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Abstract

Background: Functional Magnetic Resonance Imaging (fMRI) enables re-
searchers to study brain functions and advance understanding in human
sciences. Spatial and temporal changes in brain metabolism as by detect-
ing the Blood Oxygen Level Dependent (BOLD) contrast signal are repre-
sented in the frequency domain of an image, known as k-space. Traditional
MRI methodologies require full k-space information, which follows a unique
data acquisition sequence to reconstruct the complete image. This process
presents a time-consuming obstacle for medical imaging techniques.

New method: Our study proposes a novel image reconstruction method to
enhance the efficiency of data acquisition while maintaining high accuracy in
activation detection. The through-plane and in-plane acceleration techniques
are combined to accelerate image acquisition along two dimensions. We in-
troduce a 2D acceleration technique to expedite image acquisition. Multiple
imaging shift strategies and a new 2D Hadamard aliasing pattern are incor-
porated to reduce dependence on aliased voxels and increase the diversity of
acquired information.

Results: By applying our approach to both simulated and experimental
fMRI data, we successfully reduced total scan time while achieving a higher
signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in regions of
interest (ROI).

Comparison with existing methods: Compared with traditional image
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reconstruction techniques, our method significantly improves the activation
detection rate.

Conclusion: We present a novel Simultaneous Multi-Slice (SMS) method
with 2D acceleration aimed at reducing image acquisition time and improving
the accuracy of task signal detection.
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1. Introduction

1.1. Complex-Valued Bayesian Model

The future can be predicted based on past data. As a dominant method-
ology in statistical studies, the Bayesian approach can be integrated into
other research areas by incorporating prior knowledge. Functional magnetic
resonance imaging (fMRI) studies can be interpreted following the Bayesian
methodology but with complex-valued observations. To set up a complex-
valued Bayesian linear model, the complex-valued observation can be written
as equation 1:

ac = XcfBe +ec. (1)

In equation 1, a¢ is a p x 1 complex-valued observed vector, X¢ is a p X ¢
complex-valued known design matrix, B¢ is a ¢ X 1 complex-valued unob-
served regression coefficient vector, and ¢ is a complex-valued measurement
error vector with same dimension as vector ac, where p is the number of
observations, and ¢ is the number of regression coefficients. Moreover, the
real and imaginary component of the measurement error ¢ follow normal
distribution with eg,e; ~ N(0,021,). In the application of this study, ac is
the complex-valued observed coil measurements vector, X is the complex-
valued observed coil sensitivity matrix, and (¢ is the unobserved voxel values
vector. Equation 1 can be reformulated through a real-valued isomorphism
to transform the complex-valued model into a real-valued model:
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In equation 2, the dimension of observation vector a = [ag;a;] is 2p X 1, the

dimension of design matrix X = [Xg, —X; X7, Xg] is 2p X 2¢, the dimension
of regression coefficient vector 8 = [Bg;5;] is 2¢ x 1, and the dimension



of measurement error vector ¢ = [eg;e/| is 2p x 1. Thus, the likelihood
distribution of the multivariate observation is:
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with independent and identical distributed (iid) observation, error for the
normal distribution a ~ N(Xf3,0%I3,). In the linear regression model, the
regression coefficients (voxel values) can be estimated through maximum like-
lihood estimation (MLE):

Bure = (X'X) ' X'a. (4)
And the estimated variance through MLE is:
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To enhance anatomical detail and improve the resolution of reconstructed
images, calibration images can be incorporated as prior information. The
Tikhonov regularization algorithm has been shown to effectively increase the
signal-to-noise ratio (SNR) (Lin et al. [11]). However, careful selection of the
regularization parameter \ is crucial for optimal performance. In this pa-
per, we propose a Bayesian complex-valued image reconstruction algorithm.
Compared to the Tikhonov regularization method, our Bayesian approach
allows for a scientifically selection of the number of calibration images and
enables derivation of the posterior distribution. This facilitates the construc-
tion of confidence intervals and hypothesis testing. As a result, inter-slice sig-
nal leakage can be eliminated, and correlations between reconstructed slices
can be reduced. Based on prior knowledge and experience, the regression
coefficient 3 (voxel values) is specified to have a normal prior distribution
P(B | %), and the measurement error o2 is specified to have an inverse
gamma prior distribution P(c? | -). Thus, the posterior distribution of re-
gression coefficient 3 and variance o2 is proportional to the joint distribution
of the likelihood and the prior distributions:

P(B,0% | ) < P(a| X, B,0*)P(B | 0®)P(0® | -). (6)

The joint posterior distribution of the regression coefficient 5 (voxel values)
and measurement error o can be integrated to obtain their marginal distri-
butions and hence their marginal posterior mean (MPM) and variance. More
details are provided in Section 2.



Single Coil

Figure 1: A. The three-dimensional view of brain image acquisition process with one single
coil. B. The zig-zag data collecting pattern of GRE-EPI pulse sequence.

1.2. FMRI Background

In the functional magnetic resonance imaging (fMRI) study field, the
topic of improving the efficiency of data acquisition in the image scanning
process has been gaining researchers’ interest since 1990. As a noninvasive
medical imaging technique, the blood-oxygen-level dependent (BOLD) con-
trast signal is detected as the proxy reflecting neuron activation changes
over time (Ogawa et al. [13]). In order to acquire the fully sampled spatial
frequency space, known as k-space, the gradient echo echo-planar imaging
(GRE-EPI) pulse sequence is applied to shorten the scan time and reduce
the respiratory artifacts within a single excitation (Mansfield [12]; Redzian et
al. [19]; Stehling et al. [23|). Figure 1 illustrates a three-dimensional view of
the brain image scanning process and the unique data acquisition sequential
pattern in the k-space of the GRE-EPI pulse sequence (Sakitis et al. [20]).
However, conducting an fMRI experiment requires acquiring multiple brain
images at multiple slices, forming what is known as a volume-image. As
a result, acquiring a fully sampled volume-image fMRI experiment takes a
relatively long time, typically several hours, to ensure a steady and reliable
task-related activation signal.

In 1986, Hyde introduced a parallel image acquisition technique that in-



corporated multiple coils, with each coil measuring partial sensitivity-weighted
spatial frequencies (Hyde et al. [6]). A full brain image can be reconstructed
by applying the Sensitivity Encoding (SENSE) approach to combine weighted
spatial frequencies from each coil into one single k-space array (Pruessmnn
et al. [14]). In order to reduce the total image scan time, the data acquisi-
tion can be accelerated along two dimensions: the in-plane dimension and
the through-plane dimension. The in-plane acceleration (IPA) method aims
at expediting the single slice readout process by skipping partial lines in
the k-space. As an alternative to SENSE, the unacquired spatial frequency
points can be estimated by the application of the generalized autocalibrat-
ing partially parallel acquisition (GRAPPA) approach (Griswold et al. [5]).
Prior information of missing data in the k-space can be obtained from the
calibration images. Figure 2A illustrates the brain image acquisition process
with four receiver coils and the subsampled spatial frequency domain for IPA
approach with acceleration factor IPA=2 (Sakitis et al. [20]). However, the
total scan time does not decrease proportionally to the IPA factor due to
fixed time blocks in the data acquisition process, such as proper time to form
T3 contrast and imaging encoding time in a single excitation. The through-
plane acceleration (TPA) approach, on the other hand, accelerates the image
acquisition process by acquiring multiple slices simultaneously in one excita-
tion. Techniques such as the simultaneous multi-slice (SMS) approach can
be incorporated with the TPA approach by applying a multiband (MB) ra-
diofrequency (RF') pulse within a reduced repetition time (TR) (Souza et al.
[22]; Rowe et al. [18]; Barth et al. [1]; Rowe et al. [16]). Compared to the
IPA approach, the TPA approach significantly improves the efficiency of data
acquisition, as the total scan time is reduced by a fraction corresponding to
the TPA acceleration factor.

To further reduce the total image scan time and achieve the ultimate
goal of our study, we introduce a novel SMS image reconstruction technique
called “a controlled aliasing in parallel imaging with view angle tilting ap-
proach and in-plane acceleration method for multi-coil separation of par-
allel encoded complex-valued slices” (mSPECS-IPA-CAIPIVAT), which will
be presented and discussed. This approach builds upon the mSPECS-IPA
method by integrating both TPA and IPA acceleration techniques into a uni-
fied 2D acceleration technique (Kociuba [8]). By leveraging 2D acceleration,
a higher acceleration factor can be achieved. In this novel image recon-
struction method, we incorporate an image shift technique into the model to
reduce the similarity of coil sensitivity information for aliased voxels, thereby



Figure 2: A. The subsampled spatial frequency domain incorporated with IPA approach
and the acceleration factor equal to 2. B. The subsampled acquired images from four
receriver coils.

improving image reconstruction accuracy.

2. Theory

2.1. The Data Acquiring Process

2.1.1. Image Shift Techniques

As discussed in Section 1.2, the SMS technique enables the concurrent
acquisition of multiple brain slice images, reducing the total volume scan
time depending on the selected TPA factor. Figure 3 illustrates both 3D
and 2D views of the image acquisition process with four slices and four coils.
Unlike single-slice acquisition, multi-slice acquisition results in a short phys-
ical distance between aliased images. When applying the SENSE algorithm
to reconstruct brain images and capture activity signals, an ill-conditioned
matrix problem arises due to the high similarity of coil sensitivity informa-
tion between closely spaced aliased voxels. Consequently, strong inter-slice
signals and anatomical structures from other slices may appear as artifacts
in the reconstructed images. To eliminate those wrong anatomical artifacts
from other slices on the reconstructed brain images, decreasing the similar-
ity of the coil sensitivity information is the primary strategy. Therefore,
we introduced the images shift techniques to manually increase the physical
distance between aliased images. To assess the performance of the image



reconstruction method at high acceleration factors, we define the noise am-
plification factor, also known as the geometry factor (g-factor), as described
in (Setsompop et al. [21]; Welvaert and Rosseel. [24]):

SNR

SNRaccelerate \/ﬁ ‘

In equation 7, SNRy,; is the signal-to-noise (SNR) ratio for the recon-
structed images from techniques without acceleration factors and image shift
techniques, and it can be assessed from the calibration images. SN Rycceerate
is the SNR value for the reconstructed images with acceleration factors, and
the TPA acceleration factor R indicates the omission of spatial frequency data
along the phase encoding direction. The closer the value of gsysg is to 1, the
better the reconstruction quality of the accelerated method. According to
equation 7, high similarity of coil sensitivity information induces the high
gsms value, which leads to a reduction of the SN Rycceierate for the recon-
structed images. Thus, to increase the SN R cceierate Value and improve the
performance of the novel acceleration technique, three image shift techniques
have been incorporated.

In fMRI studies, the brain image can be shifted along three directions: the
phase-encoding (PE) direction (vertically in this study), the readout (RO)
direction (horizontally in this study), and PE and RO direction concurrently
(vertically and horizontally at the same time in this study). To decrease
the influence of the geometric properties of the coil sensitivity maps, tech-
niques like “controlled aliasing in parallel imaging results in higher accelera-
tion” (CAIPIRINHA) and “blipped-CAIPIRINHA” (Blipped-CAIPI) provide
other possible ways to minimize the influence of the g-factor and maximize
the physical distance of the aliased voxels (Breuer et al. [2]; Setsompop et
al. [21]). The CAIPIRINHA approach can shift the images along the PE
direction by modulating the phase for each line in the k-space and imparting
each line with a specific phase. Applying a unique phase modulation amount
to each slice in the aliased image-acquiring process increases the physical
distance between the aliased voxels. Therefore, the independence of coil sen-
sitivity for each slice will increase, and the influence of the g-factor for each
excitation will be minimized. Moreover, to shift the brain image along the
RO direction, a technique like the view angle tilting (VAT) approach ap-
plies compensation gradients to the slice selection direction to correct the
chemical-shift artifacts in the image scanning process (Cho et al. [3]; Kim et
al. [10]). The distance shifted along the RO direction is related to the view

(7)
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Figure 3: A. The 3D view of SMS technique with four slices and four coils acquisition
process at one excitation. B. The 2D view for the same process with four slices and four
coils.

angle # in the data acquisition process. The CAIPIRINHA and the VAT
technique can be combined, and thus the study “multislice CAPIPRINHA
using view angle tilting technique” (CAIPIVAT) proposed (Jungmann et al.
[7]; Kim et al. [9]). Through this technique, the field-of-view (FOV) can
be shifted along the PE and RO direction by applying different amounts of
phase modulation to each line in the k-space and the compensation gradients
on the slice selection direction together for each excitation. The GRE-EPI
pulse sequence of the CAIPIRINHA, Blipped-CAIPI, and CAIPIVAT mod-
els could be investigated according to their respective references. Although
the Blipped-CAIPI method conjuncts the VAT and the Hadamard encod-
ing techniques, to further increase the diversity of the information in the
image acquisition process, we introduced the 2D Hadamard phase encod-
ing technique and discussed the combination with CAIPIRINHA, VAT and
CAIPIVAT technique. Figure 4 shows the k-space for CAIPIRINHA, VAT
and CAIPIVAT techniques along the reconstructed brain images after the
inverse Fourier transform.
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Figure 4: Top row: the image shift process corresponding to the CAIPIRINHA technique
(shifted vertically). Middle row: the image shift process corresponding to the VAT tech-
nique (shifted horizontally). Bottom row: the image shift process corresponding to the
CAIPIVAT technique (shifted vertically and horizontally).



2.1.2. 2D Hadamard Phase Encoding

The traditional Hadamard encoding technique is a well-developed volume-
image method and widely used in fMRI studies (Souza et al. [22]). The con-
ventional magnetic resonance (MR) imaging techniques have been limited
by the size of the matrix for the acquired aliased images. The traditional
Hadamard phase encoding method allows the increment of the size of the ac-
quired aliased image matrix by aliasing in both frequency and phase encoding
dimensions. With the support of this simultaneous binary-encoded tech-
nique, the TR will decrease, and the SNR ratio will improve. The Hadamard
matrix is given by:

H2n71 H2'7L71

HZ"’ - |:H2n1 _H2n*1

:| :H2®H2n—1,where le [1},H2: |:1 1:|,

1 -1

(8)
where ® denotes the Kronecker product. It is an orthogonal and full rank
matrix with elements of either +1 or -1. The Hadamard phase encoding tech-
nique can be applied not only to through-plane imaging scenario but also to
within-plane imaging scheme. The entire FOV can be divided into various
regions of interest by applying Walsh functions during the pre-encoding sec-
tion to define the frequency profile that the Hadamard pulses must follow
(Fletcher et al. [4]).

In this study, since the TPA approach and the IPA approach are combined
to further decrease the total image scan time, and the image shift techniques
are incorporated to decrease the influences of the geometry properties, we
introduce a novel 2D Hadamard phase encoding technique to our approach.
The novel 2D Hadamard phase encoding technique is developed and based
upon the Hadamard phase encoding technique with elements of either +1
or -1. However, different from the traditional Hadamard phase encoding
technique, in order to guarantee the orthogonality property for each aliased
image, different 2D Hadamard coefficients will be assigned to different seg-
ments for different slices. Figure 5 shows the 2D Hadamard phase encoding
aliasing coefficient for N, = 2 and N, = 4 situations, where N, is the number
of aliased slices for each excitation. First, for each excitation or each TR,
the through-plane Hadamard coefficient will be assigned to different slices.
Second, for each segment of each slice, the in-plane Hadamard coefficient will
be assigned to a different excitation. To maintain the orthogonality prop-
erty for each segment of each slice, the in-plane Hadamard coefficient starts
from the second column of the Hadamard coefficient for the first excitation.

10
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Figure 5: A. The 2D Hadamard phase encoding coefficient for Ny, = 2. B. The 2D
Hadamard phase encoding coefficient for N, = 4.

At the last TR of the cycle, the in-plane Hadamard coefficient is the first
column of the Hadamard matrix. Finally, the 2D Hadamard coefficient will
be the product of the through-plane and in-plane Hadamard coefficient for
each segment of each slice and each excitation. The size of the in-plane and
through-plane Hadamard coefficient matrix is equal to the number of aliased
slices, N, for each excitation.

2.1.3. The Combination of Image Shift Techniques and 2D Hadamard Phase
Encoding

To accomplish the goal of decreasing the coil sensitivity information sim-
ilarity of aliased voxels, and thus decreasing the influence of the g-factor,
we combined the image shift techniques and the 2D Hadamard phase en-
coding technique together. Figure 6 shows the image shift situation cor-
responding to different SMS techniques for the first 4 TRs along with the
2D Hadamard coefficients for each segment of the slices under the circum-
stance with Ny = 4. Compared with the mSPECS-IPA method (Figure 6A),
the other three methods are incorporating with different image shift direc-
tions and amount for each slices and each excitation. Figure 6B shows the
image shift situation along with the 2D Hadamard coefficients incorporat-
ing with the mSPECS-IPA-CAIPIRINHA method. For each slice within
each TR, a Ay = (I — 1)FOV/Ny of in-plane image shift on the verti-
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Figure 6: The voxel aliasing situation for the first 4 TRs with Ny = 4 circumstance in-
corporating with A. mSPECS-IPA image shift technique, B. mSPECS-IPA-CAIPIRINHA
technique, C. mSPECS-IPA-VAT technique, and D. mSPECS-IPA-CAIPIVAT technique.

cal direction will be implied, where [ = 1,..., N,. For each excitation, a
Ay = (m — 1)FOV/Nj; of in-plane image shift on the vertical direction will
be implied, where m = 1, ..., Ny. Thus, with the in-plane and the through-
excitation CAIPIRINHA image shift, the voxel aliasing situation at TRy, +1
will be identically same as aliasing situation at TR;. Figure 6C shows the
image shift situation along with the two-dimensional Hadamard coefficients
incorporating with the mSPECS-TPA-VAT method. Unlike the mSPECS-
IPA-CAIPIRINHA method, the mSPECS-IPA-VAT method only shift the
image along the horizontal direction. Thus, for each excitation and each slice,
no image shift happens along the vertical direction, but a modest amount of
image shift will be applied for each slice and each excitation along the hor-
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izontal direction. Furthermore, similar to the mSPECS-IPA-CAIPIRINHA
method, the voxel aliasing situation at time point T'Ry, + 1 will be same
as the voxel aliasing situation at time point T'R;. Figure 6D shows voxel
aliasing situation incorporated with the mSPECS-IPA-CAIPIVAT method.
Since the mSPECS-IPA-CAIPIVAT method is combining the principle idea
of mSPECS-TPA-CAIPIRINHA and mSPECS-IPA-VAT method together,
the image shift will happen along the vertical and the horizontal direction.
For each slice within each excitation, a Ay = (I — 1)FOV/N, amount of
the image shift along the vertical direction, where [ = 1,..., N,, and the
amount of the image shift technique corresponding to the VAT technique
along the horizontal direction will be implied. Moreover, for each excitation,
a Ay = (m — 1)FOV/Ny of through-excitation image shift will be implied
along the vertical direction, where m = 1,..., N,. Same as the other three
methods, at time point 'Ry, +1, the voxel aliasing situation will be identical
as time point T'R;. In real-world volume image acquisition, the 2D Hadamard
phase-encoding technique should be applied before the image shift techniques
(Fletcher et al. [4]). A careful design of the Hadamard pre-encoding process
is necessary to ensure the orthogonality of the 2D Hadamard aliasing coef-
ficients. Comparing these four image shift techniques, the overlapping area
between summed slices are decreasing from the mSPECS-TPA method to the
mSPECS-IPA-CAIPIVAT method. However, since the novel proposed SMS
technique is aiming at combining TPA and IPA technique together, thus,
making the voxel aliasing situation clear after the IPA technique is another
vital process to discuss in this paper.

Figure 7 displays the voxel aliasing situation after the IPA aliasing tech-
nique for mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT,
and mSPECS-IPA-CAIPIVAT technique under the circumstance with Ny =
4. In Figure 7, those dots in the same color indicating voxels are aliased
together. From the top model to the bottom model, the physical distance
between aliased voxels increases, leading to reduced coil information similar-
ity and, consequently, a lower g-factor. Moverover, comparing the mSPECS-
IPA and the mSPECS-IPA-CAIPIRINHA method, after the IPA acceleration
technique, the mSPECS-IPA-CAIPIRINHA has the more complex aliasing
artifacts and the overlapping area is larger than the mSPECS-IPA method
especially at the center part of the acquired images. Comparing the bottom
two methods, mSPECS-IPA-VAT and the mSPECS-IPA-CAIPIVAT tech-
nique, the similar conclusion can be made. In this work, the combination
of image shift techniques and 2D Hadamard phase encoding was not im-
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mSPECS-IPA

Figure 7: The voxel aliasing situation with Ny = 4 for mSPECS-IPA, mSPECS-IPA-
CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT technique.

plemented experimentally, as this is a methodological study. Instead, we
utilized fully sampled k-space data, and the slices were artificially Hadamard
encoded and aliased.

2.2. A Single Aliased Voxel

Given an excitation ¢ in the fMRI time series, we define IS5, notation in-
dicating the image shift pattern for the zth slice and the éth TR, correspond-
ing to one of the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-TPA-
VAT and the mSPECS-IPA-CAIPIVAT technique, and it follows the defini-
tion in Section 2.1.1. Thus, for a single aliased voxel at the location (x,y)
of the acquired aliased images with TPA and IPA acceleration techniques,
corresponding to the 2D Hadamard coefficients at time point ¢, measured at

14



jth coil, is defined as the summation equation:

IPA N

aj5 =Y > HisoxSis, 1Brss k +jo. 9)

k=1 z2=1

In equation 9, the acquired aliased voxel value a;; is a complex-valued data
with real and imaginary component, ac = ar + ta;, and parameter k is
the IPA indicator. The 2D Hadamard coefficient, Hs ., is a real-valued
orthogonal matrix corresponding to the dth excitation, zth slice and the
kth TPA process, and it strictly follows the definition of the 2D Hadamard
phase encoding in Section 2.1.2. All of the element of the Hj, ; coefficient
matrix is either +1 or -1. The coil sensitivity information matrix, Srs; . k,
is a complex-valued data point with real and imaginary component, S¢ =
Sr+1S7, corresponding to the kth IPA process and the image shift process at
oth excitation and zth slice. The true voxel value, fBrs; _ x, is a complex-valued
data point with real and imaginary component, 8o = Br+10;, corresponding
to the kth IPA process and the image shift process at dth excitation and
zth slice. The measurement error, ¢;5, is also a complex-valued data point
with real and imaginary component, e = € + i€y, corresponding to the
0th time point and jth coil. Moreover, the real and imaginary component
of measurement error is specified to be a normal distribution with mean
E(er,er) = 0 and variance var(eg,er) = 0.

Considering the acquired aliased voxel in equation 9 across total N, coils,
N, time points and the N; slices in the whole fMRI time series, the real-
valued isomorphic representation of equation 9 can be expressed similar to
equation 1:

a=Xap+e¢. (10)
In equation 10, a = [ag; a;] is a real-valued vector with dimension 2N N, x
1. The real-valued aliasing matrix X4 = [(Xa)r, —(Xa)r; (Xa)r, (Xa)r] is
known prior information including the 2D Hadamard coefficients and the coil
sensitivity information across the N, coils, N, time points and the N slices.
Thus, the dimension of the aliasing matrix X 4 is 2N.N, x 2N,. For the dth
excitation, the known aliasing matrix (X ,4)s across N, coils and Ny slices is
defined as:

Si1 S1N,
. ...,H&NC . (11)

SN,.1 SN.,N,

(Xa)s = |Hsa

)
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Across the N, excitations, the equation 11 can be expressed as:

X = (X)) ()] (12)

The true voxel value in equation 10, 8 = [Bg; 5], is a vector we want to
estimate, with dimension 2N, x 1. The measurement error in equation 10,
e = [eg; /] has the same dimension as the a vector. The real and imaginary
component of the measurement error is specified to be normal distributed
with mean E(g) = 0 and covariance cov(e) = 0?Ion, N, , where Iy, y, is the
identity matrix.

Thus, in order to separate the aliased images and estimate the true voxel
value for each slice, the maximum likelihood estimation in equation 4 can be
applied and the estimated voxel value, Burre, can be calculated by:

~ ’ -1 ’
Brine = (XAXA> X'ya. (13)
Moreover, the covariance of the voxel value B , can be estimated by:

COU(BMLE) =o? <X/AXA) o ) (14)

According to the methodology of the combination of image shift tech-
niques and the 2D Hadamard phase encoding technique, the novel proposed
SMS method accelerates the image acquiring process along the TPA and the
IPA dimension. However, the relative short scan time leads to the less data
information collected during the image acquiring process compared with the
traditional imaging technique without acceleration techniques. Furthermore,
it also leads to the ill-condition of the designed aliasing matrix which will
cause failure to calculate the inverse of X, X 4. Thus, coming up with a tech-
nique that is capable to fix the ill-condition designed matrix problem and
hence calculate the inverse problem is the next priority. In this study, we
introduced the bootstrap sampling technique along with the artificial aliasing
of the calibration images technique to solve this problem. By applying these
two techniques into the novel image shift SMS technique, the designed alias-
ing matrix is made to be full rank and invertible and the inter-slice signal
leakage can be eliminated.

2.3. The Bootstrap Sampling and Artificial Aliasing of Calibration Images
Based on the discussion in the previous sections, to make the designed

aliasing matrix to be full rank and invertible, slices information from the cal-

ibration images can be utilized as the reference information. The bootstrap
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Figure 8: The the 2D Hadamard aliasing coefficients for acquired aliased slices (red box)
and the artificial aliased calibration slices (blue box) for the first 4 TRs with N, = 4.

sampling technique is a widely used tool which can decrease the correlation
induced by the image separation process and eliminate the inter-slice signal
leakage. In the image separation process, for each excitation, the bootstrap
sampling technique will be applied to the calibration images. The bootstrap-
ping size for each excitation is related to the TPA factor, which is equal to

17



the number of aliased slices for each excitation and the IPA factor. Thus,
for each excitation in the fMRI time series, N,R bootstrapped sampled slices
will be randomly chosen from the fully sampled calibration image time series.
The randomly chosen slices will be averaged and the mean calibration images
will be utilized for the artificial aliasing process.

For each excitation, the same image shift pattern will be applied to both
acquired aliased images and the artificial aliased calibration images. But
different 2D Hadamard aliasing coefficient matrix will be applied to acquired
aliased images and the artificial aliased calibration images. Figure 8 shows
the 2D Hadamard aliasing coefficient for acquired aliased slices (red box)
and the artificial aliased calibration slices (blue box) for the first 4 TRs with
N, = 4. For each segment of each slice, the white part means the Hadamard
coefficient is +1, and the black part means the Hadamard coefficient is -1.
Moreover, the 2D Hadamard aliasing coefficient for acquired aliased slices
and artificial aliased calibration slices at time point 7T'Ry, 41 will be identical
as T'R;. Based on the 2D Hadamard aliasing coefficients for acquired aliased
slices and the artificial aliased calibration slices, for each excitation, Ny, — 1
combinations of 2D Hadamard aliasing coefficient remain for the artificial
aliasing process.

Similar to equation 10, for a single excitation, a single voxel, v, from the
artificial aliasing calibration aliased slices located at (z,y) across Ny slices,
measured through N, coils can be expressed as:

V:CEZCA,LL—FCT]. (15)

In equation 15, the artificial aliased voxel value, v = [vg; v7], is a vector with
real and imaginary component and dimension 2N;N.(Ng—1) x 1. The mean
bootstrap sampled voxel, v = [vg; vy], is a vector with dimension 2N, x 1.
The true calibration voxel value, u = [ug; ], and the measurement er-
ror, 7 = [ng;n;], have the same dimension with the mean bootstrap sampled
voxel vector. Moreover, the mean of the measurement error is £(Cn) = 0 and
covariance is cov(Cn) = 72 Ion, N, (N,—1) Where Ion, n,(n,—1) i the identity ma-
trix. If the bootstrap sampling technique does not incorporate, i.e. the same
calibration images are keep using into the model, then the covariance of the
measurement error is 72 = 0, thus the correlation between the reconstructed
slices is induced by the image separation process. However, under the assis-
tance of the bootstrap sampling technique, 72 = 02, and the covariance of
the measurement error of the calibration image is cov(Cn) = 02N, Ne(Ns—1)-
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The artificial aliasing matrix, C'4 in equation 15, is a known prior in-
formation including the 2D Hadamard coefficients for the artificial aliasing
slices and the coil sensitivity information across N, coils, N, time points
and N slices. Thus, the dimension of the artificial aliasing matrix, C4, is
2NgN.(Ng — 1) x 2N,. For the dth excitation, the known artificial aliasing
matrix (Cy)s across N, coils and Nj slices is defined as:

S S1,N,
(Ca)s = |Hsa : oo Hs o, : : (16)
SN.1 SN..N,

The notation H indicates the remaining 2D Hadamard aliasing coefficient for
each excitation after removing the 2D Hadamard aliasing coefficient for the
acquired aliased images. Across the N, excitations, the equation 16 can be
expressed as:

Ch=(Ca)ys-- s (Ca)y. | - (17)

2.4. The Likelihood, Prior, and Joint Distribution

As discussed in Section 1.1, the acquired aliased voxel values across the
whole brain image are independent and identically distributed and the mea-
surement error for each acquired aliased voxel is specified to be Gaussian
distributed. Thus, the likelihood distribution (equation 3) of the acquired
aliased voxel is:

P(a| Xa,B,0%) x ()" 72 " exp [—T;(a — XapB) (a— XAﬁ)} . (18)

Following the methodology of the Bayesian approach, the voxel value from
calibration images can be utilized as prior information. Moreover, in Sec-
tion 1.1 the voxel value, 3, is specified to have a normal prior distribution.
Therefore, the prior distribution of the voxel value 8 ~ N(u, 0*(C,C4)~1):

_2NsNy

P3| Caono?) x (028 exp | 5155 = W) (ChC)6 - )] (19

Moreover, in Section 1.1, the variance of the measurement error, o2 is speci-
fied to have an inverse gamma prior distribution:
2 2y—(A+1) 0
P(o° | A\, §) o (07) exp |=— 1 (20)
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where hyperparameters p, A and ¢ are assessed from the calibration images.
The posterior distribution of the voxel value, 3, and the variance of the
measurement error, o2, follows the joint distribution as equation 6:

P(B,0% | ) o P(a | Xa, 3,02 )P(B | Ca, i 0®)P(c® | \,8).  (21)

2.5. Hyperparameters Assessment

Before the image acquisition process of the novel proposed SMS model,
a time series of calibration images will be collected first. The calibration
image time series will be acquired through the traditional fMRI technique,
and unlike the novel SMS model incorporating with different image shift
techniques and 2D Hadamard aliasing coefficient. The calibration image time
series is acquired without any image shift techniques or aliasing coefficient,
no task experiment will be executed during this time series. As discussed in
Section 2.4, the calibration images can be utilized as prior information, hence
the unknown hyperparameters can be assessed from calibration time series.
In equation 21, the acquired aliasing matrix X, and the artificial aliasing
matrix C'y are known prior information that we do not need to assess from the
calibration image time series. The hyperparameters p, A, and d, on the other
hand, need to be assessed from the calibration image time series. As discussed
in Section 2.3, the hyperparameter p is the averaged voxel value after the
bootstrap resampling process. For each excitation in the time series, N, brain
images will be randomly chosen from the fully sampled calibration images and
averaged to assess the hyperparameter averaged voxel value yn = v. The shape
parameter A and the scale parameter ¢ from inverse gamma distribution in
equation 20, also need to be assessed from the calibration image time series.
After the bootstrap resampling process, the sample noise variance o3 can be
estimated from the calibration image time series. Thus, the shape parameter
can be assessed by A = ng, and the scale parameter can be assessed by
§ = (ng — 1)o2, where ng is the number of calibration images and o3 is
sample noise variance.

2.6. The Posterior Estimation

According to the discussion in Section 1.1, Section 2.4, and Section 2.5,
the joint distribution (equation 21) of the likelihood distribution of acquired
aliased (equation 18), the prior distribution of the voxel value  (equation 19),
and the prior distribution of the noise variance o2 (equation 20) can be
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calculated after algebra:
P(ﬁaoj | )

X (02)_% exXp —2%‘2((5 - BMPM)/(X;;XA + CACA)(B - BMPM) + w)} )

(22)

where p = 2N.N, + 2N,N, — 2\ — 2, and w = aa+ M/CAC’ANJ - (X;‘a +

C,Oap) (X, X 4+ C4Ca) (X ya + CyCap) +26. Moreover, as discussed in

Section 1.1, the posterior distribution of the voxel value, 5, and the noise

variance, o2 can be integrated through the MPM technique. Therefore, the

marginal posterior distribution of estimate voxel value [ after integration is

a student-t distribution § ~ t(v*):

(X, X4+ CLCY) N
1 A ' AT A 5
f(ﬁ|‘)0<{1+;(5—ﬁMPM) 4 = 4 ](5—5MPM)} )

(23)

with v* = p — 1 and 72 = w/v*. The marginal posterior mean (MPM) for j3

after integration is:

E(B|-) = Bupm = (X3 Xa + CyCa) " (Xya+ CiCap). (24)

In equation 24, the matrix C';‘C’ 4 acts as a regularizer for the matrix inverse
to improve the condition of the equation. Since the true voxel value from
calibration images is close to the true voxel value from acquired aliased im-
ages, equation 24 leads to F(S | -) = 5. The marginal posterior covariance
of the voxel value B is:

V*

cov(B | ) = —— 7 (XaXa+ C1Ca) (25)

v* —
the separated voxel values are uncorrelated, meaning that there will not be
signal leakage between slices.

Moreover, the marginal posterior distribution of o2 after integration is an
inverse gamma distribution, 6% ~ IG(vy,w/2):

f(o® ) o< (0%) 75 exp [~w/(20%)] (26)
with v = (p — 1)/2. The MPM of the noise variance o2 is:
2
Blo* )= "2 E0
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Figure 9: A. The magnitude and phase for the true noiseless simulated axial brain images
with Vg = 8. B. The magnitude of the simulated sensitivity coils for slice 3 with N. = 8.

and the marginal posterior variance of the noise variance is:

w/2

CENECED) (28)

var(o? | ) =

3. FMRI Data

3.1. Simulated FMRI Data

The proposed novel image shifted SMS technique was first applied to sim-
ulated fMRI data. The reconstructed brain images were compared through
the mSPECS-IPA model (non image shift technique), the mSPECS-IPA-
CAIPIRINHA model (image vertically shift), the mSPECS-IPA-VAT model
(image horizontally shift) and the mSPECS-IPA-VAT model (image verti-
cally and horizontally shift). Our goal is to improve the efficiency of the im-
age acquisition process while simultaneously determining which image shift
direction provides the best reconstruction results.

The simulated fMRI time series is mimicking the real-world right hand
finger tapping experiment with the total number of TR (repetition time)
= 510. According to the methodology of the image shifted SMS technique,
two separate fMRI time series need to be simulated: the acquired fMRI
time series and the calibration fMRI time series. The acquired fMRI time
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series was simulated using the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,
mSPECS-TPA-VAT, and mSPECS-IPA-CAIPIVAT models, as different im-
age shift directions were applied. The calibration fMRI time series, however,
was simulated without any image shift technique or acceleration techniques.
The calibration images were reconstructed by applying SENSE model. Since
the simulated fMRI time series mimics an in vivo experiment, the first 20
repetition times are omitted to achieve a steady magnetic field, leaving a
total number of TR = 490. In the simulated fMRI time series, total Ny = 8
axial brain images were included in the acquired simulated fMRI time series
and the calibration simulated fMRI time series. In the calibration simulated
time series, no simulated task block were added to the brain images. On the
other hand, the simulated task blocks were added to the left motor cortex
of the top 4 brain images. The simulated task blocks were added according
to the real-world right hand finger tapping experiment with 15 TRs off and
15 TRs on for 16 epochs, and the first 20 TRs and last 10 TRs off. The
contrast-to-noise ratio and the signal-to-noise ratio we choose also mimick
the real-world fMRI experiment and SNR = 50 and CNR = 0.5. Thus, the
mean magnitude added to each simulated slice is 4 and the mean magnitude
added to the simulated task blocks is 0.04. Moreover, a Gaussian distributed
noise N(0,0.0064) was added to each slice of the simulated acquired fMRI
time series and the simulated calibration fMRI time series. In order to in-
crease the difference between each simulated slices, different phase angles
from 5° to 40° with 5° intervals were added to each slice. Different phase
angles were also added to different brain tissue with 7.5° for white matter
(WM), 15° for gray matter (GM), and 22.5° for cerebral spinal fluid (CSF).

In order to investigate the performance of different model with different
acceleration factor, the IPA factor we used in the simulated acquired fMRI
dataset is R = 2, and different TPA factors were incorporated in the exper-
iment with TPA =2, TPA = 4, and TPA = 8. Thus, the net acceleration
factor is the product of the IPA factor and the TPA factor with NET = 4,
NET =8, and NET = 16. For TPA = 2 situation, the slices aliasing situ-
ation is: packet 1: slice 1 and slice 5, packet 2: slice 2 and slice 6, packet 3:
slice 3 and slice 7, packet 4: slice 4 and slice 8. For T PA = 4 situation, the
slices aliasing situation is: packet 1: even slices, packet 2: odd slices. For
TPA = 8 situation, all slices are aliased in one packet.

Figure 9A shows the true noiseless magnitude and phase for each slice of
simulated axial brain images with N, = 8. A total number of N, = 8 channel
sensitivity coils were simulated and applied according to the real right hand
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finger tapping experiment. Figure 9B shows the magnitude and position for
each coil corresponding to slice 3. The mean magnitude for each simulated
coil is 0.95, and to increase the difference between each coil, different phase
angles were added to the simulated coils from 0° to 17.5° with 2.5° intervals.

3.2. FExperimental FMRI Data

A real-world right-handed finger tapping fMRI experiment for a single
object was executed through a 3.0 T General Electric Signa LX MRI scanner.
The flip angel was 90° and the acquisition bandwidth is 125 kHz in this
experiment. The slice thickness for the axial brain images was 2.5 mm. A
total of nine slices were scanned. In this experiment, an 8 channel receiver
head coil was utilized with dimension 96 x 96 for a 24 cm full field-of-view,
with the phase encoding direction from posterior to anterior. In the real-
world right-handed finger tapping fMRI experiment, two fMRI time series
were acquired: the non-task calibration time series and the task time series.
The right-handed finger tapping experiment was designed with an initial 20
TRs off rest, followed by 15 TRs off and 15 TRs on for 16 epochs, and the
final 10 TRs of rest, resulting in a total 510 TRs for the task time series.
The same echo time (TF) information was applied to both fMRI time series,
consisting of three segments. The TFE for the first 10 TRs and the last 490
TRs was 42.7 ms. From the 11th to the 20th time point, the TFE values
were 42.7 ms, 45.2 ms, 47.7 ms, 50.2 ms, and 52.7 ms, and this sequence was
repeated twice. The first 20 TRs of the task time series were disregarded to
achieve a steady magnetic field of the scanner, resulting in last 490 TRs of
the task time series were applied to the novel proposed model.

In the real-world right-handed finger-tapping fMRI experiment, aliased
task images were not acquired experimentally, as this is a methodological
study. Since the dimension of the 2D Hadamard aliasing coefficient must be
a power of two, only eight slices were used in the proposed image-shifted SMS
techniques, with the most interior axial brain slice disregarded. Instead, the
task images were artificially aliased from the fully acquired task time series,
following a procedure similar to that used for generating simulated aliased
task images. The artificially aliased task images for each model were pri-
marily generated using different image shift techniques and 2D Hadamard
encoding coefficients. The artificially aliased subsampled k-space data were
obtained by skipping every other line in the fully sampled k-space of the
summed images after applying the Fourier transform. The aliased task im-
ages were then reconstructed from the subsampled k-space using the inverse
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Figure 10: The magnitude and phase of the reconstructed images odd slices from mSPECS-
IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT,
compared with the magnitude and phase from true noiseless simulated images odd slices
with TPA=2.

Fourier transform.

The last N, = 40 fully sampled non-task calibration images were used to
assess the hyperparameter. The same acceleration factors from the simulated
fMRI time series were applied in the real-world right-handed finger tapping
experiment with R = 2, and TPA = 2,4, 8. The same net acceleration factors
were achieved in the real-world experimental time series. The mSPECS-
IPA model, mSPECS-IPA-CAIPIRINHA model, mSPECS-IPA-VAT model
and the mSPECS-IPA-CAIPIVAT model were applied to the right-handed
finger tapping experiment fMRI time series. The SENSE method was also
applied to the calibration fMRI time series, and the reconstructed images
were utilized as the reference images. The reconstructed results from the
novel image shift SMS technique were compared with the reference images.
All of the reconstruction and the analysis process were finished through the
MATLAB programming software.
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Figure 11: The variance of the baseline regression coefficient of slice 3 from recon-
structed images from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-TPA-VAT,
and mSPECS-IPA-CAIPIVAT model with different through-plane acceleration factors.

4. The Simulation Results

4.1. Non-Task Sitmulated Reconstruction Results

Based on the methodology of the novel proposed image shift SMS tech-
niques, we conducted the simulated experiment with the same in-plane ac-
celeration factor, IPA = 2, and different through-plane acceleration fac-
tors with TPA = 2, TPA = 4, and TPA = 8. The reconstructed re-
sults were compared between mSPECS-IPA model (without image shift tech-
nique), mSPECS-IPA-CAIPIRINHA model (image shift along vertical direc-
tion), mSPECS-IPA-VAT model (image shift along horizontal direction), and
mSPECS-IPA-CAIPIVAT (image shift along vertical and horizontal direc-
tion). The reconstructed results were also compared with the true noiseless
simulated images. Figure 10 shows the mean magnitude and mean phase from
odd slices of the reconstructed images from mSPECS-IPA, mSPECS-TPA-
CATPIRINHA, mSPECS-TPA-VAT, and mSPECS-IPA-CAIPIVAT, compared

with the magnitude and phase from true noiseless simulated images, and
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Figure 12: The temporal mean of residual variance of brain images reconstructed
from mSPECS-TPA; mSPECS-TPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-
CAIPIVAT model with IPA = 2 and TPA = 2.

the through-plane acceleration factor is 2. Figure 10 is generated based on
equation 24. Compared to the true magnitude, the mean magnitude from
these four models is closely aligned with the true value. No inter-slice signal
leakage or artifact distortions appear in the mean magnitude images. The
mean phase of the reconstructed images from these four models is also con-
sistent with the phase value of the true noiseless simulated image inside the
brain. However, residuals are present outside the brain in the mSPECS-
IPA, mSPECS-TPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-TPA-
CAIPIVAT models due to differences in the image shift techniques and slice
overlapping conditions in each model. Figure 11 was generated according
to equation 25. The top-right corner displays the overlapping indicator for
each novel SMS image reconstruction model, incorporating different TPA
factors. It represents the slice overlapping and voxel aliasing situation for
each approach and acceleration factor. When the acceleration factor is low,
IPA = 2 and TPA = 2, all four models have a low variance at the center
of the brain image. However, due to a high overlapping indicator value at
the anterior and posterior regions, high variance is detected at these region.
As the acceleration factor increases, models that do not incorporating with
vertical image shift technique, mSPECS-IPA and mSPECS-IPA-VAT model,
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Figure 13: The temporal mean of residual variance of brain images reconstructed
from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-
CAIPIVAT model with IPA = 2 and TPA = 4 and 8.

show a decrease in task regression coefficient variance. On the other hand,
models that incorporate with the vertical image shift technique, mSPECS-
IPA-CAIPIRINHA and mSPECS-TPA-CAIPIVAT model, exhibit an increase
in task regression coefficient variance in the anterior region of the brain im-
age. Among these four models, the mSPECS-IPA-CAIPIRINHA has the
highest task regression coefficient variance when IPA = 2 and TPA = 8. The
temporal variance of the task signal is shown in the Appendix A Figure A.21.

Figure 12 displays temporal mean of residual variance of brain images
reconstructed from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-
IPA-VAT and mSPECS-IPA-CAIPIVAT model with IPA = 2 and TPA = 2.
Figure 13 shows temporal mean of residual variance for brain images recon-
structed from same models but with acceleration factors IPA = 2 and TPA
= 4 and 8. Figure 12 and Figure 13 are generated based on equation 27. For
each acceleration factor, among the four models, mSPECS-IPA has the high-
est temporal mean of residual variance, whereas the models incorporating
the horizontal image shift technique, mSPECS-IPA-VAT and mSPECS-TPA-
CAIPIVAT, exhibit the lowest temporal mean of residual variance. As the
acceleration factor increases, the temporal mean of residual variance slightly
decreases across all four models. We also investigated the temporal vari-
ance of the residual variance of brain images reconstructed from mSPECS-
IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-TIPA-VAT and mSPECS-TPA-
CAIPIVAT model with TPA = 2 and TPA = 2, 4, and 8, which is shown in
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Appendix A Figure A.22 and Figure A.23.

We also investigated the signal-to-noise ratio (SNR) and the geomet-
ric factor g-factor values across mSPECS-IPA, mSPECS-IPA-CATPIRINHA,
mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models. The SNR can be
calculated as SNR = [y/on, where [ represents the baseline signal for each
location of the brain image, and oy represents the standard deviation of the
noise. The higher the SNR value is, the better performance of the model.
According to the definition of g-factor (equation 1) in Section 2.1.1, the
through-plane acceleration factor also need to be incorporated into it. Thus,
the g-factor can be calculated as gaceeterate = vV NaSN Rpuii /SN RocecierateV R,
where R = 2 indicating the in-plane acceleration factor. The closer g-factor
is to 1, the better reconstructed results the model will produce. Figure 14A
shows the SNR value of slice 3 for four models with different through-plane
acceleration factors. The top right corner is the slice overlapping situation
corresponding to average of the first N, time point for each model. As the
TPA factor increases, the SNR value for the mSPECS-IPA and mSPECS-
IPA-VAT models also increases. Moreover, in the mSPECS-IPA-VAT model,
both the posterior and anterior regions of the brain exhibit higher SNR values
compared to the mSPECS-IPA model. In contrast, for the mSPECS-IPA-
CAIPIRINHA and mSPECS-IPA-CAIPIVAT models, the SNR value does
not increase evenly across the entire brain image as the TPA factor increases.
In the mSPECS-IPA-CAIPIRINHA model, at higher TPA factors, the SNR
in the middle brain region is lower than at lower TPA factors. A similar
pattern is observed in the left side of the brain image in the mSPECS-TPA-
CAIPIVAT model. Figure 14B shows the g-factor of slice 3 across different
models with varying through-plane acceleration factors. As the TPA factor
increases, the g-factor in the mSPECS-IPA-CAIPIRINHA and mSPECS-
[PA-CAIPIVAT models increases dramatically, whereas in the mSPECS-IPA
and mSPECS-IPA-VAT models, it increases only slightly. Comparing the g¢-
factor values between the mSPECS-IPA and mSPECS-TPA-VAT models, the
g-factor in the mSPECS-TPA-VAT model is closer to 1 in both the posterior
and anterior regions of the brain.

4.2. Task Simulated Reconstruction Results

In order to investigate the task activation detection performance of each
model, we applied the novel image shift SMS techniques to the simulated
right-handed finger tapping experiment with the same in-plane accelera-
tion factor, [IPA=2, and different through-plane acceleration factors TPA=2,
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Figure 14: A. The SNR value of slice 3 from reconstructed images for mSPECS-IPA,
mSPECS-IPA-CATPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT model
with different TPA factor. B. The g-factor value of slice 3 from reconstucted images
for mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-
CAIPIVAT model with different TPA factor.

TPA=4, and TPA=8. For each voxel in the brain image, the signal can be
expressed as y = [y+ [1x+¢€, where 3y is the baseline signal of the voxel, 3 is
the task signal, x is a vector with elements 0 and 1 indicating each time point
with or without task activation. Therefore, the contrast-to-noise ratio (CNR)
can be calculated as CNR = 1 /oy, and same as the definition in SNR, oy
stands for the standard deviation of the noise. The activation detection rate
for each model was also investigated by applying a complex-valued model
to compute fMRI activation (Rowe and Logan [17]). Figure 15A shows the
average and standard deviation of the CNR values in the region of interest
(ROI) for odd slices from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,
mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models with an accelera-
tion factor of TPA = 2. The C'NR value of the ROI for slice 1 in the mSPECS-
IPA-VAT and mSPECS-IPA-CAIPIVAT models is slightly higher than in
the mSPECS-IPA and mSPECS-IPA-CAIPIRINHA models. Meanwhile, the
CNR value of the ROI for slice 3 is similar across all four models. Fig-
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Figure 15: A. The average CNR value of ROI for odd slices with acceleration factor TPA=2
from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-
IPA-CAIPIVAT model. B. The average task activation rate (z-score) of ROI for odd
slices with acceleration factor TPA=2 from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,
mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT model.

ure 15B shows the average task activation detection rate in the ROI for odd
slices from the mSPECS-TPA; mSPECS-IPA-CAIPIRINHA, mSPECS-TPA-
VAT, and mSPECS-IPA-CAIPIVAT models with TPA = 2. Compared to
the models with a horizontal image shift, mSPECS-IPA-VAT and mSPECS-
IPA-CAIPIVAT, the models without horizontal image shift, mSPECS-IPA
and mSPECS-IPA-CAIPIRINHA, exhibit a lower average z-score in the ROL.
This indicates that the activation detection ability of mSPECS-IPA and
mSPECS-IPA-CAIPIRINHA is lower than that of the mSPECS-IPA-VAT
and mSPECS-IPA-CAIPIVAT models.

To assess the influence of a high acceleration factor on the task acti-
vation detection ability of each model, we compared the CNR value and
the task activation detection rate of ROI for mSPECS-IPA, mSPECS-TIPA-
CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models
under different acceleration factors, TPA = 2, TPA = 4, and TPA = 8. Fig-
ure 16A shows the average CNR value in the ROI of slice 3 for the mSPECS-
IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-
CAIPIVAT models with different acceleration factors. As the acceleration
factor increases, the average CNR value decreases across all four models.
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Figure 16: A. The average CNR value of ROI for slice 3 from mSPECS-IPA, mSPECS-
IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT model with accel-
eration factor TPA=2, TPA=4, and TPA=8. B. The average activation detection rate
(z-score) of ROI for slice 3 from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-
IPA-VAT, and mSPECS-IPA-CAIPIVAT model with acceleration factor TPA=2, TPA=4,
and TPA=8.

However, at high acceleration factors, the average C'/NR value in the ROI
is higher in the mSPECS-IPA and mSPECS-IPA-VAT models compared to
the models incorporating vertical image shift, mSPECS-IPA-CAIPIRINHA
and mSPECS-TPA-CAIPIVAT. Among these models, the model applies im-
age shift only along the vertical direction, mSPECS-IPA-CAIPIRINHA ex-
hibits the lowest average CNR value in the ROI. Figure 16B shows the
activation detection rate (z-score) in the ROI of slice 3 for the mSPECS-
IPA, mSPECS-TPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-
CAIPIVAT models with different acceleration factors. As the acceleration
factor increases, it becomes more difficult to capture the entire simulated
activation blocks across all four models. However, at TPA = 8, the models
without vertical image shift, mSPECS-IPA and mSPECS-IPA-VAT, exhibit
higher average z-scores in the ROI compared to the models with vertical
image shift, mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT. Al-
though the models incorporating vertical image shift exhibit lower average
z-scores in the ROI, the mSPECS-IPA-CAIPIVAT model achieves a higher
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Figure 17: The mean magnitude and mean phase of the odd slices from reconstructed image
with through-plane acceleration factor TPA=2 corresponding to mSPECS-IPA, mSPECS-
IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT model.

average z-score compared to the mSPECS-IPA-CAIPIRINHA model. Among
all models, mSPECS-IPA-CAIPIRINHA provides the lowest activation de-
tection rate, indicating that it has the least ability to capture the simulated
task activation blocks.

5. The Experimental Results

5.1. Non-Task Experimental Reconstruction Results

To investigate the performance of the proposed novel image-shifted SMS
techniques in a real-world fMRI experiment, we applied four models to an
in vivo right-handed finger-tapping fMRI time series. The reconstruction
results from these models were compared with reference axial brain images,
reconstructed using the SENSE technique from the calibration axial brain
image time series. Additionally, we applied the novel image-shifted SMS
techniques with the same in-plane acceleration factor, IPA = 2, and vary-
ing through-plane acceleration factors, TPA = 2, TPA = 4, and TPA = §,
to examine the impact of acceleration on each model. Figure 17 shows the
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mean magnitude and mean phase of the odd slices reconstructed with TPA =
2 from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT,
and mSPECS-IPA-CAIPIVAT models, compared to the mean magnitude and
mean phase of the reference image from the calibration images. Compared
to the mean magnitude of the reference image, the mean magnitude from
the four image-shifted SMS models is closely aligned with the reference im-
age. No inter-slice signal leakage or artifactual brain distortions from other
slices were observed in the reconstructed images. Compared to the mean
phase of the reference image, the mean phase of the reconstructed images
from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT,
and mSPECS-IPA-CAIPIVAT models exhibits a highly similar pattern inside
the brain. However, residual artifacts appear outside the brain, particularly
in the mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT models,
which can be attributed to voxel aliasing, slice overlapping, and image shift
techniques applied in different models. The temporal variance of the task
signal is shown in Appendix B Figure A.24.

Similar to the simulation-based reconstructed axial brain image anal-
ysis, we also investigate the signal-to-noise ratio (SNR) and the geomet-
ric factor (g-factor) in the reconstructed brain images from the mSPECS-
IPA, mSPECS-TPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-TPA-
CAIPIVAT models under different acceleration factors. The SNR value
and the g-factor are calculated as described in Section 4.1. Figure 18A
shows the average SNR value for slice 3 in the mSPECS-IPA, mSPECS-TPA-
CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models
with acceleration factors TPA = 2, TPA = 4, and TPA = 8. As the acceler-
ation factor increases, the average SNR in the mSPECS-IPA and mSPECS-
IPA-VAT models also increases. The mSPECS-IPA-VAT model exhibits
a higher average SNR at the edges of the brain image compared to the
mSPECS-TPA model. Conversely, in the models incorporating vertical image
shift (mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT), the av-
erage SNR initially increases as the acceleration factor increases from TPA =
2 to TPA = 4 but decreases at TPA = 8. Comparing the average SNR of the
reconstructed axial brain images across the four models, the mSPECS-IPA-
VAT model provides the highest SNR value. Figure 18B shows the g-factor
of the reconstructed image of slice 3 for the mSPECS-IPA, mSPECS-TIPA-
CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models
under different acceleration factors. Although the g-factor increases across
all four models as the acceleration factor increases, the mSPECS-IPA-VAT

34



>
72}
Z
=
w

g-factor

mSPECS-IPA
mSPECS-IPA

mSPECS-IPA.

CAIPIRINHA
mSPECS-IPA.
CAIPIRINHA

mSPECS-IPA-
VAT
mSPECS-IPA-
VAT

mSPECS-IPA-
CAIPIVAT
mSPECS-IPA-
CAIPIVAT

Figure 18: A. The SNR value of reconstructed brain images slice 3 from mSPECS-IPA,
mSPECS-TPA-CATPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT model
with different acceleration factors. B. The g-factor value of reconstructed brain images slice
3 from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-
IPA-CAIPIVAT model with different acceleration factors.

model exhibits the lowest g-factor compared to the other three models. In
contrast, the mSPECS-IPA-CAIPIRINHA model has the highest g-factor
among the four models at TPA = 8.

5.2. Task FExperimental Reconstruction Results

To analyze the activation detection ability of the proposed image-shifted
SMS technique in a real-world right-handed finger-tapping fMRI experi-
ment, we also investigate the contrast-to-noise ratio (CNR) and the activa-
tion detection rate (z-score) of ROI of the reconstructed axial brain images
from the mSPECS-TIPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT,
and mSPECS-IPA-CAIPIVAT models under different acceleration factors.
Since the right-handed finger-tapping fMRI experiment was conducted, the
task activation area was expected to be in the left motor cortex of the brain.
Figure 19A shows the average CNR value in the ROI for odd slices of the
reconstructed images from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,
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Figure 19: A. The average CNR value of ROI for odd slices of reconstructed images
from mSPECS-TPA, mSPECS-TPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-
CAIPIVAT model with TPA=2. B. The task activation detection (z-score) map of ROI
for odd slices of reconstructed images from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,
mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT model with TPA=2.

mSPECS-TPA-VAT, and mSPECS-TPA-CAIPIVAT models with an acceler-
ation factor of TPA = 2. Compared to models without horizontal image
shift, mSPECS-IPA and mSPECS-IPA-CAIPIRINHA, models incorporating
horizontal image shift, mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT,
exhibit a higher average CNR value in the ROI, with mSPECS-IPA-VAT
achieving the highest CNR value among the four models. Figure 19B shows
the task activation detection rate for odd slices of the reconstructed images
from the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT,
and mSPECS-IPA-CAIPIVAT models with TPA = 2. Similar to the conclu-
sion drawn from the average CNR in the ROI, the mSPECS-IPA-VAT and
mSPECS-TPA-CAIPIVAT models exhibit a higher average z-score in the ROI
of the left motor cortex compared to the mSPECS-IPA and mSPECS-IPA-
CAIPIRINHA models. Among these four models, the mSPECS-IPA-VAT
model provides the best activation detection map at TPA = 2, indicating
that mSPECS-TPA-VAT is the most sensitive model for detecting task acti-
vation blocks.

The average CNR value in the ROI and the task activation detection
rate were also analyzed for the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,
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mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT models under different
acceleration factors. Figure 20A shows the average CNR value in the ROI
of slice 3 for the four models, compared at different acceleration factors,
TPA = 2, TPA = 4, and TPA = 8. As the acceleration factor increases,
the average CNR decreases significantly across all four models. However,
among them, the mSPECS-IPA-VAT model provides the highest average
CNR in the ROI, while the mSPECS-IPA-CAIPIRINHA model exhibits the
lowest average CNR. Moreover, models incorporating horizontal image shift
exhibit a higher average CNR in the ROI compared to models without hor-
izontal image shift. Figure 20B shows the average task activation detection
map for the ROI of slice 3 across the four models with different accelera-
tion factors. As the acceleration factor increases, the average z-score in the
ROI decreases significantly for each model. Among these four models, the
mSPECS-TPA-VAT model provides the highest average z-score in the ROI,
while the mSPECS-IPA-CAIPIRINHA model exhibits the lowest. Addition-
ally, models incorporating vertical image shift exhibit a lower average z-score
compared to models without vertical image shift. The mSPECS-IPA-VAT
model demonstrates the strongest ability to detect task activation blocks in
brain images.

6. Discussion

In traditional fMRI image acquisition techniques, images were collected
slice-by-slice during the early development of fMRI studies. As imaging tech-
niques advanced, researchers focused on improving the efficiency of the im-
age acquisition process while maintaining the ability to reconstruct high-
resolution brain images. Two primary techniques have been developed to
achieve this goal: through-plane acceleration and in-plane acceleration. Par-
allel imaging is one of the through-plane acceleration techniques, allowing
multiple brain images to be acquired at each time point in an fMRI time
series. Previous studies suggest that an optimal multiband factor for resting-
state fMRI is MB = 4 (Risk et al. [15]). A widely used in-plane acceleration
technique, GRAPPA, can also reduce scan time by acquiring a subsampled
k-space. In this study, through-plane acceleration and in-plane acceleration
were combined to further shorten image scan time. However, due to the
high similarity of coil sensitivity information in aliased voxels, additional
techniques such as 2D Hadamard phase encoding and image shift were in-
corporated to mitigate the influence of the g-factor. As discussed in Sec-
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Figure 20: A. The average CNR value of ROI for slice 3 from mSPECS-IPA, mSPECS-
IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT model with accel-
eration factor TPA=2, TPA=4, and TPA=8. B. The average activation detection rate
(z-score) of ROI for slice 3 from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-
IPA-VAT, and mSPECS-IPA-CAIPIVAT model with acceleration factor TPA=2, TPA=4,
and TPA=8.

tion 2.1.2, the number of aliased brain images should be a power of 2 due to
the constraints of the 2D Hadamard coefficient aliasing matrix. However, if
an odd number of images are aliased, the orthogonal contrast aliasing matrix
design can be incorporated into the model to maintain the orthogonality of
the design matrix. In this study, we not only investigated the influence of
net acceleration factors and image shift directions on model performance but
also assessed the task activation detection ability of each model.

In this study, we first investigated the influence of high acceleration fac-
tors on the performance of the mSPECS-IPA, mSPECS-IPA-CAIPIRINHA,
mSPECS-TPA-VAT, and mSPECS-IPA-CAIPIVAT models. Based on the
simulated reconstructed results in Section 4 and the experimentally recon-
structed results in Section 5, high acceleration factors had a positive impact
on the SNR of the reconstructed images in the mSPECS-IPA and mSPECS-
IPA-VAT models. As shown in Figure 14 and Figure 18, as the acceleration
factor increased, the average SNR also increased. However, in models incor-
porating vertical image shift, the SNR of the reconstructed images decreased
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as the acceleration factor increased. This effect occurs because image shift
in the same direction as the in-plane acceleration results in a more complex
slice-overlapping pattern than in models without vertical image shift. A sim-
ilar conclusion can be drawn from the g-factor plot. The g-factor penalty in
the mSPECS-IPA and mSPECS-IPA-VAT models is more stable compared
to the mSPECS-IPA-CAIPIRINHA and mSPECS-IPA-CAIPIVAT models.
As shown in Figure 16 and Figure 20, a high acceleration factor negatively
affects the average C/NR in each model. As the acceleration factor increased,
the average CNR in the ROI decreased significantly across all models. How-
ever, among the four models, the mSPECS-IPA-VAT model exhibited the
highest average CNR across different acceleration factors. A similar trend
was observed in the task activation detection maps for each model under dif-
ferent acceleration factors. As the acceleration factor increased, the average
z-score in the ROI decreased, indicating that capturing task activation signals
became more difficult for all models at high acceleration factors. However,
the mSPECS-TPA-VAT model maintained the highest average z-score in the
ROI, making it the most sensitive model for detecting activation signals com-
pared to the other models. Thus, with increasing through-plane acceleration,
the SNR increases for all models, but the CNR values and task activation
detection rates decrease. This trade-off necessitates a careful choice of the
acceleration factor. Moreover, to balance the activation detection rate with
efficient image acquisition, the recommended acceleration factors are TPA =
2 and TPA = 2.

We also investigated the influence of the image shift direction on the
performance of each model. There are four different directions: mSPECS-
IPA has no image shift technique, mSPECS-IPA-CAIPIRINHA has vertical
image shift technique, mSPECS-IPA-VAT has horizontal image shift tech-
nique and the mSPECS-IPA-CAIPIVAT has vertical and horizontal image
shift technique. Comparing the SNR, average CNR plot, and task activa-
tion detection maps, models incorporating vertical image shift, mSPECS-
IPA-CATPIRINHA and mSPECS-IPA-CAIPIVAT exhibited worse results in
the reconstructed brain images. This is due to the increased voxel aliasing
complexity when image shift occurs in the same direction as the in-plane ac-
celeration (i.e., the phase encoding direction). Therefore, to avoid degraded
reconstruction performance, it is recommended that image shift be applied
in a direction different from the in-plane acceleration direction.

Moreover, other factors may also influence the performance of the novel
image shift SMS technique, such as the location of the task activation signal
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and the size of the brain image. For example, if the task activation signal
is generated in the posterior or anterior region of the brain, the mSPECS-
IPA-VAT model is expected to perform better than the other models. In
conclusion, the novel image-shifted SMS technique is recommended to be
used with a lower acceleration factor, and the image shift direction should
be different from the in-plane acceleration direction to achieve optimal per-
formance.
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Appendix A. Supplemental Simulation Results

In the main text, we displays the temporal variance of the baseline sig-
nal of slice 3 from reconstructed images corresponding to four SMS mod-
els: mSPECS-TIPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and
mSPECS-IPA-CAIPIVAT model with different through-plane acceleration
factors. Figure A.21 shows the temporal variance of task coefficient of slice 3
from the reconstructed images corresponding to the mSPECS-IPA, mSPECS-
[PA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-IPA-CAIPIVAT with
different through-plane acceleration factors. The top right corner is the slice
overlapping situation corresponding to the average of first N, time point
for each model, indicating the voxel aliasing complexity for each method.
For TPA = 2 and IPA = 2, the voxel aliasing and slice overlapping con-
ditions are identical for the mSPECS-IPA and mSPECS-IPA-CAIPIRINHA
models, as well as for the mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT
models. Consequently, the temporal variance of the reconstructed images
from mSPECS-IPA is similar to that of mSPECS-IPA-CAIPIRINHA, while
mSPECS-TPA-VAT exhibits similar behavior to mSPECS-IPA-CAIPIVAT.
Comparing temporal variance across different models, mSPECS-IPA and
mSPECS-TPA-CAIPIRINHA yield higher variance values than mSPECS-
IPA-VAT and mSPECS-IPA-CAIPIVAT, particularly in the posterior-to-
anterior regions of the brain. When the through-plane acceleration factor
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Figure A.21: The task regression coefficient variance of slices 3 from reconstructed images
from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT, and mSPECS-
IPA-CAIPIVAT model with different through-plane acceleration factors.

increases to 4 and 8, mSPECS-IPA-CAIPIRINHA exhibits the highest tem-
poral variance among the four models. Although the temporal variance
in the posterior region is lower for mSPECS-IPA-CAIPIVAT compared to
mSPECS-TPA-CAIPIRINHA, high temporal variance values are observed in
the anterior region of the brain in the mSPECS-IPA-CAIPIVAT model. The
mSPECS-TPA and mSPECS-IPA-VAT demonstrate better temporal variance
performance compared to models incorporating vertical shifts. Among the
four models, mSPECS-IPA-VAT provides the best temporal variance perfor-
mance at high acceleration factors.

Figure A.22 shows the temporal variance of the residual variance for brain
images reconstructed from four SMS models: mSPECS-IPA, mSPECS-IPA-
CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT model with
IPA = 2 and TPA = 2. Figure A.23 shows the temporal variance of the resid-
ual variance for brain images reconstructed from the same model but with
acceleration factor IPA = 2 and TPA = 4 and 8. Figure A.22 and Figure A.23
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Figure A.22: The variance of the baseline regression coefficient of slice 3 from recon-
structed images from mSPECS-IPA, mSPECS-IPA-CAIPIRINHA, mSPECS-TPA-VAT,
and mSPECS-IPA-CAIPIVAT model with different through-plane acceleration factors.

are generated from equation 28. For each acceleration factor, the mSPECS-
IPA model has the highest temporal variance of residual variance, while the
mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT models have the lowest,
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Figure A.23: The variance of the baseline regression coefficient of slice 3 from recon-
structed images from mSPECS-IPA, mSPECS-TIPA-CAIPIRINHA, mSPECS-TPA-VAT,
and mSPECS-IPA-CAIPIVAT model with different through-plane acceleration factors.
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Figure A.24: The temporal variance of reconstructed image for slice 3 from mSPECS-TPA,
mSPECS-IPA-CAIPIRINHA, mSPECS-IPA-VAT and mSPECS-IPA-CAIPIVAT model
with different acceleration factor TPA=2, TPA=4, and TPA=S8.

with values approaching zero. Moreover, as the acceleration factor increases,
the temporal variance of residual variance decreases for all four models.

Appendix B. Supplemental Experimental Results

Figure A.24 shows the temporal variance of the reconstructed image of
slice 3 for each model under different acceleration factors. As the accel-
eration factor increases, the temporal variance increases significantly in the
mSPECS-TPA-CAIPIRINHA model. The temporal variance in the mSPECS-
IPA-CAIPIVAT model also increases, particularly in the central region of the
brain, as the acceleration factor increases. However, in the two models with-
out vertical image shift techniques, mSPECS-IPA and mSPECS-IPA-VAT,
the temporal variance decreases. Moreover, in a comparison between these
two models, the mSPECS-IPA-VAT model exhibits lower temporal variance
in the left and right motor cortex regions of the brain as the acceleration
factor increases.
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