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FMRI has been a safe medical imaging tool to study brain function by
demonstrating the spatial and temporal changes in brain metabolism in recent
decades. To capture brain functionality more efficiently, efforts have been
made to accelerate the number of images acquired per unit of time that create
each volume image without losing full anatomical structure. The Simultane-
ous Multi-Slice (SMS) technique provides a reconstruction method where
multiple slices are acquired and aliased concurrently. Traditional imaging
techniques such as SENSE and GRAPPA can reconstruct an image from less
measured data but have their drawbacks. The Controlled Aliasing in Parallel
Imaging (CAIPI) and view angle tilting (VAT) technique achieves slice-wise
image shift to decrease the influence of the geometry factor (g-factor) of coil
sensitivities and prevents the singular problem of the design matrix. In this pa-
per, a Bayesian CAIPIVAT approach for multi-coil separation of parallel en-
coded complex-valued slices (mSPECS-CAIPIVAT), a novel SMS approach
is presented, combined with the Hadamard phase-encoding method. Our pro-
posed approach was applied to simulation and experimental study showing
a decrease in the influence of the g-factor while increasing the brain activa-
tion detection rate. The signal-to-noise ratio and the contrast-to-noise ratio
are also improved by our approach.

1. Introduction. As a powerful and non-invasive medical imaging tool, functional Mag-
netic Resonance Imaging (fMRI) has played a dominant role in brain imaging studies since
1990 (Ogawa et al. (1990)). The activity of neurons cannot be directly detected but is cor-
related to the Blood Oxygen Level Dependence (BOLD) contrast signal which is used as
a proxy. By detecting task-related changes in the BOLD signal inside our brain, the mag-
netic resonance (MR) scanner can map our brain with a unique radio frequency (RF) pulse
sequence (Ogawa et al. (1990); Glover (2011)). The Gradient Echo Echo-Planer Imaging
(GE-EPI) pulse sequence is widely used in fMRI studies to shorten the scan time and de-
crease the influence of the motion of subjects by acquiring full k-space spatial information
within a single excitation (Mansfield (1977); Rzedzian et al. (1983); Piustchi-Amin et al.
(2001)). In structural and functional MRI studies, the time to measure a volume image is
dependent upon how rapidly the amount of data necessary to reconstruct an image can be
measured. In order to accelerate the number of images measured per unit time, a topic of
study has been to measure less data but still be able to reconstruct a high-quality image. To
reconstruct images using less data, multiple receiver coils are used where each coil measures
sensitivity-weighted images (Hyde et al. (1986)). Initially, accelerated imaging was aimed at
In-Plane Acceleration (IPA) where spatial frequency data are partially skipped, and each coil
measured fewer lines of spatial frequency. In parallel imaging techniques, like Sensitivity En-
coding (SENSE) and Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA)
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FIG 1. The 3D view (left) and 2D view (right) of an example for SMS technique with four slices and four coils.

(Pruessmnn et al. (1999); Griswold et al. (2002)), a single slice has been excited, and partial
lines of k-space skipped, resulting in a sensitivity weighted aliased image for each coil, that
is combined into a single complete image. Bayesian techniques have been applied to improve
the resolution of the reconstructed images by incorporating the anatomical information from
prior distribution into the k-space (Kornak et al. (2010)). Other in-plane imaging acceleration
techniques like partial Fourier imaging technique (Feinberg et al. (1986); Noll, Nishimura
and Macovski (1991)) can acquire half of the lines in the k-space. The unacquired frequency
data can be determined due to the Hermitian symmetry property of the k-space to reconstruct
real-valued images. Moreover, a rapid three dimensional volume-image method has been es-
tablished to sample the k-space (Lindquist et al. (2008)). However, considering some fixed
time blocks in the data-acquiring process, for instance, imaging encoding and the proper time
for T ∗

2 contrast in one excitation, the scan time will not decrease significantly in IPA tech-
niques. More recently, Simultaneous Multi-Slice (SMS) techniques (Fig. 1) were developed
and discussed (Souza et al. (1988); Rowe et al. (2013); Barth et al. (2016)). The SMS tech-
nique is extensively used in fMRI studies, and it allows for acquiring fMRI data with high
resolution by using a multiband (MB) radiofrequency (RF) within a reduced repetition time
(TR). Compared with conventional parallel imaging techniques, in SMS techniques, multi-
ple slices are acquired concurrently and aliased together in one excitation, and hence, the
image-acquiring time will decrease with a factor of the total number of aliased slices. Thus,
a Through-Plane Acceleration (TPA) is achieved by SMS techniques and allows for a more
efficient approach to acquiring images. In this paper, a novel SMS imaging reconstruction
technique with high acceleration factor, a Bayesian Controlled Aliasing in Parallel Imaging
with View Angle Tilting approach for multi-coil Separation of Parallel Encoded Complex-
valued Slices (mSPECS-CAIPIVAT), will be presented and discussed.

Since multiple slices are acquired at the same time for one excitation of the TPA tech-
nique, a short distance between aliased slices will lead to a high similarity of voxel and
coil sensitivity information. When applying the standard SENSE method, this may cause
a singular matrix problem and strong inter-slice signal leakage will appear on the recon-
structed images. To decrease the influence of the geometry properties of the coil sensitivity
maps, techniques like “controlled aliasing in parallel imaging results in higher acceleration”
(CAIPIRINHA), “blipped-CAIPIRINHA” (Blipped-CAIPI), and Hadamard phase-encoding
provide other possible ways to minimize the influence of the geometric factor (g-factor) and
increase the conditioning of the slices aliasing matrix (Breuer et al. (2005); Setsompop et
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al. (2012)). By modulating the phase for each line in k-space and imparting each line with a
specific angle, the field-of-view (FOV) will be moved in the phase encoding direction (PE).
Applying a unique phase modulation amount to each slice in the aliased image-acquiring
process increases the physical distance between the aliased voxels. Therefore, the differ-
ence of coil sensitivity for each slice will increase and the influence of the g-factor for each
excitation will be minimized. Moreover, to further increase the physical distance between
two aliased voxels and expose more information beneath the coil sensitivities, the FOV can
not only be moved along the vertical PE direction but also the horizontal readout direction
(RO). The study “multislice CAPIPRINHA using view angle tilting technique” (CAIPIVAT)
(Jungmann et al. (2015); Kim, Hong and Kim (2016)) proposes a method combining the
CAIPIRINHA technique and View Angle Tilting (VAT) (Kim, Zho and Kim (2012)) tech-
nique together by applying a unique compensation gradient of VAT. Other techniques to
solve the singular matrix problem of the design matrix, like the “simultaneous multi-slice
acquisition” (SIMA) (Souza et al. (1988)) method discussed a powerful tool, the Hadamard
phased-encoding technique in the reconstruction process. By incorporating a specific coeffi-
cient from the Hadamard matrix for each aliasing slice, different combinations for each voxel
will be achieved. For example, the summation of two desired voxels will not only be acquired
but also the difference between two voxels will be collected. In the “Separation of parallel
encoded complex-valued slices (SPECS) from a single complex-valued aliased coil image”
and “multi-coil separation of parallel encoded complex-valued slices” (mSPECS) studies, the
Hadamard phase encoding technique is also the essential idea (Rowe et al. (2016); Kociuba
(2016)). The SPECS technique and the mSPECS technique are critical milestones of this
study.

In our mSPECS-CAIPIVAT model, we incorporate slice-wise image shift techniques and
the Hadamard phase-encoding technique together in which different voxel combinations will
be acquired for each excitation. In the unaliasing process, calibration reference images will
be artificially aliased, and the artificial aliasing matrix will be used to assess hyperparameters
of prior distribution in the separation process. The artificial aliased calibrtaion imaging tech-
nique and bootstrap sampling approach is combined and applied into the model to eliminate
the inter-slice signal leakage in the reconstruction images at the cost of a slightly increased
variance of the calibration images forming the prior variance. The maximum a posteriori
technique is applied in this model to calculate the estimated reconstruction voxel values. The
mSPECS-CAIPIVAT model provides a solution to significantly reduce the scan time with a
high acceleration factor, meanwhile providing high-resolution and high-quality reconstruc-
tion images.

2. Theory.

2.1. The Data Acquiring Process.

2.1.1. CAIPIRINHA and CAIPIVAT. As mentioned in the Section. 1, the physical dis-
tance between two aliased voxels can be increased by applying the CAIPIRINHA technique
and the CAIPIVAT technique to achieve the slice-wise image shifts, thus reducing the de-
pendence on the geometry of the coil array. The CAIPIRINHA technique can move the FOV
along the PE direction (vertical in our study) by modulating the phase for each line in k-space.
Whereas the CAIPIVAT technique can shift the FOV along two directions, PE (vertical) and
RO (horizontal), by applying a unique compensation gradient of VAT. Through these two
image shift techniques along with the Hadamard slice encoding technique, the g-factor of the
reconstructed images can be reduced. Since the g-factor is related to the signal-to-noise ratio
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FIG 2. A. An illustration of the CAIPIRINHA process. B. An illustration of the CAIPIVAT process.

(SNR), in SMS studies, giving the definition of the SNR (Welvaert and Rosseel (2013)):

(1) SNRSMS =
SNRfull

g
√
R

.

From Eq. 1, the SNRSMS is strongly influenced by the geometric properties of the coil
array, g-factor. It depends on the number and location of the coils, the phase-encoding di-
rection, the voxel location, etc. Thus, the g-factor is not a constant number but varies across
each voxel within the images (Preibisch et al. (2015)). The short physical distance between
two aliased voxels will increase the g-factor value because of their intensity and sensitivity
similarity which will decrease the SNR. Therefore, increasing the physical distance between
two aliased voxels is one of our strategies. The CAIPIRINHA technique and the CAIPIVAT
technique can reduce the influence of the g-factor by applying a partial in-plane image shift.
Considering the 1D inverse discrete Fourier transform, a periodic time series y(t) sampled at
n time points ∆t apart is described as below:

(2) y(p∆t) =

n

2
−1∑

q=−n

2

f(q∆ν)ei
2π

n
pq,

where ∆ν is the temporal frequency resolution and ∆ν = 1
n∆t . It is the summation of the

Fourier amplitude coefficients at multiple various frequencies. In Eq. 2, y(p∆t) and f(q∆ν)
are complex-valued quantities with real and imaginary components. When we shift the whole
time series from p∆t to p′∆t, where y(p′∆t) is same as y(p∆t) sampled at n time points
∆t apart with a different order from y(p∆t), a field-of-view shift ∆y will happen and is
calculated as:

(3) ∆y = y((p− p′)∆t) =

n

2
−1∑

q=−n

2

f(q∆ν)ei
2π

n
pqe−i 2π

n
p′q,

for p= 1, . . . , n. The FOV shift only depends on the phase change in k-space, which equals
−2π

n p′q. If p′ = 1, which means the image moves one voxel distance in the PE direction, the
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FIG 3. A. An example of in- and through-excitation image shift process with Ns = 4 by applying the CAIPIRINHA
technique. B. An example of in- and through-excitation image shift process with Ns = 4 by applying the CAIPIVAT
technique.

modulation quantity of phase will be −2π
n q. If half of the image will be moved in the PE

direction (FOV/2), p′ = n
2 , the modulation of phase should be −πq. Therefore, the phase of

even lines in k-space should impart π and the phase of odd lines should impart 0. If the FOV/4
shift of the image needs to be achieved, the modulation of the phase for each line in the k-
space needs to be adjusted. Fig. 2A is an illustration to explain the CAIPIRINHA process.
Applying the discrete Fourier transform to each excitation in the time series to get the k-
space, modulating the phase for each line in the k-space with a unique angle, after the inverse
discrete Fourier transform, we will have an in-plane image shifted effect. Compared with the
on-resonance spins of the CAIPIRINHA technique, during the slice-selection process, the
CAIPIVAT technique allows off-resonance spins at different locations. The VAT technique
projects the excited spins along a unique view angle to map the brain with a specific spatial
shift on the image plane. Fig. 2B is an illustration to explain the CAIPIVAT process. After the
Fourier transform to acquire the k-space of the original image, the CAIPIRINHA technique
is applied to the k-space of each slice. A global phase modulation will be added to each slice
at the same time.

In this paper, the principal idea of the CAIPIRINHA technique will be applied first. For
each slice within each excitation, we imply ∆y = (l − 1)FOV/Ns in-plane image shift,
where l = 1, . . . ,Ns and Ns is the total number of aliased slices. On the TR dimension,
we also imply the CAIPIRINHA technique for each excitation by ∆y = (m− 1)FOV/Ns

in-plane image shift, where m = 1, . . . ,Ns. Thus, with the in- and through-excitation im-
age shift, at TR = Ns + 1 excitation time point, the aliased artifacts should be the same
as the TR = 1 excitation time point. Fig. 3A shows an example of an in- and through-
excitation image shift process with Ns = 4 incorporating with the CAIPIRINHA technique.
When TR = 5, the image shift pattern for each slice should be the same as the time point
TR = 1. Furthermore, the principal idea of the CAIPIVAT technique will also be applied.
Similar to the CAIPIRINHA technique, ∆y = (l − 1)FOV/Ns for the in-plane image shift
and ∆y = (m − 1)FOV/Ns for the through-plane image shift will be applied to each ex-
citation along the PE direction. For each slice within each excitation, a unique image shift
will appear horizontally on the RO direction with the support of the CAIPIVAT technique.
The shift distance for each slice along the RO direction can be calculated and depends on the
distance between the desired aliased slices, the compensation gradient, and the RO gradient.
A modest slice-wise shift will be applied for each excitation to ensure the brain image is not
outside the FOV. Fig. 3B displays an example of in- and through-excitation image shift pro-
cess of Ns = 4 incorporating with the CAIPIVAT technique. Besides the same amount of the
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FOV shift in- and through-excitation on the PE direction as CAIPIRINHA technique, slice 1
and slice 3 will have a FOV shift to the left and slice 2 and slice 4 will have a FOV shift to the
right on the RO direction according to the CAIPIVAT technique. Thus, comparing with the
CAIPIRINHA technique approach, the overlapping area between two desired aliased images
will decrease and the independence of the sensitivity for each coil will increase.

2.1.2. The Hadamard Phase Encoding. The Hadamard encoding technique is a well-
developed volume excitation method. The conventional MR imaging techniques have been
limited by the size of the matrix for the acquired aliased images. The Hadamard phase-
encoding method allows the increment of the size of the acquired aliased image matrix by
aliasing in both frequency and phase encoding dimensions. With the support of this simulta-
neous binary-encoded technique, the TR will decrease, and the SNR ratio will improve. The
Hadamard matrix is given by:

(4) H2n =

[
H2n−1 H2n−1

H2n−1 −H2n−1

]
=H2 ⊗H2n−1 ,where H1 =

[
1
]
,H2 =

[
1 1
1−1

]
,

where ⊗ denotes the Kronecker product. It is an orthogonal and full rank matrix with ele-
ments of either +1 or -1. In the mSPECS-CAIPI study, each excitation is sequentially coordi-
nated with a unique Hadamard aliasing pattern. To improve the computational efficiency, we
select the size of the Hadamard phase-encoding matrix to be the same as the number of the
aliased slices. Thus, the size of the Hadamard phase-encoding matrix is Ns×Ns. In this aim,
Hδ,z is the δth row and zth column element of Hadamard matrix corresponding to zth slice
in δth TR. Same as the sequential properties of image shifts, the Hadamard phase-encoding
aliasing pattern will cycle through along the TR dimension. For example, the Hadamard
aliasing pattern of TR = Ns + 1 should be the same as TR = 1. Fig. 4 shows an example
of the Hadamard aliasing pattern when Ns = 4. Fig. 4A shows a 4× 4 Hadamard matrix, B
shows the Hadamard coefficients for each slice in the fMRI time series, C shows the phan-
tom brain images multiplied by Hadamard aliasing coefficients at the first 4 TRs. In order to
increase the distance between two aliased voxels and reduce the influence of the g-factor, we
introduce the term “packet” to indicate the slice aliasing circumstance. For example, under
a circumstance with Ns = 8, we put odd number slices into one packet (i.e., slice 1, slice 3,
slice 5, and slice 7), and even number slices into another packet (i.e., slice 2, slice 4, slice
6, and slice 8). For each excitation, all slices in one packet are measured simultaneously as
one single array. Therefore, we will have 2 packets in this situation, and both packets will
coordinate with the same Hadamard phase-encoding aliasing pattern. With the help of the
packet technique, the slice-to-slice signal leakage artifacts will diminish.

2.1.3. A Single Aliased Voxel. Given a single aliased voxel, aj,γ,δ , at the location (x, y)
of aliased images, with δth Hadamard aliasing pattern and γth matrix rotation operation,
measured at coil j, is defined as the summation equation:

(5) aj,γ,δ =

Ns∑
z=1

Hδ,zRγ,zSj,zβz + εj .

In Eq. 5, aj,γ,δ is a 2× 1 complex-valued vector with the real and imaginary components of
the acquired aliased voxel value measured at coil j, with rotating operation γ and Hadamard
phase-encoding aliasing pattern δ. The Hadamard phase-encoding aliasing pattern, Hδ,z , is
the same as the definition in Section 2.1.2, where parameter δ corresponds to the order of
Hadamard coefficients pattern, and parameter z corresponds to the number of slices. The co-
efficients of Hδ,z will be either +1 or -1. The matrix rotation operator, Rγ,z , is closely related
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FIG 4. An illustration of Hadamard phase-encoding aliasing pattern when Ns = 4. A. shows the H4 matrix
with plus sign denotes as 1 and minus sign demotes as -1. B. shows sequential Hadamard aliasing coefficient for
each slice in the fMRI time series. C. shows the phantom brain images are multiplied by the Hadamard aliasing
coefficients at the first 4 TRs.

to the definition of Section 2.1.1. Subscript γ denotes the order of the matrix rotation oper-
ation for each TR, and parameter z corresponds to the number of slices. The coil sensitivity
matrix, Sj,z , is a 2× 2 skew symmetric matrix with the real and imaginary components at
coil j for slice z, S(j, z) = [SR,−SI ;SI , SR]j,z . The true voxel value, βz = [βR;βI ], is a
2× 1 vector with the real and imaginary parts of the aliased voxel in slice z, and the real part
is stacked on the top of the imaginary part. The measurement noise, εj = [εR;εI ], is a 2× 1
vector with real and imaginary parts stacked. The mean of measurement noise is E(εj) = 0,
and the covariance of error is cov(εj) = σ2I2, where I2 is a 2× 2 identity matrix.

Considering the measured aliased voxel in Eq. 5 across the Nc coils for Ns aliased slices
with Nα time-points in the fMRI time series, Eq. 5 can be expressed as:

(6) a=XAβ + ε.

Nα denotes the number of sequential time-points of the Hadamard encoded pattern, and it is
an integer between 1 and Ns. Therefore, the net acceleration of the fMRI time series acquisi-
tion is defined as A=Ns/Nα. In Eq. 6, the dimension of a is 2NcNα × 1 including the real
and imaginary components. The measurement error, ε, has the same dimension as a with the
mean E(ε) = 0 and covariance cov(ε) = σ2I2NcNα

. The dimension of the aliasing matrix,
XA, is 2NcNα × 2NsNr , where Nr is an indicator of the number of matrix rotation oper-
ations. In this study, we generally assign Nr =Ns to improve the computational efficiency.
The true voxel value, β, has the dimension of 2NsNr × 1, including the real and imaginary
value for each voxel. For the δth Hadamard aliasing pattern and γth matrix rotating operation,
the aliasing matrix (XA)γ,δ across Nc coils is defined as:

(XA)γ,δ =

Hδ,1Rγ,1

 S1,1
...

SNc,1

 , . . . ,Hδ,Nc
Rγ,Nc

 S1,Ns

...
SNc,Ns


 .(7)

Rγ,z is the image shift indicator which operates on coil sensitivity maps for each slice, and
it is not the matrix multiplication. Across the Nα excitations, the aliasing matrix XA can be
written as:

(8) XA =
[
(XA)1 , . . . , (XA)Nα

]′

.
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FIG 5. The data-acquiring process of the mSPECS techinque (without any image shifts) (top), the data-acquiring
process of the mSPECS-CAIPIRINHA technique (middle), and the data-acquiring process of the mSPECS-
CAIPIVAT technique (bottom).

Since the measurement error has a Gaussian distribution, the likelihood of the acquired
aliased voxel for the Nc coils and the Nα excitations is:

(9) P (a |XA, β, σ
2)∝ (σ2)−

2NcNα
2 exp

[
− 1

2σ2
(a−XAβ)

′(a−XAβ)

]
.

To separate the aliased images and estimate the voxel value for each slice, the least square
estimation method is used. The estimated separate voxel value, β̂, can be calculated by:

(10) β̂ =
(
X

′

AXA

)−1
X

′

Aa.

Eq. 10 also can be used to calculate the reconstructed brain images in the SENSE model.
In general, the determinant of XA is close to zero, det (XA) ≈ 0, which leads to failure
in calculating the inverse of X

′

AXA. Thus, a bootstrap sampling method incorporated with
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artificial aliasing of reference calibration images technique are combined with the mSPECS-
CAIPI method. This combined technique can eliminate the inter-slice signal leakage artifacts
by quantifying prior information in calibration images in a Bayesian model. More details
will be shown in the following section. Fig. 5 illustrates the data-acquiring process of the
mSPECS technique (without any image shifts), the mSPECS-CAIPIRINHA technique, and
the mSPECS-CAIPIVAT technique.

2.2. The Bootstrap Sampling and Artificial Aliasing of Calibration Images. In the previ-
ous simultaneous multi-slice (SMS) study, bootstrap sampling and artificial aliasing of cal-
ibration reference image techniques have been proven as powerful tools to support the sep-
aration and reconstruction process of aliased images. By increasing the size of the aliasing
matrix and adding a regularizer into the least square estimation function, the correlation in-
duced by the separation process will decrease and the slice-to-slice signal leakage will be
eliminated. In the fMRI time series, for each excitation, Ns bootstrap sampled coil slice im-
ages will be randomly chosen from fully sampled calibration reference images. The mean
calibration image will be calculated for each slice and will be artificially aliased, which is
then repeated for each TR.

Given a single TR, the calibration images will have the same shift pattern as acquired
images, thus, the total number of different combinations for different voxels should be Ns,
which is equal to the rank of the chosen Hadamard matrix. After removing the combination
of the acquired aliasing pattern from the full voxel combination pattern, Ns − 1 different
combinations remain. Therefore, for a single excitation, a voxel across Ns slices, measured
through Nc coils, ν, can be represented as a vector with the dimension of 2NsNc(Ns−1)×1
with the real component stacked on the top of the imaginary component, corresponding to
the remaining combinations without the acquired aliasing combination. The mean bootstrap
sampled voxel, ν̄, is the same dimension as ν for each time point. The artificial aliasing
calibration images, ν, across Ns slices measured through Nc coils at Nα sequential time
point can be expressed as:

(11) ν =Cν̄ =CAµ+Cη.

The dimension of the measurement error vector, η, is the same size as the vector ν. The
mean of the measurement error for the calibration images is E(η) = 0, and the covariance
is cov(Cη) = τ2I2NcNα(Ns−1), where I2NcNα(Ns−1) is the identity matrix. It is assumed that
there is no correlation between the real and imaginary components of the calibration images.
The true voxel value vector, µ, is constructed with the real and imaginary components of the
calibration voxel with the dimension 2Ns× 1. The artificial aliasing matrix, CA, is following
the same aliasing rules as acquired images do, rotating by the matrix rotation operation and
multiplying the Hadamard encoding aliasing coefficients. Due to the combination of acquired
aliasing voxel removed from the full combinations, the dimension of the artificial aliasing
matrix is 2NcNα(Ns − 1)× 2Ns. Same as the assumption in the acquired aliasing images,
we assign Nr = Ns to improve the computational efficiency. For example, considering a
situation with Ns = 4 and Nr = 4, for each time point, Ns − 1 = 3 combinations should be
applied for the calibration images. Thus, for a given excitation, the δth Hadamard aliasing
pattern and γth matrix rotating operation, the aliasing matrix (CA)γ,δ across Nc coils can be
written as:

(CA)γ,δ =

Hδ,1Rγ,1

 S1,1
...

SNc,1

 , . . . ,Hδ,Nc
Rγ,Nc

 S1,Ns

...
SNc,Ns


 .(12)
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The notation HR denotes the remaining combination for the Hadamard encoding aliasing
pattern with the matrix rotation pattern after removing the combination of the acquired alias-
ing pattern. Incorporating Nα sequential time points, the artificial aliasing matrix, CA, can
be written as:

(13) CA =
[
(CA)1 , . . . , (CA)Nα

]′

.

Thus, the prior distribution of artificial aliased calibration voxel is:

(14) P (ν |CA, µ, τ
2)∝ (τ2)−

2NcNα(Ns−1)

2 exp

[
− 1

2τ2
(ν −CAµ)

′(ν −CAµ)

]
.

2.3. The Statistical Separation Process. To separate the aliased voxel, according to
mSPECS-CAIPI approach, we combine the Eq. 6 and Eq. 11 together, which will generate:

(15) y =

[
a
ν

]
=

[
XAβ
CAµ

]
+

[
ε
Cη

]
.

We specify that measurement error variance σ2 has a inverse gamma prior distribution:

(16) P (σ2 | λ, δ)∝ (σ2)(−λ+1) exp

[
− δ

σ2

]
,

where hyperparameters λ and δ are assessed from the calibration images process. The esti-
mate voxel β is specified to have a normal prior distribution:

(17) P (β | τ2)∝ (τ2)−
2Nc
2 exp

[
− 1

2τ2
(β − µ)′(β − µ)

]
.

Combing Eq. 9, Eq. 14 and Eq. 16 together and applying the bootstrapping technique to
achieve τ2 = σ2, which leads to the prior distribution of y is:

(18) P (y |X,β,σ2)∝ (σ2)−
2NcNαNs

2 exp

[
− 1

2σ2
((y−Xβ)′(y−Xβ) + 2δ)

]
,

where y = [a;ν] and X = [XA;CA]. Thus, the least squares estimation function is incorpo-
rated with the mSPECS-CAIPI method, which will lead us to:

(19) β̂ = (X
′

AXA +C
′

ACA)
−1(X

′

Aa+C
′

Aν).

C
′

ACA works as the regularizer for matrix inverse to improve the condition of the equation.
The posterior mean of the estimated voxel is:

(20) E(β̂) = (X
′

AXA +C
′

ACA)
−1(X

′

Aβ +C
′

Aµ).

Based on the previous section, the covariance for the acquired aliasing measurement er-
ror is cov(ε) = σ2I2NcNα

, and the covariance for the artificial aliasing measurement error
is cov(Cη) = τ2I2NsNc(Ns−1), the covariance for vector, y, consisting of acquired aliasing
voxel value and the artificial aliasing voxel value is:

(21) cov(y) =

[
σ2I2NcNα

0
0 τ2I2NcNα(Ns−1)

]
.

Without the support of the bootstrapping technique, there will be no variation in the artifi-
cial aliasing calibration images, i.e. the same calibration reference images will be artificially
aliased for each TR, which will lead to τ2 = 0. The correlation induced by the separation
process will increase and exhibit slice-to-slice signal leakage artifacts. With the help of the
bootstrap sampling approach, τ2 = σ2, such that the covariance of β̂ is:

(22) cov(β̂) = σ2(X
′

AXA +C
′

ACA)
−1.

Therefore, the correlation induced by the unaliasing process is minimized, and the inter-slice
signal leakage artifacts are eliminated.
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FIG 6. A. The true noiesless simulated magnitude and true phase information for axial brain images. B. The
simulated magnitude and phase information of NC = 8 channels coil for slice 3.

3. Simulation Study.

3.1. Simulated FMRI Data. To investigate the performance of our proposed novel SMS
technique, the mSPECS-CAIPIRINHA and the mSPECS-CAIPIVAT model were applied to
simulated fMRI data, and the results were compared with the mSPECS and the standard
SENSE method. The simulated fMRI data has TR = 510 time points and mimics the real-
world right hand finger tapping fMRI experiment. The first 20 time points will be omitted,
thus leaving the simulated fMRI data with 490 time points. To replicate the full process of
the real right-handed finger-tapping experiment, two time series were generated from the
true noiseless axial view data: the calibration simulated data, and the task simulated data.
The calibration simulated data includes NS = 8 axial brain images without any simulated
task activation blocks for each image. The task simulated data, in contrast, includes NS = 8
axial brain images with simulated task activation blocks on the left motor cortex for the
first 4 slices. No simulated activation blocks were added to the other 4 slices. The simulated
activation blocks were added according to the in vivo experiment design, with the first 20
TRs off, following 15 TRs on and 15 TRs off for 16 epochs, and the last 10 TRs off. To
achieve the CNR = 0.5, the mean magnitude of 0.04 was added to the simulated activation
blocks for the first 4 slices. The mean magnitude of 4, to achieve SNR = 50, and different
phase angles from 5◦ to 40◦ with 5◦ intervals were added to each image. In order to further
increase the distinction of the spatial information for different tissue type, angle 7.5◦ was
added to white matter (WM), 15◦ was added to gray matter (GM), and 22.5◦ was added to
the cerebral spinal fluid (CSF). Gaussian distribution noise N(0,0.0064) was added for each
image of the calibration simulated data and the task simulated data separately. Fig. 6A shows
the true noiseless simulated magnitude and true phase information for NS = 8 axial brain
images.

A total of NC = 8 channel coil sensitivity profiles were simulated to weight each axial
brain image. A mean magnitude of 0.95 and the different phase angles from 0◦ to 17.5◦ with
2.5◦ intervals were applied to each coil sensitivity. Fig. 6B shows the simulated magnitude
and phase information of the NC = 8 channel coil sensitivity profiles for the third axial brain
image (slice 3). In the interest of investigating our new proposed SMS techniques under
different TPA factors, we applied our model to three acceleration scenarios: TPA=2 (packet
1: slice 1 and 5, packet 2: slice 2 and 6, packet 3: slice 3 and 7, and packet 4: slice 4 and 8),
TPA=4 (packet 1: slice 1, 3, 5 and 7, packet 2: slice 2, 4, 6 and 8), and TPA=8 (all slices into
one packet). The number of packets multiplied by the acceleration factor equals to the total
number of images. All experiments were performed on MATLAB program software.
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FIG 7. The true noiseless simulated magnitude and phase of the axial brain images compared with the tempo-
ral mean magnitude and temporal mean phase from SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-
CAIPIVAT model for odd slices with TPA=2.

3.2. Non-Task Simulated Reconstruction Results. Following the methodology of the
mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT models, we conducted the simulated ex-
periment using different through-plane acceleration factors: TPA=2, TPA=4, and TPA=8. We
compared the reconstruction results under the same acceleration factors from the mSPECS
model and the standard SENSE model. Fig. 7 shows the temporal mean magnitude and phase
of the reconstructed images from SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-
CAIPIVAT model compared with the true magnitude and the phase of the brain images for
odd slices with acceleration factor TPA=2. The simulated reconstruction results for even
slices of the four models can be found in Supplement Material Section S-1 (Xu and Rowe
(2024)). As shown in Fig. 7, the mean magnitude and phase of the reconstructed images from
the mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models closely match the
true values, indicating that these three models produce more accurate reconstructions. In
contrast, the SENSE model yields the poorest reconstructions, with noticeable signal leak-
age from other aliased slices. As the acceleration factor increases to TPA=4 and TPA=8, the
mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models continue to provide re-
constructions that closely resemble the true images. However, the reconstruction quality from
the SENSE model significantly deteriorates, showing the worst performance among the four
models.

The SNR value and g-factor value were also compared across four models. The tempo-
ral signal-to-noise ratio is defined as SNR = S̄/σN , where S̄ is the mean magnitude value
in the time series, and σN is the standard deviation of the noise. The signal-to-noise ratio
also can be expressed as SNR = β0/σN , where β0 is the baseline signal, and σN is the
standard deviation of the magnitude of the noise. Based on the definition of SNR in Sec-
tion 2.1.1, the g-factor can be calculated as gaccelerate =

√
NsSNRfull/SNRaccelerate

√
R,

where SNRfull is the SNR map from model without acceleration technique, and R indicates
the in-plane acceleration factor, which in this case R= 1 (Welvaert and Rosseel (2013)). The
g-factor also indicates the noise amplification level of the model. Fig. 9 shows the temporal
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FIG 8. A. The SNR maps for SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with
TPA=2, TPA=4, and TPA=8. The higher SNR, the better model performs. B. The g-factor maps for SENSE,
mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with TPA=2, TPA=4, and TPA=8. The closer
g-factor is to 1, the better model performs.

SNR map and g-factor map for the standard SENSE, mSPECS, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT models with through-plane acceleration factors TPA=2, TPA=4, and
TPA=8 for slice 3. From Fig. 8, we observe that the standard SENSE model produces a low
SNR map and a high g-factor penalty for all acceleration factors compared to the other three
models. Increasing the through-plane acceleration factors reduces the SNR value and signif-
icantly increases the g-factor penalty. Although the mSPECS model offers a relatively good
SNR map, the g-factor penalty increases as the through-plane acceleration factors rise. The
mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT models, however, provide better SNR and
g-factor maps, with higher SNR values and lower g-factor penalties. As the through-plane
acceleration factor increases, the SNR maps become brighter, indicating an increase in SNR,
while the g-factor penalties remain relatively steady, as shown in Fig. 8.

3.3. Task Simulated Reconstruction Results. We also applied the standard SENSE,
mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT models to the simulated right-
handed finger-tapping fMRI data with different through-plane acceleration factors TPA=2,
TPA=4, and TPA=8, and compared the task activation results between each method. In the
interest of further exploring the task detection ability for each model, two important criteria,
the contrast-to-noise (CNR) value and the activation detection maps were also investigated.
The CNR ratio is calculated as CNR= β1/σN , where β1 represents the task activation sig-
nal contrast. Activation detection was performed using a complex-valued model to com-
pute fMRI activation (Rowe and Logan (2004)). Fig. 9A shows the CNR map for SENSE,
mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model for odd slices at TPA=2,
and the average CNR value and standard deviation of CNR value for region-of-interest (ROI).
The CNR and the average CNR value and standard deviation of CNR value for region-of-
interest (ROI) for four model of even slices can be found in Supplement Material Section S-2
(Xu and Rowe (2024)). Since no simulated activation blocks were added to the last four slices,
CNR values were not captured from those regions. In Fig. 9A, the SENSE model fails to cap-
ture any activation signal within the brain, while the mSPECS, mSPECS-CAIPIRINHA, and
mSPECS-CAIPIVAT models successfully capture the simulated activation blocks with clear



14

FIG 9. A. The CNR map and the average CNR value and standard deviation of CNR of ROI for SENSE, mSPECS,
mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model for odd slices with TPA=2. B. The activation detection
map and the average and standard deviation of z-score of ROI for SENSE, mSPECS, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT model for odd slices with TPA=2.

shapes and anatomical details. When comparing the average CNR value of the ROI, both the
mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT models demonstrate higher values than
the mSPECS model. To further examine the influence of the acceleration factor on activation
detection, we compared the CNR maps of the four models at different acceleration factors.
Fig. 10A displays the CNR maps from the SENSE, mSPECS, mSPECS-CAIPIRINHA, and
mSPECS-CAIPIVAT models for TPA=2, TPA=4, and TPA=8 in slice 3. As the acceleration
factor increases, the average CNR value of the ROI decreases for the mSPECS, mSPECS-
CAIPIRINHA, and mSPECS-CAIPIVAT models. However, the average CNR value in the
two slice-wise image-shifting models remains slightly higher than in the mSPECS model. In
contrast, the SENSE model fails to capture any simulated activation blocks at any accelera-
tion factor.

Concerning the main goal of this study is to improve the task activation detection rate,
we also examined the activation detection map across four models. Fig. 9B shows the acti-
vation detection maps for odd slices from SENSE, mSPECS, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT model for odd slices at acceleration factor TPA=2. The activation de-
tection maps for even slices from four models can be found in Supplement Material Section
S-2 (Xu and Rowe (2024)). Similar to the results observed in the CNR map, it is difficult to
capture the simulated task activation blocks by applying the SENSE model. Additionally, the
average z-score of ROI from SENSE model is the lowest among four model. In contrast, the
mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models can capture the sim-
ulated task activation blocks with complete shapes and anatomical structures. Comparing
the average z-scores of the ROI from these three models, the two slice-wise image-shifting
models, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT, exhibit higher significance lev-
els than the mSPECS model. The mSPECS-CAIPIVAT model provides the highest average
z-score of the ROI, indicating that it is more powerful in detecting activation signals than
the other models. Similarly, we applied the four models with different acceleration factors to
further investigate the activation detection process. Fig. 10B shows the task activation detec-
tion maps from the SENSE, mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models at acceleration factors of TPA=2, TPA=4, and TPA=8 for slice 3. As the acceler-
ation factor increases, the SENSE model fails to capture any task activation signals, and
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FIG 10. A. The CNR maps and average ROI CNR value from SENSE, mSPECS, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT model with respect to different acceleration factors TPA=2, TPA=4, and TPA=8 for slice 3.
B. The task activation detection maps and average ROI z-score from SENSE, mSPECS, mSPECS-CAIPIRINHA
and mSPECS-CAIPIVAT model with repect to acceleration factor TPA=2, TPA=4 and TPA=8 for slice 3. The
higher CNR and z-score, the better model performs.

the average z-score of the ROI remains the lowest among the four models. The average
z-score of the ROI from the mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models decreases with increasing acceleration factor, and it becomes more challenging to
capture the full shape of the task activation blocks. However, consistent with the CNR map
results, the two slice-wise image-shifting models, mSPECS-CAIPIRINHA and mSPECS-
CAIPIVAT, provide higher average z-scores of the ROI compared to the mSPECS model.
The mSPECS-CAIPIVAT model offers the highest average z-score, confirming that it is more
effective in detecting activation signals than the other models.

4. Experimental FMRI Study.

4.1. Experimental FMRI Data. A 3.0 T General Electric Signa LX MRI scanner was
used to perform a right-handed finger-tapping fMRI experiment on a single object. The ex-
periment was designed with an initial 20s of rest, following 15s off and 15s on for 16 epochs,
and a final 10s of rest. This results in a time series with 510 time repetitions was acquired
for each repetition lasting 1s. The first 20s were disregarded leading to a time series with 490
time repetitions. An additional non-task time series was also acquired from the same object to
serve as calibration time series. A flip angle of 90◦ with an acquisition bandwidth of 125kHz
was applied in this experiment. The thickness of the axial brain images slice was 2.5 mm with
9 slices for each time repetition. Due to the nature of the Hadamard phase-encoding method,
8 slices were used to the new proposed reconstruction models and compared with the exist-
ing models. The most interior axial brain slice was disregarded. An 8 channel receiver coil
was applied with dimension 96× 96 for a 24 cm full FOV. The phase encoding direction is
posterior to anterior. In order to acquire the ‘true’ reconstruction brain images and activation
signals, the SENSE model was applied to each time repetition without any through-plane ac-
celeration method, and the reconstructed images were treated as reference reconstruction im-
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FIG 11. The temporal mean magnitude and temporal mean phase of the axial brain images from the refer-
ence, SENSE, mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT for odd slices with acceleration factor
TPA=2.

ages. Reconstruction results from SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-
CAIPIVAT model were compared to the reference reconstruction images.

4.2. Non-Task Experimental Reconstruction Results. In order to investigate the perfor-
mance of the new slice-wise image shift SMS models on a real-world experiment, we applied
mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model to the right-handed finger-tapping
fMRI experiment time series. Reconstructed axial brain images were obtained from these
two image shifting models and compared with the reconstruction results from SENSE and
mSPECS models; reference images were also included in the comparison. We also investi-
gated the model performance of the new slice-wise image shift models with different accel-
eration factors TPA=2, TPA=4 and TPA=8, and compared the reconstruction results with the
SENSE and mSPECS model. Fig. 11 shows the temporal mean magnitude and mean phase
of the reconstructed images from the reference, SENSE, mSPECS, mSPECS-CAIPIRINHA,
and mSPECS-CAIPIVAT model for odd slices with acceleration factor TPA=2. The temporal
mean magnitude and mean phase for even slices of four models can be found in Supplement
Material Section S-3 (Xu and Rowe (2024)). From Fig. 11, compared with the reference
axial brain images, the reconstructed images from the SENSE model exhibit strong signal
leakage from aliased slices, making anatomical structures difficult to discern. In contrast, the
reconstructed images from the mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models closely resemble the reference images, with clear anatomical structures visible. Fig.
15 shows the temporal variance of the experimental reconstructed brain images from the
SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with different
acceleration factors for slice 3. The results from SENSE model and from other three models
are on different scales.

Similar to the simulation reconstruction results section, we also investigated the SNR value
and g-factor value of the reconstructed axial brain images of the four models. Fig. 12 shows
the average and standard deviation of SNR value and g-factor value of ROI of reconstructed
images for SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with
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FIG 12. A. The SNR maps for SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with
TPA=2, TPA=4, and TPA=8. B. The g-factor maps for SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-
CAIPIVAT model with TPA=2, TPA=4, and TPA=8.

different acceleration factors. From Fig. 12A, as the acceleration factor increases, the average
SNR value of the ROI from the SENSE model decreases, whereas the average SNR values
from the other three models increase. Comparing the mSPECS and the two slice-wise image
shift techniques, the mSPECS-CAIPIVAT model provides the highest average SNR value of
the ROI among these three models. From Fig. 12B, as the acceleration factor increases, the
average g-factor value of the ROI from the SENSE model increases dramatically. On the other
hand, similar to the results from the simulation reconstruction study, the average g-factor
values of the ROI from the mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models increase slightly, with the mSPECS-CAIPIVAT model providing the lowest average
g-factor value among these three models.

4.3. Task Experimental Reconstruction Results. We also investigated the activation sig-
nal detection of the new proposed slice-wise image shift model by analysing the CNR value
map and the activation detection maps and comparing the reconstructed results with the
SENSE and mSPECS model. We compared the average CNR value of ROI between differ-
ent models with different acceleration factors. Fig. 13A shows the CNR map for SENSE,
mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model with TPA=2, TPA=4
and TPA=8. As the acceleration factor increases, the SENSE model cannot capture any acti-
vation signals. Furthermore, the average CNR value of the ROI decreases for the mSPECS,
mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models as the acceleration factor in-
creases, indicating that as the number of aliasing slices increases, the activation blocks
become harder to detect. However, the two slice-wise image-shifting techniques still pro-
vide higher average CNR values for the ROI than the mSPECS model, with the mSPECS-
CAIPIVAT model providing the highest score. This means that the mSPECS-CAIPIVAT
model is more powerful than the other three models in detecting activation blocks.

The activation detection maps were also investigated. Fig. 13B shows the activation detec-
tion map and the average z-score of ROI from four models with different acceleration factors
TPA=2, TPA=4 and TPA=8. The SENSE model cannot detect any activation blocks with
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FIG 13. A. The CNR maps and average ROI CNR value from SENSE, mSPECS, mSPECS-CAIPIRINHA and
mSPECS-CAIPIVAT model with respect to different acceleration factors TPA=2, TPA=4, and TPA=8 for slice 3.
B. The task activation detection maps and the average ROI z-score from SENSE, mSPECS, mSPECS-CAIPIRINHA
and mSPECS-CAIPIVAT model with respect to acceleration factor TPA=2, TPA=4 and TPA=8 for slice 3. The
higher CNR and z-score, the better model performs.

any acceleration factor. Additionally, as the acceleration factor increases, the average z-score
of the ROI decreases for the mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models, indicating that detecting activation blocks becomes more challenging with more
aliasing slices. However, when comparing the mSPECS model with the image-shifting tech-
niques, the slice-wise image-shifting models provide higher average z-scores of the ROI, with
the mSPECS-CAIPIVAT model having the highest average z-score. Thus, we reach the same
conclusion as in the simulation study: the mSPECS-CAIPIVAT model is more powerful in
detecting activation signals compared to the other models.

5. Discussion. Since fMRI studies were first introduced by Ogawa et al. (1990), efforts
have been made to enhance the efficiency of the signal acquisition procedure but still be
able to achieve the goal of reconstructing brain images with high resolution, and improve the
accuracy to capture the brain activation signal. Parallel imaging reconstruction methods, like
SENSE, can be a potential solution to shorten the scan time with a through-plane subsampling
technique. However, it is easily influenced by the high similarity of weighted coil sensitivity
information of two aliased voxels, which leads to the singular matrix problem and the inter-
slice signal leakage problem in the reconstruction process. In the interest of decreasing the
similarity and increasing the independence of the weighted information of aliased voxels,
slice-wise imaging shift techniques, CAIPIRINHA and CAIPIVAT, can increase the physical
distance of the aliased voxels. Compared to techniques without the image-shifting method,
like the SENSE and mSPECS, the mSPECS-CAIPIRINHA and the mSPECS-CAIPIVAT
methods can provide reconstructed brain images with more anatomic details and the reduced
temporal variance.

We also compared the average SNR values for different tissue types and the average g-
factor values of these four models with respect to the different through-plane acceleration
factors (Xu and Rowe (2024)). Moreover, comparing the g-factor penalty among four models
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with respect to different acceleration factors, the mSPECS-CAIPIVAT model has the lowest
value, which means that the mSPECS-CAIPIVAT model has a lower noise amplification level
compared with other models. Thus, the image reconstruction method with slice-wise image
shift techniques, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT, produce better results
by increasing the SNR values and decreasing the variance of the reconstructed images. How-
ever, as shown in Fig. 10, increasing the through-plane acceleration factor leads to a loss in
the average CNR values and the mean activation values of the task block when comparing the
mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models. With TPA increasing
from 2 to 8, the mSPECS model shows a 56% decrease in CNR and a 54% decrease in mean
activation. For the mSPECS-CAIPIRINHA model, CNR decreases by 55% and mean activa-
tion by 51%, while the mSPECS-CAIPIVAT model shows decreases of 51% for both CNR
and mean activation. Thus, comparing these four models, the SENSE model yields the worst
results with strong inter-slice signal leakage. Compared to the mSPECS model, the mSPECS-
CAIPIRINHA and the mSPECS-CAIPIVAT models have higher SNR and CNR values with
lower g-factor penalty under circumstance with high acceleration factors. Similar conclusion
can be made from Fig. 13, comparing with the mSPECS model, the slice-wise image shift
techniques provide us higher SNR value for ROI and lower g-factor penalty under the circum-
stance with high acceleration factor like TPA=8. However, we still need to face the situation
where, with the high acceleration factor, the loss of the CNR value and the activation detec-
tion rate becomes significant. Therefore, by comparing the average CNR values for ROI and
activation detection maps among the four models, the mSPECS-CAIPIVAT model provides
us the best CNR and activation detection map.

By roughly comparing the results from the simulation reconstruction section and the ex-
perimental reconstruction section of the mSPECS-CAIPIRINHA model and the mSPECS-
CAIPIVAT model and to make a fair decision through a trade-off of the increment in the
SNR and decrement of the CNR value and the activation detection with respect to different
acceleration factors, we suggest the optimal through-plane acceleration factor to be TPA=4.
Under this circumstance, the mSPECS-CAIPIVAT model can provide reconstructed images
with high SNR information, but still be able to capture the activation signal. Our suggestion is
consistent with the optimal multiband factor MB=4 from previous work (Risk et al. (2021)).
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SUPPLEMENTARY MATERIAL

Supplement to “A Bayesian CAIPIVAT Approach with Through-Plane Acceleration
to Enhance Efficiency of Simultaneously Encoded Slice Acquisition in FMRI”
The supplement to this paper provides additional simulation results and experimental results,
including the magnitude and phase of the reconstructed images of even slices from four
models, the SNR and g-factor, the CNR and activation detection maps.
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S-1. Non-Task Simulated Reconstruction Results. In Subsection 3.2 of the main
paper, we presented the temporal mean magnitude and temporal mean phase of the re-
constructed axial brain images from odd slices using the SENSE, mSPECS, mSPECS-
CAIPIRINHA, and mSPECS-CAIPIVAT models, and compared them with the true noiseless
magnitude and phase. Fig. S-1 displays the temporal mean magnitude and temporal mean
phase for the even slices of the reconstructed axial brain images with TPA=2. Significant sig-
nal leakage can be observed in the reconstructed images from the SENSE model, whereas
the temporal mean magnitude and temporal mean phase from the mSPECS, mSPECS-
CAIPIRINHA, and mSPECS-CAIPIVAT models closely match the true noiseless magnitude
and phase. To further analyze the performance of each model, Fig. S-2 illustrates the temporal
variance of the reconstructed images from the SENSE, mSPECS, mSPECS-CAIPIRINHA,
and mSPECS-CAIPIVAT models at different acceleration factors for slice 3. When compar-
ing these four models, we observe a decreasing temporal variance from the SENSE model

FIG S-1. The true noiseless simulated magnitude and phase of the axial brain images compared with the tem-
poral mean magnitude and temporal mean phase from SENSE, mSPECS, mSPECS-CAIPIRINHA and mSPECS-
CAIPIVAT model for even slices with TPA=2.
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FIG S-2. The temporal variance of SENSE, mSPECS, mSPECS-CAIPIRINHA, and mSEPCS-CAIPIVAT model
with different acceleration factors of slice 3.

to the mSPECS-CAIPIVAT model at the same acceleration factor. As the acceleration fac-
tor increases, the temporal variance decreases for the mSPECS, mSPECS-CAIPIRINHA,
and mSPECS-CAIPIVAT models, while it increases for the SENSE model. Among the three
mSPECS-based models, the mSPECS-CAIPIVAT model achieves the lowest temporal vari-
ance.

To evaluate and compare the changes in SNR and g-factor values for each tissue type across
different methods and through-plane acceleration factors, Table S-1 presents the average SNR
values for cerebral spinal fluid (CSF), gray matter (GM), and white matter (WM), as well as
the average g-factor penalty for the whole brain. From Table S-1, we observe that the average
SNR for CSF and GM in the standard SENSE model decreases slightly as the through-plane
acceleration factor increases, while the average SNR for WM remains unchanged. In con-
trast, the average SNR for all tissue types in the other three models increases significantly with
higher acceleration factors. Furthermore, the average g-factor for the SENSE model increases
dramatically as the acceleration factor increases, compared to the modest increase in the av-
erage g-factor observed in the mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models. Notably, compared to the mSPECS model, the two slice-wise image shift models,
mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT, exhibit lower average g-factor penalties,
with the mSPECS-CAIPIVAT model showing the lowest average g-factor.

S-2. Task Simulated Reconstruction Results. In Subsection 3.3 of the main paper, we
presented the CNR map for the SENSE, mSPECS, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT models for odd slices at TPA=2, along with the average CNR value and standard
deviation for the region of interest (ROI). Fig. S-3 displays the CNR maps and task activa-
tion maps for even slices for the SENSE, mSPECS, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT models with an acceleration factor of TPA=2. Similar to the conclusion drawn in
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TABLE S-1
The average SNR value for cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) with the
average g-factor value of the whole brain with respect to SENSE, mSPECS, mSPECS-CAIPIRINHA, and

mSPECS-CAIPIVAT methods with through-plane acceleration factors TPA=2, TPA=4, and TPA=8 for slice 3.

SENSE mSPECS
Acceleration CSF-SNR GM-SNR WM-SNR g-factor CSF-SNR GM-SNR WM-SNR g-factor
TPA=2 2.21 1.96 1.93 16.31 57.23 27.44 21.48 1.28
TPA=4 1.92 1.92 1.91 23.34 76.53 36.34 28.44 1.39
TPA=8 1.92 1.91 1.92 32.94 106.62 50.15 39.34 1.39

mSPECS-CAIPIRINHA mSPECS-CAIPIVAT
Acceleration CSF-SNR GM-SNR WM-SNR g-factor CSF-SNR GM-SNR WM-SNR g-factor
TPA=2 62.28 29.56 23.35 1.15 63.01 30.11 23.71 1.14
TPA=4 78.87 38.02 29.71 1.35 80.73 38.61 30.43 1.30
TPA=8 109.08 52.31 40.80 1.34 111.82 53.41 42.94 1.31

FIG S-3. A. The CNR map and the average CNR value and standard deviation of CNR of ROI for SENSE,
mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model for even slices with TPA=2. B. The activa-
tion detection map and the average and standard deviation of z-score of ROI for SENSE, mSPECS, mSPECS-
CAIPIRINHA and mSPECS-CAIPIVAT model for even slices with TPA=2.

the main paper, the CNR maps and task activation maps show that the SENSE model strug-
gles to capture the activation signal in the left-hand side motor cortex within the brain images.
In contrast, the other three models effectively capture the clear simulated activation blocks.
Additionally, the slice-wise image shift techniques yield a higher average z-score for the
ROI compared to the mSPECS model. The mSPECS-CAIPIVAT model provides the highest
average z-score for the ROI, indicating that it performs best in detecting activation signals.

S-3. Non-Task Experimental Reconstruction Results. In Subsection 4.2 of the main
paper, we display the temporal mean magnitude and mean phase of the reconstructed images
from the reference, SENSE, mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT
models for odd slices with an acceleration factor of TPA=2. Figure S-4 presents the tempo-
ral mean magnitude and mean phase of the even slices of axial brain images from the ref-
erence, SENSE, mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models with
TPA=2. Aliased artifacts from other slices are clearly visible in the magnitude and phase re-
constructed brain images from the SENSE model, whereas the mean magnitude and mean
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FIG S-4. The temporal mean magnitude and temporal mean phase of the axial brain images from the refer-
ence, SENSE, mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT for even slices with acceleration factor
TPA=2.

phase from the mSPECS, mSPECS-CAIPIRINHA, and mSPECS-CAIPIVAT models are
closely aligned with the reference magnitude and phase. From Fig. S-5, we observe that
the temporal variance from the SENSE model increases with increasing acceleration factor,
whereas the temporal variance from the mSPECS, mSPECS-CAIPIRINHA, and mSPECS-
CAIPIVAT models decreases as the acceleration factor increases. Furthermore, when com-
paring the mSPECS model with the two slice-wise image shift techniques, the mSPECS-
CAIPIRINHA and mSPECS-CAIPIVAT models provide lower temporal variance, with the
mSPECS-CAIPIVAT model yielding the lowest temporal variance results.

S-4. Task Experimental Reconstruction Results. Fig. S-6A shows the CNR value
map for odd axial brain slices from the SENSE, mSPECS, mSPECS-CAIPIRINHA, and
mSPECS-CAIPIVAT models with an acceleration factor of TPA=2. The average and stan-
dard deviation of the CNR values for the ROI are also shown in Fig. S-6A. From Fig. S-6A,
it is evident that the SENSE model cannot detect any activation blocks in the right motor
cortex brain area. In contrast, the other three models, mSPECS, mSPECS-CAIPIRINHA,
and mSPECS-CAIPIVAT can detect clear activation blocks with detailed anatomical struc-
tures. When comparing the average CNR values of the ROI, the two slice-wise image shift
techniques, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT, have higher values than the
mSPECS model. Fig. S-6B presents the activation block detection maps from the four mod-
els with an acceleration factor of TPA=2. The average and standard deviation of the z-scores
for the ROI are also shown in Fig. S-6B. Similar to the CNR maps, the SENSE model fails
to detect any activation blocks within the brain. The mSPECS, mSPECS-CAIPIRINHA, and
mSPECS-CAIPIVAT models capture the activation signals with clear shapes and anatomical
structures. The average z-score of the ROI from the two slice-wise image shift techniques is
higher than that of the mSPECS model, with the mSPECS-CAIPIVAT model providing the
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highest average z-score for the ROI. A similar conclusion can be drawn from the CNR maps
and task activation detection maps for even slices of the experimental reconstructed images.

FIG S-5. The temporal variance of SENSE, mSPECS, mSPECS-CAIPIRINHA, and mSEPCS-CAIPIVAT model
with different acceleration factors of slice 3.

FIG S-6. A. The CNR map and the average CNR value and standard deviation of CNR of ROI for SENSE,
mSPECS, mSPECS-CAIPIRINHA and mSPECS-CAIPIVAT model for odd slices with TPA=2. B. The activa-
tion detection map and the average and standard deviation of z-score of ROI for SENSE, mSPECS, mSPECS-
CAIPIRINHA and mSPECS-CAIPIVAT model for odd slices with TPA=2.
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