = 4. 

 

2.1.3 A Single Aliased Voxel 

Given a single aliased voxel, 𝑎𝑗,γ,δ , at the location (𝑥, 𝑦)  of aliased images, with δ th Hadamard 

aliasing pattern and γth matrix rotation operation, measured at coil 𝑗, is defined as the summation 

equation: 

𝑎𝑗,𝛾,𝛿 = ∑ ∑ 𝐻𝛿,𝑧,𝑚𝑅𝛾,𝑧,𝑚𝑆𝑗,𝑧,𝑚𝛽𝑧,𝑚 + 𝜀𝑗

𝑁𝑠

𝑧=1

𝑅

𝑚=1

.                                            (3) 

In Eq. 3, 𝑎𝑗,γ,δ is a 2 × 1 complex-valued vector with the real and imaginary components of the 

acquired aliased voxel value measured at coil 𝑗 , with rotating operation γ  and Hadamard phase-

encoding aliasing pattern δ. The Hadamard phase-encoding aliasing pattern, 𝐻δ,𝑧,𝑚, is the same as 

the definition in Section 2.1.2, where parameter δ corresponds to the order of Hadamard coefficients 

pattern, parameter 𝑧 corresponds to the number of slices, and parameter m corresponds to the IPA 

factor. The coefficients of 𝐻δ,𝑧,𝑚  will be either +1 or -1. The matrix rotation operator, 𝑅γ,𝑧,𝑚 , is 

closely related to the definition of Section 2.1.1. Subscript γ denotes the order of the matrix rotation 

operation for each TR, and parameter 𝑧 corresponds to the number of slices. The coil sensitivity 

matrix, 𝑆𝑗,𝑧,𝑚, is a 2 × 2 skew symmetric matrix with the real and imaginary components at coil 𝑗 

for slice 𝑧, 𝑆(𝑗,𝑧,𝑚) = [𝑆𝑅 , −𝑆𝐼; 𝑆𝐼 , 𝑆𝑅]𝑗,𝑧,𝑚. The true voxel value, 𝛽𝑧,𝑚, is a 2 × 1 vector with the real 

and imaginary parts of the aliased voxel in slice 𝑧. The measurement noise, ε𝑗, is a 2 × 1 vector with 

real and imaginary parts. The mean of measurement noise is 𝐸(ε𝑗) = 0, and the covariance of error 

is 𝑐𝑜𝑣(ε𝑗) = σ2𝐼2, where 𝐼2 is a 2 × 2 identity matrix. There is no correlation between the real and 

imaginary parts of measurement error.  

 

Considering the measured aliased voxel in Eq. 3 across the 𝑁𝑐 coils for 𝑁𝑠 aliased slices with 𝑁α 

time-points in the fMRI time series, Eq. 3 can be expressed as: 

𝑎 = 𝑋𝐴𝛽 + 𝜀.                                                                   (4) 



𝑁𝛼 denotes the number of sequential time-points of the Hadamard encoded pattern, and it is an 

integer between 1 and 𝑁𝑠. Therefore, the net acceleration of the fMRI time series acquisition is 

defined as 𝐴 = 𝑁𝑠𝑅/𝑁α. In Eq. 4, the dimension of 𝑎 is 2𝑁𝑐𝑁α × 1 including the real and imaginary 

components. The measurement error, ε, has the same dimension as 𝑎 with the mean 𝐸(ε) = 0 and 

covariance 𝑐𝑜𝑣(ε) = σ2𝐼2𝑁𝑐𝑁α
. The dimension of the aliasing matrix, 𝑋𝐴, is 2𝑁𝑐𝑁α × 2𝑁𝑠𝑁𝑟, where 

𝑁𝑟 is an indicator of the number of matrix rotation operations. In this study, we generally assign 

𝑁𝑟 = 𝑁𝑠 to improve the computational efficiency. The true voxel value, 𝛽, has the dimension of 

2𝑁𝑠𝑁𝑟 × 1, including the real and imaginary value for each voxel. For the δth Hadamard aliasing 

pattern and γth matrix rotating operation, the aliasing matrix (𝑋𝐴)γ,δ across 𝑁𝑐 coils is defined as: 

(𝑋𝐴)𝛾,𝛿 = [𝐻𝛿,1𝑅𝛾,1 (

𝑆1,1

⋮
𝑆𝑁𝑐 ,1

) , … , 𝐻𝛿,𝑁𝑠
𝑅𝛾,𝑁𝑠

(

𝑆1,𝑁𝑠

⋮
𝑆𝑁𝑐 ,𝑁𝑠

)].                               (5) 

𝑅𝛾,𝑧 is the image shift indicator which operates on coil sensitivity maps for each slice, and it is not 

the matrix multiplication. Across the 𝑁α excitations, the aliasing matrix 𝑋𝐴 can be written as: 

𝑋𝐴 = [

(𝑋𝐴)1

⋮
(𝑋𝐴)𝑁𝛼

].                                                                     (6) 

 

 To separate the aliased images and estimate the voxel value for each slice, the least square 

estimation method is used. The estimated separate voxel value, β̂, can be calculated by: 

𝛽̂ = (𝑋𝐴
′ 𝑋𝐴)−1𝑋𝐴

′ 𝑎.                                                               (7) 

In general, the determinant of 𝑋𝐴 is close to zero, det(𝑋𝐴) ≈ 0, which leads to failure in calculating 

the inverse of 𝑋𝐴
′ 𝑋𝐴. Thus, a bootstrap sampling method incorporated with the artificial aliasing of 

reference calibration images technique is combined with the mSPECS-IPA-CAIPIVAT method. This 

combined technique can eliminate the inter-slice signal leakage artifacts by introducing a regularizer 

in the least square estimation function and making the aliasing matrix to be full rank for the inverse. 

More details will be shown in the following section. Figure 7 shows acquired voxel aliasing situation 

for each two-dimensional acceleration image reconstruction technique. The top row is the acquired 

image voxel aliasing situation for mSPECS-IPA technique that no image shift technique is 

incorporated with 𝑁𝑠 = 4. The middle row shows the acquired image voxel aliasing situation for 

mSPECS-IPA-CAIPIRINHA technique that images can be shifted vertically with 𝑁𝑠 = 4 . The 

bottom row shows the acquired image voxel aliasing situation of mSPECS-IPA-CAIPIVAT 

technique that images can be shifted horizontally and vertically with 𝑁𝑠 = 4. As Figure 7 shows, 

the image overlapping area is decreasing from mSPECS-IPA to mSPECS-IPA-CAIPIVAT technique, 

which intuitively make the image reconstruction process easier compared with non-image shift 

technique.  



 
Figure 7. The acquired image voxel aliasing situation for mSPECS-IPA with 𝑁𝑠 = 4 (top). The acquired image 

voxel aliasing situation for mSPECS-IPA-CAIPIRINHA with 𝑁𝑠 = 4  (middle). The acquired image voxel 

aliasing situation for mSPECS-IPA-CAIPIVAT with 𝑁𝑠 = 4 (bottom). 

 

 

2.2 The Bootstrap Sampling and Artificial Aliasing of Calibration Images 

In the previous simultaneous multi-slice (SMS) study, bootstrap sampling and artificial aliasing of 

calibration reference image techniques have been proven as powerful tools to support the separation 

and reconstruction process of aliased images. By increasing the size of the aliasing matrix and 

adding a regularizer into the least square estimation function, the correlation induced by the 

separation process will decrease and the slice-to-slice signal leakage will be eliminated. In the fMRI 

time series, for each excitation, 𝑁𝑠 bootstrap sampled coil slice images will be randomly chosen 

from fully sampled calibration reference images. The mean calibration images will be calculated for 

each slice and will be artificially aliased which is then repeated for each TR.  

 

Given a single TR, the calibration images will have the same shift pattern as acquired images, thus, 

the total number of different combinations for different voxels should be 𝑁𝑠, which is equal to the 

rank of the chosen Hadamard matrix. After removing the combination of the acquired aliasing 

pattern from the full voxel combination pattern, 𝑁𝑠 − 1 different combinations remain. Therefore, 

for a single excitation, a voxel across 𝑁𝑠 slices, measured through 𝑁𝑐 coils, ν, can be represented as 

a vector with the dimension of 2𝑁𝑠𝑁𝑐(𝑁𝑠 − 1) × 1 with the real component stacked on the top of 

the imaginary component, corresponding to the remain combinations without the acquired aliasing 

combination. The mean bootstrap sampled voxel, ν̅, is the same dimension as ν for each time point. 

The artificial aliasing calibration images, ν , across 𝑁𝑠  slices measured through 𝑁𝑐  coils at 𝑁α 

sequential time point can be expressed as: 

𝜈 = 𝐶𝑣̅ = 𝐶𝐴𝜇 + 𝐶𝜂.                                                               (8) 



The dimension of the measurement error vector, η, is the same size as the vector ν. The mean of the 

measurement error for the calibration images is 𝐸(η) = 0 , and the covariance is 𝑐𝑜𝑣(𝐶η) =

σ2𝐼2𝑁𝑠𝑁𝑐(𝑁𝑠−1), where 𝐼2𝑁𝑠𝑁𝑐(𝑁𝑠−1) is the identity matrix. There is no correlation between the real 

and imaginary components of the calibration images. The true voxel value vector, μ, is constructed 

with the real and imaginary components of the calibration voxel with the dimension 2𝑁𝑠 × 1. The 

artificial aliasing matrix, 𝐶𝐴, is following the same aliasing rules as acquired images do, rotating by 

the matrix rotation operation and multiplying the Hadamard encoding aliasing coefficients. Due to 

the combination of acquired aliasing voxel removed from the full combinations, the dimension of 

the artificial aliasing matrix is 2𝑁𝑠𝑁𝑐(𝑁𝑠 − 1) × 2𝑁𝑠 . Same as the assumption in the acquired 

aliasing images, we assign 𝑁𝑟 = 𝑁𝑠  to improve the computational efficiency. For example, 

considering a situation with 𝑁𝑠 = 4  and 𝑁𝑟 = 4 , for each time point, 𝑁𝑠 − 1 = 3  combinations 

should be applied for the calibration images. Thus, for a given excitation, the δth Hadamard aliasing 

pattern and γth matrix rotating operation, the aliasing matrix (𝐶𝐴)γ,δ across 𝑁𝑐 coils can be written 

as: 

(𝐶𝐴)𝛾,𝛿 = [𝐻𝛿,1𝑅𝛾,1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (

𝑆1,1

⋮
𝑆𝑁𝑐 ,1

) , … , 𝐻𝛿,𝑁𝑠
𝑅𝛾,𝑁𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (

𝑆1,𝑁𝑠

⋮
𝑆𝑁𝑐 ,𝑁𝑠

)].                          (9) 

       

The notation 𝐻𝑅 denotes the remaining combination for the Hadamard encoding aliasing pattern 

with the matrix rotation pattern after removing the combination of the acquired aliasing pattern. 

Incorporating 𝑁α sequential time points, the artificial aliasing matrix, 𝐶𝐴, can be written as: 

𝐶𝐴 = [

(𝐶𝐴)1

⋮
(𝐶𝐴)𝑁𝛼

] .                                                             (10) 

 

2.3 The Statistical Separation Process 

To separate the aliased voxel, according to the mSPECS-IPA-CAIPIVAT approach, we combine Eq. 

4 and Eq. 8 together, which will generate: 

𝑦 = [
𝑎
𝜈

] = [
𝑋𝐴𝛽
𝐶𝐴𝜇

] + [
𝜀

𝐶𝜂].                                                    (11) 

The dimensions for each parameter in the equation are discussed in detail in the previous sections. 

The least squares estimation function is incorporated with the mSPECS-IPA-CAIPIVAT method, 

which will lead us to: 

𝛽̂ = (𝑋𝐴
′ 𝑋𝐴 + 𝐶𝐴

′ 𝐶𝐴)−1(𝑋𝐴
′ 𝑎 + 𝐶𝐴

′ 𝜈).                                           (12) 

𝐶𝐴
′ 𝐶𝐴 works as the regularizer for the matrix inverse to improve the condition of the equation. The 

expectation value of the estimation images is: 

𝐸(𝛽̂) = (𝑋𝐴
′ 𝑋𝐴 + 𝐶𝐴

′ 𝐶𝐴)−1(𝑋𝐴
′ 𝛽 + 𝐶𝐴

′ 𝜇).                                      (13) 

Based on the previous section, the covariance for the acquired aliasing measurement error is 

𝑐𝑜𝑣(𝜀) = 𝜎2𝐼2𝑁𝑐𝑁𝛼
 , and the covariance for the artificial aliasing measurement error is 𝑐𝑜𝑣(𝐶𝜂) =



𝜎2𝐼2𝑁𝑆𝑁𝑐(𝑁𝑆𝑁𝑟−1), the covariance for vector, 𝑦, consisting of acquired aliasing voxel value and the 

artificial aliasing voxel value is: 

𝑐𝑜𝑣(𝑦) = [
𝜎2𝐼2𝑁𝑐𝑁𝛼

0

0 𝜏2𝐼2𝑁𝑆𝑁𝑐(𝑁𝑆𝑁𝑟−1)
].                                    (14) 

Without the support of the bootstrapping technique, there will be no variation in the artificial aliasing 

calibration images, i.e. the same calibration reference images will be artificially aliased for each TR, 

which will lead to τ2 = 0 . The correlation induced by the separation process will increase and 

exhibit slice-to-slice signal leakage artifacts. With the help of the bootstrap sampling approach,  

τ2 = σ2, such that the covariance of β̂ is: 

𝑐𝑜𝑣(𝛽̂) = 𝜎2(𝑋𝐴
′ 𝑋𝐴 + 𝐶𝐴

′ 𝐶𝐴)−1.                                               (15) 

Therefore, the correlation induced by the unaliasing process is minimized, and the inter-slice signal 

leakage artifacts are eliminated. 

 

3. Simulation Study 

3.1 Simulated FMRI Data 

To investigate the performance of our proposed novel SMS technique, the mSPECS-IPA-

CAIPIRINHA, and the mSPECS-IPA-CAIPIVAT model were applied to simulated fMRI data, and 

the results were compared with the mSPECS-IPA. The simulated fMRI data has 𝑇𝑅 =  510 time 

points and mimics the real-world right hand finger tapping fMRI experiment. The first 20 time points 

will be omitted, thus leaving the simulated fMRI data with 490 time points. To replicate the full 

process of the real right-handed finger-tapping experiment, two time series were generated from the 

true noiseless axial view data: the calibration simulated data, and the task simulated data. The 

calibration simulated data includes 𝑁𝑆 = 8 axial brain images without any simulated task activation 

blocks for each image. The task simulated data, in contrast, includes 𝑁𝑆 = 8 axial brain images with 

simulated task activation blocks on the left motor cortex for the first 4 slices. No simulated activation 

blocks were added to the other 4 slices. The simulated activation blocks were added according to 

the in vivo experiment design, with the first 20 TRs off, following 15 TRs on and 15 TRs off for 16 

epochs, and the last 10 TRs off. To achieve the 𝐶𝑁𝑅 = 0.5, the mean magnitude of 0.04 was added 

to the simulated activation blocks for the first 4 slices. The mean magnitude of 4, to achieve 𝑆𝑁𝑅 =
50, and different phase angles from 5° to 40° with 5° intervals were added to each image. In order 

to further increase the distinction of the spatial information for different tissue type, angle 7.5°  was 

added to white matter (WM), 15°  was added to gray matter (GM), and 22.5°  was added to the 

cerebral spinal fluid (CSF). Gaussian distribution noise 𝑁(0,0.0064) was added for each image of 

the calibration simulated data and the task simulated data separately. Figure 8A shows the true 

noiseless simulated magnitude and true phase information for 𝑁𝑆 = 8 axial brain images. 

 

A total of 𝑁𝐶 = 8 channel coil sensitivity profiles were simulated to weight each axial brain image. 

A mean magnitude of 0.95 and the different phase angles from 0° to 17.5° with 2.5° intervals were 

applied to each coil sensitivity. Figure 8B shows the simulated magnitude and phase information of 

the 𝑁𝐶 = 8 channel coil sensitivity profiles for the third axial brain image (slice 3). In the interest 

of investigating our new proposed SMS techniques under different TPA factors, we applied our 

model to three acceleration scenarios: TPA=2 (packet 1: slice 1 and 5, packet 2: slice 2 and 6, packet 

3: slice 3 and 7, and packet 4: slice 4 and 8), TPA=4 (packet 1: slice 1, 3, 5 and 7, packet 2: slice 2, 

4, 6 and 8), and TPA=8 (all slices into one packet). The number of packets multiplied by the 

acceleration factor equals to the total number of images. All experiments were performed on 

MATLAB program software. 



 
Figure 8. A. The true noiseless simulated magnitude and true phase information for axial brain images. B. The 

simulated magnitude and phase information of 𝑁𝐶 = 8 channels coil for slice 3. 

 

3.2 Simulated Reconstruction Results 

Following the methodology of the mSPECS-IPA-CAIPIVAT in Section 2, we conducted the 

simulated fMRI experiment with different combinations of in-plane and through-plane acceleration 

factors: IPA=2 and TPA=2, IPA=2 and TPA=4, and IPA=2 and TPA=8. Under these three 

circumstances, the net acceleration factor will be achieved at 4, 8, and 16. Figure 9 shows the 

temporal mean magnitude and the temporal mean phase of slice 3 of the reconstructed images from 

the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, and the mSPECS-IPA-CAIPIVAT approach and 

compared with the true noiseless magnitude and the true noiseless phase. Compared with the true 

value, these three methods provide clear reconstructed brain images with detailed anatomical 

information. However, comparing the background noise of the phase, the noise level increasing from 

the mSPECS-IPA to mSPECS-IPA-CAIPIVAT approach, and the mSPECS-IPA-CAIPIVAT 

approach has the highest background phase noise among these three methods. 

 
Figure 9. The true noiseless magnitude and true noiseless phase comparing with the temporal mean magnitude 

and phase from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, and mSPECS-IPA-CAIPIVAT for slice 3. 



To evaluate the performance of the novel two-dimensional acceleration image reconstruction 

approach, the SNR value and the task activation detection rate were compared with these three 

models. The temporal signal-to-noise ratio is defined as 𝑆𝑁𝑅 = 𝑆̅ 𝜎𝑁⁄  , where 𝑆̅  is the mean 

magnitude value in the time series, and 𝜎𝑁 is the standard deviation of the noise. The signal-to-noise 

ratio also can be expressed as 𝑆𝑁𝑅 = 𝛽0 𝜎𝑁⁄  , where 𝛽0 is the baseline signal, and 𝜎𝑁 is the standard 

deviation of the magnitude of the noise. Activation detection was performed using a complex-valued 

model to compute fMRI activation (Rowe and Logan, 2004). Figure 10 shows the SNR and the 

activation detection rate for ROI of slice 3 from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA 

and the mSPECS-IPA-CAIPIVAT method. As Figure 10A shows, the mSPECS-IPA-CAIPIRINHA 

has the lowest average SNR of ROI, whereas the mSPECS-IPA and the mSPECS-IPA-CAIPIVAT 

method has a close SNR value of ROI. However, comparing the activation detection rate of ROI, 

which is the z-score, the mSPECS-IPA-CAIPIVAT method provides the highest average activation 

detection value for ROI and the mSPECS-IPA-CAIPIRINHA has the lowest score. From the 

activation detection value of three methods, the mSPECS-IPA-CAIPIVAT has higher significance 

to capture the brain task-related signal. 

 
Figure 10. The average SNR and the average activation detection rate of ROI for slice 3 from mSPECS-IPA, 

mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT model. 

 

4. Experimental FMRI Study 

4.1 Experimental FMRI Data 

A 3.0 T General Electric Signa LX MRI scanner was used to perform a right-handed finger-tapping 

fMRI experiment on a single object. The experiment was designed with an initial 20s of rest, 

following 15s off and 15s on for 16 epochs, and a final 10s of rest. This results in a time series with 

510 time repetitions was acquired for each repetition lasting 1s. The first 20s were disregarded 

leading to a time series with 490 time repetitions. An additional non-task time series was also 

acquired from the same object to serve as calibration time series. A flip angle of 90°  with an 

acquisition bandwidth of 125kHz was applied in this experiment. The thickness of the axial brain 

images slice was 2.5 mm with 9 slices for each time repetition. Due to the nature of the Hadamard 

phase-encoding method, 8 slices were used for the new proposed reconstruction models and 

compared with the existing models. The most inferior axial brain slice was disgarded. An 8-channel 

receiver coil was applied with dimension 96 × 96  for a 24 cm full FOV. The phase encoding 



direction is posterior to anterior. In order to acquire the “true” reconstruction brain images and 

activation signals, the SENSE model was applied to each time repetition without any through-plane 

acceleration method, and the reconstructed images were treated as reference reconstruction images. 

Reconstruction results from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-

CAIPIVAT model were compared to the reference reconstruction images. 

 

4.2 Experimental Reconstruction Results 

In order to investigate the performance of the novel slice-wise image shift SMS models on a real-

world experiment, we applied mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT model to 

the right-handed finger-tapping fMRI experiment time series. Reconstructed axial brain images 

were obtained from these two image-shifting models and compared with the reconstruction results 

from the mSPECS-IPA model; reference images were also included in the comparison. We also 

investigated the model performance of the novel slice-wise image shift models with different in-

plane and through-plane acceleration factors: IPA=2 and TPA=2, IPA=2 and TPA=4, and IPA=2 and 

TPA=8, and compared the reconstruction results with the mSPECS-IPA model. Figure 11 shows the 

temporal mean magnitude and temporal mean phase of slice 3 from mSPECS-IPA, mSPECS-IPA-

CAIPIRINHA, and mSPECS-IPA-CAIPIVAT model and compared with the reference mean 

magnitude and mean phase reconstructed from the SENSE technique. As Figure 11 shows, the 

mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, and mSPECS-IPA-CAIPIVAT methods provide clear 

and high-resolution reconstructed brain image with detailed anatomical structures inside of brian, 

and the mean magnitude and mean phase from these three models are close to the reference 

magnitude and phase. However, similar to the simulation results, the mSPECS-IPA-CAIPIVAT 

model has the highest background phase noise, and the mSPECS-IPA provides the lowest phase 

noise. 

 
Figure 11. The reference magnitude and reference phase comparing with the temporal mean magnitude and 

phase from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT for slice 3. 

 

Similar to the simulation reconstructed results section, we also investigated the SNR value and the 

activation detection rate from the reconstructed brain images of the experimental fMRI data. Figure 

12 shows the SNR and the activation detection rate for ROI of slice 3 from the mSPECS-IPA, 

mSPECS-IPA-CAIPIRINHA, and the mSPECS-IPA-CAIPIVAT method of the experimental fMRI 

data. As Figure 12 shows the mSPECS-IPA-CAIPIVAT has the highest average SNR value for ROI 

and the mSPECS-IPA-CAIPIRINHA has the lowest average SNR value for ROI. Moreover, 



comparing the activation detection rate between these three approaches, the mSPECS-IPA-

CAIPIVAT provides the highest average z-score of ROI and the mSPECS-IPA-CAIPIRINHA 

provides the lowest average z-score of ROI. Compared with the mSPECS-IPA and mSPECS-IPA-

CAIPIRINHA approaches, the mSPECS-IPA-CAIPIVAT has a more complete and detailed 

anatomical structure. Therefore, similar to the conclusion from simulation reconstruction results, 

the mSPECS-IPA-CAIPIVAT method has a higher accuracy capturing the task-related activation 

signal compared with the non-image shift techniques.  

 
Figure 12. The average SNR and the average activation detection rate of ROI for slice 3 from mSPECS-IPA, 

mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT model of the experimental fMRI data. 

 

5. Experimental FMRI Study 

In this study, we introduce a novel SMS technique called the mSPECS-IPA-CAIPIVAT model, 

which incorporates unique imaging shift methods. We also incorporate a novel two-dimensional 

Hadamard phase encoding technique to increase the size of the aliasing matrix. Bootstrapping and 

artificial aliasing of calibration images are also included in our model. We applied our model to the 

simulated fMRI data and the in vivo experimental fMRI data and compared the reconstructed results 

with previous models, mSPECS-IPA. We can conclude that compared with the previous model, our 

model can reduce the scan time by incorporating the subsampling method, but at the same time, still 

can generate high-quality and high-resolution reconstructed images. Also, our model can capture 

more activation information from the functional dataset. 
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