
JOURNAL OF APPLIED STATISTICS
2025, VOL. 52, NO. 6, 1299–1314
https://doi.org/10.1080/02664763.2024.2422392

APPLICATION NOTE

Efficient fully Bayesian approach to brain activity mapping
with complex-valued fMRI data

Zhengxin Wanga, Daniel B. Roweb, Xinyi Lia and D. Andrew Browna

aSchool of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA; bDepartment of
Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI, USA

ABSTRACT
Functional magnetic resonance imaging (fMRI) enables indirect
detection of brain activity changes via the blood-oxygen-level-
dependent (BOLD) signal. Conventional analysismethodsmainly rely
on the real-valued magnitude of these signals. In contrast, research
suggests that analyzing both real and imaginary components of
the complex-valued fMRI (cv-fMRI) signal provides a more holistic
approach that can increase power to detect neuronal activation. We
propose a fully Bayesian model for brain activity mapping with cv-
fMRI data. Our model accommodates temporal and spatial dynam-
ics. Additionally, we propose a computationally efficient sampling
algorithm, which enhances processing speed through image parti-
tioning. Our approach is shown to be computationally efficient via
image partitioning and parallel computation while being compet-
itive with state-of-the-art methods. We support these claims with
both simulated numerical studies and an application to real cv-fMRI
data obtained from a finger-tapping experiment.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging tech-
nique that records signals generated by changes in blood oxygenation levels associated
with neuronal activity. This so-called blood-oxygenation-level-dependent (BOLD) sig-
nal thus facilitates indirect monitoring of brain activity over time [3]. During task-based
fMRI experiments, subjects experience intermittent stimuli, such as viewing images or fin-
ger tapping. As the brain responds to a particular stimulus, neuronal activity in certain
regions intensifies, leading to increased oxygen consumption. This metabolic change sub-
sequently increases the BOLD response in that region. These BOLD fluctuations impact
local magnetic susceptibility, thereby affecting the resulting fMRI signal [18]. Empirical
studies have demonstrated that the expected BOLD response in an activated brain region,
in reaction to binary ‘boxcar’ stimuli (repeated identical on-off periods), can be accurately
modeled by convolving the boxcar 0-1 stimulus variable with a gamma or double-gamma
hemodynamic response function (HRF) [6,19].
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Signals generated by magnetic resonance imaging machines are complex-valued with
both real and imaginary components due to forward and inverse Fourier transformations
that occur in the presence of phase imperfections [7].However,most fMRI studies for brain
activity mapping only analyze the magnitudes of the MR signals, as the phase components
are typically discarded as part of preprocessing. To identify active voxels in response to
a stimulus, a linear model is commonly used [12,18]. Specifically, any voxel (volumetric
pixel) whose BOLD signal magnitude significantly changes over time in response to the
stimulus will be considered an active voxel. The magnitude-only approach carries several
limitations. For one, the magnitude-only models typically operate on the assumption of
normally distributed errors. However, even when the original real and imaginary compo-
nents of the data possess suchGaussian errors, themagnitude follows a Ricean distribution
that is approximately normal only for large signal-to-noise ratios (SNRs) [14,28]. Large
SNRs are not always present, making the Gaussian assumption less tenable, thereby los-
ing power. Moreover, by discarding phase information, we ignore half of the available data
that may contain information about the underlying neurophysiological processes. On the
other hand, using complex-valued fMRI (cv-fMRI) data for analysis has shown promising
results. By fully incorporating both real and imaginary components, cv-fMRI studies allow
for more comprehensive and accurate models with greater power to detect task-related
neuronal activity. Such models often handle SNR more appropriately and make full use of
the data at hand, thereby yielding potentially more informative insights into brain activity
[1,17,29–31,33–35,41].

To determine task-related brain activation maps from fMRI signals, fully Bayesian
approaches stand out due to their ability to flexibly model spatial and temporal correla-
tions. In this paper, we propose a fully Bayesian model for brain activity mapping using
single-subject cv-fMRI time series. Specifically, we aim to determine which voxels’ fMRI
signal magnitudes (assuming constant phase) change significantly in response to a par-
ticular task, as well as the amount of the change. An effective Bayesian approach for fMRI
data analysis should fully utilize both the real and imaginary parts of the fMRI data, capture
spatiotemporal correlations, provide high prediction accuracy, and be computationally effi-
cient. Although previous studies havemade progress in some of these areas [4,22,37,40,42],
no singlemodel has yet achieved all of these goals. Our proposed approach uses autoregres-
sivemodels for the temporal correlations andGaussianMarkov randomfields [GMRFs; 36]
to capture spatial associations in the cv-fMRI data. Moreover, we employ image partition-
ing and parallel computation to facilitate computationally efficient Markov chain Monte
Carlo [MCMC; 13] algorithms.

The remainder of the paper is organized as follows. Section 2 details our proposed
model, outlines the priors and posteriors, and explains our strategy for brain partitioning.
We demonstrate estimation and inference in Section 3, where we use simulated datasets
to test the performance of our model in terms of the determination of brain activity
maps. Section 4 shows the results of implementing our proposed approach on cv-fMRI
data obtained from real finger-tapping experiment. Lastly, Section 5 summarizes our find-
ings, highlights our contributions, and outlines potential work for future research in this
domain.
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2. Model

In this section, we present our model for brain activity mapping with cv-fMRI data,
including an equivalent real-valued representation.We also describe the brain parcellation
strategy for parallel computation. We derive the posterior distribution of the parameters
of interest, as well as an MCMC algorithm for accessing it.

2.1. Model formulation

FMRI, both real- and complex-valued, are known to exhibit temporal correlations. This
can be captured by autoregressive (AR) error structure. Thus, our complex-valued model
is based on that proposed by Lee et al. [17], with some modifications. For the vth voxel,
v = 1, . . . ,V , the measured signal is modeled as

yv = xβv + rvρv + εv, (1)

where all terms are complex-valued except x. The term yv ∈ C
T is the vector of signals at

voxel v collected at evenly-spaced time points, where T is the total observed time points,
and x ∈ R

T is the vector of the expected BOLD response associated with a particular stim-
ulus, with βv ∈ C the associated regression coefficient. We assume that low-frequency
trends in yv have been removed by preprocessing, and that both yv and x are centered.
The term rv ∈ C

T is the vector of lag-1 prediction errors for the assumed AR(1) model,
with ρv ∈ C the scalar autoregression coefficient. The AR(1) model has been shown to
often be sufficient for capturing temporal dynamics in fMRI data [8]. We suppose that the
error term εv follows the standard complex normal distribution, that is, εv ∼ CNT(μ

v =
0,�v = 2σ 2

v I,Cv = 0), where CNT denotes a complex normal distribution of dimension
T with mean μv, complex-valued, Hermitian and non-negative definite covariance matrix
�v, and complex-valued symmetric relationmatrixCv. In the appendix, we provide details
similar to those presented by Rowe [31] that demonstrate the equivalence between the
model of [17] and the cv-fMRI model proposed by Rowe and Logan [33] with constant
phase.

Picinbono [24] and Yu et al. [41] provide an equivalent real-valued representation of
model (1) as (
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yvIm

)
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where all terms are real-valued. Using the symbols in the underbraces, this is more
concisely written as

yvr = Xrβ
v
r + Rv

rρ
v
r + εvr , εvr ∼ N2T(0,�v),

where
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and

�v
Re,Re = 1

2Re(�
v + Cv) = σ 2

v IT , �v
Re,Im = 1

2 Im(−�v + Cv) = 0T ,
�v

Im,Re = 1
2 Im(�

v + Cv) = 0T , �v
Im,Im = 1

2Re(�
v − Cv) = σ 2

v IT .

Observe that our assumption on the covariance structure here simply means that �v =
σ 2
v I2T . We assign the voxel- specific variances σ 2

v and autoregression coefficient ρv
r Jef-

freys prior and uniform prior, respectively. That is, p(σ 2
v ) = 1/σ 2

v and p(ρv
r) = 1, for

v = 1, . . . ,V .

2.2. Brain parcellation and spatial priors

In addition to temporal dependence, fMRI signals also exhibit spatial associations. These
spatial dependencies can originate from several sources, including the inherent noise of
the data [16], unmodeled neuronal activation [5], and preprocessing steps such as spatial
normalization [11], image reconstruction [32], and spatial smoothing [20]. Hence voxels,
as artificial partitions of the human brain, often exhibit behavior similar to that of their
neighbors. These spatial dependencies can be modeled by imposing spatial structure in
the prior on βv or the hyperparameters in such priors.

Brain parcellation [22] propose a brain parcellation technique that seeks to identify
active voxels within each parcel/partition, and subsequently combines these results to gen-
erate a comprehensive whole-brain activity map. The authors partition their brain images
into initial parcels of size approximately 500 voxels each. If a parcel is found to be too large
or too small, it is broken down into voxels and these voxels aremerged into adjacent parcels
while ensuring the merged parcels contain less than 1000 voxels each. Alternatively, the
partitioning strategy could be based on anatomical atlases such as Brodmann areas [2,38],
or based on equal geometric size in the image rather than equal numbers of contained vox-
els. Musgrove et al. [22] remark that this method of partitioning induces negligible edge
effects, that is, the classification of voxels on the borders of parcels is not strongly affected.

In our study, we partition the two- or three-dimensional fMRI image into G parcels
of approximately equal geometric size. We then process each parcel independently using
the same model and method, facilitating parallel computation and hence computational
efficiency. We find that our parcellation strategy incurs minimal edge effects, echoing the
observations of [22].We discuss the optimal number of parcels and corresponding number
of voxels in each parcel in the appendix.

Prior distribution of βv For parcel g, g = 1, . . . ,G, containing Vg voxels, a voxel v (v =
1, . . . ,Vg) is classified as an active voxel under the stimulus if its regression coefficient of
slope βv = βvRe + iβvIm �= 0, where i is the imaginary unit. As this is a variable selection
problem, we use a spike-and-slab prior [21,41]:

βv | γv ∼ γvCN1(0, 2τ 2g , 0)+ (1 − γv)I0, (2)

where I0 denotes the point mass at 0. The binary indicator γv ∈ {0, 1} reflects the status of
a voxel. Specifically, γv = 1 indicates that voxel v is responding to the task, while γv = 0
otherwise. We take τ 2g ∈ R to be constant across all voxels within each parcel. Yu et al. [41]



JOURNAL OF APPLIED STATISTICS 1303

shows that a real-valued representation of (2) is given by:

βv
r =

(
βvRe
βvIm

)
| γv ∼ N2(0, γvτ 2g I).

The parcel specific variances τ 2g are assigned a Jeffreys prior, p(τ 2g ) = 1/τ 2g , g = 1, . . . ,G.
Spatial prior on γv To further reduce computational effort and to capture pertinent

spatial structure with a low-dimensional representation, we employ the sparse spatial gen-
eralized linearmixedmodel (sSGLMM) prior, as developed byHughes andHaran [15] and
Musgrove et al. [22], which is in turn an extension of the the prior proposed by Reich et al.
[27]. Such priors use GMRFs and reduce the dimension by examining the spectra of the
associated Markov graphs. For voxel v (v = 1, . . . ,Vg) within parcel g (g = 1, . . . ,G), we
suppose that

γv | ηv iid∼ Bern {	(ψ + ηv)} ,
ηv | δg ∼ N1

(
m′

vδg , 1
)
,

δg | κg ∼ Nq
{
0, (κgMg

′QgMg)
−1} ,

κg ∼ Gamma (aκ , bκ) , (3)

where	(·) denotes the CDF of standard normal distribution and ψ ∈ R is a fixed tuning
parameter. The terms m′

v, Mg , and Qg are derived from the adjacency matrix Ag of par-
cel g. The adjacency matrix Ag ∈ {0, 1}Vg×Vg is such that Ag,uv = 1 if voxels u and v are
neighbors in the image, and 0 otherwise, where ‘neighbor’ is defined by the user. Typically,
voxels that share an edge or a corner are taken to be neighbors. The matrix Mg ∈ R

Vg×q

contains the first q principal eigenvectors of Ag , typically with q � Vg . The term m′
v is a

1 × q row vector of ‘synthetic spatial predictors’ [15] corresponding to the vth row ofMg .
The matrix Qg = diag(Ag1Vg )− Ag is the graph Laplacian. The term δg is a q × 1 vector
of spatial random effects, and κg is the spatial smoothing parameter.

The design of the prior distribution for binary indicator γv aims to capture both spatial
dependencies and the sparsity of active voxels. This reflects the hypothesis that a voxel is
more likely to be active/inactive if their neighboring voxels are also active/inactive [12,37].
Furthermore, in the context of simple tasks, only a small percentage of voxels across the
entire brain are expected to be active [9,26]. Thus the sSGLMM prior is well-suited to the
work and compatible with the parcellation approach. Hughes and Haran [15] remark that
Mg is capable of capturing smooth patterns of spatial variation at various scales.

The parameters ψ , q, aκ , and bκ are fixed a priori and determined based on several
factors. In our simulation studies, we examine various values of ψ to identify the one pro-
viding the highest prediction accuracy. For real human datasets, the initial value of ψ is
set to	−1(0.02) = −2.05 for all voxels, following the suggestion of [22]. This value can be
further adjusted based on the proportion of active voxels detected in previous experiments.
We set q = 5 (when Vg is approximately 200) per [15], indicating that such a reduction is
often feasible. We find there is no detectable difference using larger q. The shape and scale
parameters of the gamma distribution, aκ = 1

2 and bκ = 2000 respectively, are selected to
yield a large mean for κg (aκbκ=1000). This choice serves to reduce the chances of creating
misleading spatial structures in the posterior distribution,mitigating the risk of identifying
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spurious brain activity patterns that could be attributed to noise or other confounding
factors.

2.3. MCMC algorithm and posterior distributions

We use Gibbs sampling to obtain the joint and marginal posterior distributions of param-
eters of interest. The necessary full conditional distributions and derivations are outlined
in the appendix. The fixed-width approach proposed by Flegal et al. [10] is used to diag-
nose convergence. Specifically, we consider the algorithm to have converged if the Monte
Carlo standard error (MCSE) of any γv is less than 0.05. In our numerical studies that fol-
low, we run 103 iterations. We take the means of the sampled parameters (after discarding
burn-in iterations) as the point estimates. Active voxels are determined by γ̂v > 0.8722
[37], and β̂vRe and β̂

v
Im are used to construct the estimated magnitude maps, computed as√

(β̂vRe)
2 + (β̂vIm)

2.

3. Simulation studies

In this section, we simulate two types of two-dimensional complex-valued time series of
fMRI signals: data with iid noise and data with noise following AR(1) temporal depen-
dence. We evaluate three models based on their performance in both classification and
estimation fidelity. The models under consideration include:

• The model of [22], which uses a sSGLMM prior for magnitude-only data and incorpo-
rates brain parcellation (denoted as MO-sSGLMM).

• The model of [41] for cv-fMRI, which does not incorporate a spatial prior or brain
parcellation (denoted as CV-nonSpatial). In this model, the prior for γv in model (3) is

taken to be γv | ηv iid∼ Bern(ηv), ηv ∼ Beta(1, 1).
• Our proposed model, which uses an sSGLMM prior for complex-valued data and

incorporates brain parcellation (denoted as CV-sSGLMM).

All three models are fully Bayesian, suitable for autoregressive noise, and leverage Gibbs
sampling to approximate their respective posterior distributions. Both MO-sSGLMM and
CV-sSGLMM use the best combination of parcel number G and tuning parameter ψ in
terms of the prediction accuracy (G = 9 andψ = 	−1(0.47) for both), and determine the
active voxels by thresholding at γ̂v > 0.8722. The impacts of the tuning parameter ψ and
the number of parcels G are provided in the appendix. The CV-nonSpatial model uses a
threshold of 0.5, as suggested by Yu et al. [41].

All of the results are generated by running the code on a custom-built desktop computer
with an Intel Core i9-9980XE CPU (3.00GHz, 3001Mhz, 18 cores, 36 logical processors),
NVIDIA GeForce RTX 2080 Ti GPU, 64 GB RAM, and operating on Windows 10 Pro.

3.1. Designed stimulus, expected BOLD response, and true activation/magnitude
map

We use the same pattern of stimulus as simulated by Yu et al. [41]. The designed stimu-
lus is a binary signal s consisting of five epochs, each with a duration of 40 time points,
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Figure 1. (a) Designed stimulus; (b) Expected BOLD response; (c) True activation map; (d) True magni-
tude map.

Table 1. Characteristics of true maps.

Map size Number of active regions Radius Shape Decay rate (�)

50×50 3 2 to 6 sphere or cube 0 to 0.3

resulting in a total of T = 200 time points. Within each epoch, the stimulus is turned on
and off for an equal duration of 20 time points. The expected BOLD response, denoted
as x, is generated by convolving the stimulus signal with a double-gamma HRF. Both the
designed stimulus and expected BOLD response, depicted in Figure 1(a,b), are shared for
all simulated datasets.

To simulate 100 replicates on a 50 × 50 panel, we use the specifyregion function
in the neuRosim library [39] in R [25]. Each map features three non-overlapping active
regions with varying characteristics such as centers, shapes, radii, and decay rates as shown
in Table 1. The central voxel of an active region has a magnitude of one, while the magni-
tudes of the surrounding active voxels decrease based on their distance to the center and
the decay rate �. These magnitudes are further scaled by a multiplier of 0.04909 (which
determines to the contrast-to-noise ratio via Equation (4)), yielding a range of 0 to 0.04909.
Examples of the true activation map and true magnitude map are shown in Figure 1(c,d).

3.2. Simulating fMRI signals with non-AR noise and AR(1) noise

We simulate 100 datasets with iid noise using the expected BOLD response and each true
magnitude map for CV-nonSpatial and CV-sSGLMM. We then extract the moduli to use
with MO-sSGLMM. The cv-fMRI signal of voxel v at time t is simulated by:

yvt,Re = (β0 + βv1xt)cos(θ)+ εvt,Re, εvt,Re ∼ N (0, σ 2),

yvt,Im = (β0 + βv1xt)sin(θ)+ εvt,Im, εvt,Im ∼ N (0, σ 2), (4)

where xt represents the expectedBOLDresponse fromFigure 1(b) at time t, andβv1 refers to
the truemagnitude of voxel v taken from Figure 1(d). The phase, θ , is set to be the constant
π/4, and σ is set to the constant 0.04909. As a result, the maximum contrast-to-noise ratio
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(CNR) is max βv1/σ = 1. We determine the intercept β0 based on the signal-to-noise ratio
(SNR) such that SNR = β0/σ = 10, leading to β0 = 0.4909.

Next, we generate 100 datasets with AR(1) noise in a similar manner as Equation (4).
The difference lies in the simulation of error terms, which is done so that(

εvt,Re
εvt,Im

)
=

(
0.2 −0.9
0.9 0.2

) (
εvt−1,Re
εvt−1,Im

)
+

(
ξ vRe
ξ vIm

)
,

(
ξ vRe
ξ vIm

)
∼ N2

(
0, σ 2I

)
.

This is a real-valued equivalent of the complex AR(1) error model,

εvt = (0.2 + 0.9i)εvt−1 + ξv, ξv ∼ CN1(0, 2σ 2, 0). (5)

3.3. Results

Results from our simulations are displayed in Figure 2, which depicts the estimated maps
for a single dataset. The yellow grid lines correspond to the partitions in cases of brain par-
cellation. The performance across the three models reveals a consistent trend. All models
performwell for the iid case, whileMO-sSGLMM fails to detect any activity in the presence
of theAR(1) noise. This is because the complex-valuedAR structure in Equation (5) cannot
be recovered after extracting themoduli of the data. Further quantitative results, such as the
receiver operating characteristic area under curve (ROC-AUC), true vs estimated magni-
tude regression slope, the concordance correlation coefficient (CCC), and true vs estimate
pairwise mean square error (X-Y pairwise MSE), are illustrated in Figure 3. These offer a
comprehensive performance evaluation in terms of classification and estimation. Figure 3
shows similar comparative performance as can be gleaned fromFigure 2. All procedures do
well in the presence of iid noise, whereas both complex-valued models considerably out-
perform the magnitude-only model when the errors are correlated. In each case, we can
observe slightly better MSE, CCC, and estimation fidelity (Figure 3(b,c,d,f,g,h)), but these
are small when compared to the outperformance of the complex-valued models versus
magnitude only.

Table 2 summarizes the average metrics across 100 iid noise and 100 AR(1) noise
replicated datasets. In the iid case, the F1-score, slope, CCC, and X-Y MSE clearly
favor MO-sSGLMM, followed by our CV-sSGLMM, and CV-nonSpatial ranks last. This
demonstrates the proficiency of MO-sSGLMM on datasets where the necessity to capture
complex-valued noise dependence is not crucial. The ROC-AUC score of MO-sSGLMM
is comparable to that of CV-nonSpatial, and slightly surpasses that of our proposed
CV-sSGLMM.

In the analysis of AR(1) datasets, our proposed CV-sSGLMM shows a clear advantage
over the two competitors. Due to MO-sSGLMM’s limitations already shown, we focus our
comparison here between CV-nonSpatial and CV-sSGLMM. The CV-sSGLMM outper-
forms CV-nonSpatial acrossmultiple metrics, such as F1-score, slope, CCC, and X-YMSE.
The superior performance of the CV-sSGLMM in terms of both classification and estima-
tion can be attributed to the inclusion of the sSGLMM prior. In addition to our results, the
value of using spatial priors to enhance themodel’s performance on correlated datasets has
been demonstrated by Yu et al. [42]. Perhaps the most notable and favorable performance
of our proposed model is in the computational efficiency due to the brain parcellation
and parallel computation, 5.39 s with CV-sSGLMM versus 42.2 s for the CV-nonSpatial.
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Figure 2. (a–c) are estimated activation maps for a non-AR dataset as produced by the MO-sSGLMM,
CV-nonSpatial, and CV-sSGLMM models, respectively. (d–f) are estimated activation maps for an AR(1)
dataset, as derived from the same models. (g–l) are the corresponding estimated magnitude maps.
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Table 2. Summary of average metrics across 100 non-AR and 100 AR(1) datasets produced by the MO-sSGLMM, CV-nonSpatial, and CV-sSGLMMmodels.

AR type Mode Accuracy Precision Recall F1 Score AUC Slope CCC X-Y MSE Time (s)

non-AR MO-sSGLMM 0.9693 0.9440 0.8160 0.8741 0.9774 0.8586 0.9008 2.06e−5 2.4
CV-nonSpatial 0.9540 0.9632 0.6687 0.7853 0.9751 0.6771 0.8222 3.04e−5 41.9
CV-sSGLMM 0.9622 0.9277 0.7742 0.8424 0.9625 0.8186 0.8627 2.54e−5 5.51

AR(1) CV-nonSpatial 0.9765 0.9733 0.8407 0.9012 0.9927 0.8040 0.9096 1.69e−5 42.2
CV-sSGLMM 0.9797 0.9381 0.9039 0.9201 0.9879 0.8816 0.9145 1.60e−5 5.39
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Figure 3. (a–d) are the ROC curves and plots comparing true versus estimatedmagnitudes for a non-AR
dataset. (e–h) are analogous plots for an AR(1) dataset.

In other words, we obtain results as good or better than current state-of-the-art, but are
able to do so 87% faster.

4. Analysis of human CV-fMRI data

In this study, we consider the fMRI dataset that is analyzed by Yu et al. [41], which is
acquired during a unilateral finger-tapping experiment on a 3.0-T General Electric Signa
LXMRI scanner. The experimental paradigm involves 16 epochs of alternating 15s on and
15s off periods, leading to T = 490 time points, including a warm-up period. The data are
sourced from seven slices, each of size 96 × 96. For the MO-sSGLMM and CV-sSGLMM
models, we set the parcel number to G = 25 and again use a threshold of 0.8722 on the
inclusion probabilities. The tuning parameterψ is set to	−1(0.02) and	−1(0.1), respec-
tively. For CV-nonSpatial, the threshold is set to 0.5 as before. The consequent activation
and magnitude maps generated from these analyses are depicted in Figures 4 and 5. The
computation times of MO-sSGLMM, CV-nonSpatial, and CV-sSGLMM are 10.96, 305.13,
and 26.45 seconds, respectively. Considering the parallel computation is gated by a 16-core
CPU, the advantage becomes even more pronounced when handling larger datasets. Our
CV-sSGLMM consistently demonstrates superior prediction power, particularly evident
in the weakly active areas observed in slices 1 and 7. The active regions identified through
our CV-sSGLMMmethod align with those reported in [41], reinforcing the validity of our
results and the efficacy of our proposed approach. More importantly, the active regions
correspond to areas of the brain that are known to typically be engaged in finger-tapping
tasks, affirming the biological relevance of our findings.

5. Conclusion

In this study, we propose an innovative fully Bayesian approach to brain activity map-
ping using complex-valued fMRI data. The proposed model, which incorporates both the



1310 Z. WANG ET AL.

Figure 4. Estimated activation maps for a real human brain dataset as produced by the MO-sSGLMM,
CV-nonSpatial, and CV-sSGLMMmodels.
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Figure 5. Estimated magnitude maps for a real human brain dataset as produced by the MO-sSGLMM,
CV-nonSpatial, and CV-sSGLMMmodels.
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real and imaginary components of the fMRI data, provides a holistic perspective on brain
activity mapping, overcoming the limitations of the conventional magnitude-only anal-
ysis methods. This model showcases the potential to detect task-related activation with
higher accuracy. The adoption of an autoregressive error structure, together with spa-
tial priors, allows us to capture both temporal and spatial correlations in brain activity.
Moreover, the employment of brain parcellation and parallel computation significantly
enhances the model’s computational efficiency. Analyses of both simulated and real fMRI
data underscores the benefits of our approach, particularly when temporally-correlated,
complex-valued noise is present.

There are still areas for exploration. For instance, while we achieve significant results
by assuming the phases are constant, we believe that future Bayesian studies based on the
dynamic phase model of [29] should be proposed to account for potential phase variations
during brain activity [23]. Additionally, our current proposal assumes circular data, that
is, Cv = 0 for εv in model (1), implying that βvRe and β

v
Im are independent. It would be

prudent to develop a more generalized non-circular model where Cv �= 0 to account for
the possibility of non-circular data.
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1. Demonstrating the equivalence between models using real and
imaginary parts, and models using magnitude and phase

This appendix is influenced by [5], and seeks to demonstrate that, when there’s only
one stimulus:

• [2]’s model is approximately equivalent to [4]’s dynamic phase model when the
intercept in the magnitude is absent.

• [2]’s model is fully equivalent to [6]’s constant phase model.

For the first scenario, assuming no intercept in the magnitude, the vth voxel’s complex-
valued fMRI signal can be simulated using [4]’s dynamic phase model as per equation:

yvRe = Dv
Rexβ

v,

yvIm = Dv
Imxβ

v,

where yvRe and yvIm are simulated complex-valued fMRI vectors of length T , and x
is the expected BOLD response of length T with βv as the scalar magnitude. The
matrices Dv

Re and D
v
Im are T ×T and diagonal with cos (θ0 + θ1xt) and sin (θ0 + θ1xt)

as the tth diagonal element, which represent the dynamic phase. By equating this with
the means of the [2]’s model (without intercept), we have:

xβvRe = Dv
Rexβ

v,

xβvIm = Dv
Imxβ

v,

where βvRe and β
v
Im are the scalar real and imaginary parts of the regression coefficient,

and the maximum likelihood estimators of them are:

β̂vRe =
(
x′x
)−1

x′Dv
Rexβ

v,

β̂vIm =
(
x′x
)−1

x′Dv
Imxβ

v,

CONTACT D. Andrew Brown. Email: ab7@clemson.edu



then,

β̂v,2Re + β̂v,2Im =
[(
x′x
)−1

x′Dv
Rexβ

v
]2

+
[(
x′x
)−1

x′Dv
Imxβ

v
]2

= βv,2
(
x′x
)−2

[(
x′Dv

Rex
)2

+
(
x′Dv

Imx
)2]

= βv,2
(
x′x
)−2 [

x′Dv
Rexx

′Dv
Rex+ x′Dv

Imxx
′Dv

Imx
]

= βv,2
(
x′x
)−2 [

x′ (Dv
Rexx

′Dv
Re +Dv

Imxx
′Dv

Im

)
x
]
.

Notice that Dv
Rexx

′Dv
Re and Dv

Imxx
′Dv

Im are T × T symmetric matrices with the
following terms as the (i, j)th element, respectively:

xixj cos (θ0 + θ1xi) cos (θ0 + θ1xj),

xixj sin (θ0 + θ1xi) sin (θ0 + θ1xj).

Using the fact that cos (a) cos (b) + sin (a) sin (b) = cos (a− b), we have:

Dv
Rexx

′Dv
Re +Dv

Imxx
′Dv

Im = xx′ ⊙P,

where P is a T × T symmetric matrix and P(i,j) = cos (θ1 (xi − xj)), and ⊙ denotes
the point-wise product. It’s important to note that in both simulated and real data,
P closely approximates the all-ones matrix 1T×T . This is because the difference be-
tween xi and xj is typically small, even when considering the extreme values. After
multiplying this small difference with a small θ1 and then taking the cosine, the result
tends to be very close to 1. Thus,√

β̂v,2Re + β̂v,2Im ≈
√
βv,2 (x′x)−2 [x′ (xx′)x] = βv.

In this case, [2]’s model can be considered as approximately equivalent to [4]’s dynamic
phase model. For the second scenario, when the phase is constant and the intercept is
included in the magnitude, using [6]’s constant phase model to simulate the data, we
get:

yvRe = ΛvRe
(
1 x

)(βv0
βv1

)
,

yvIm = ΛvIm
(
1 x

)(βv0
βv1

)
,

where ΛvRe = cos (θ) IT×T and ΛvIm = sin (θ) IT×T . Upon equating this with the means
of the [2]’s model, we have:

(
1 x

)(βvRe,0
βvRe,1

)
= ΛvRe

(
1 x

)(βv0
βv1

)
,

(
1 x

)(βvIm,0
βvIm,1

)
= ΛvIm

(
1 x

)(βv0
βv1

)
.
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Since ΛvRe and ΛvIm don’t contain x, we can remove the means so that to remove the
intercept in the model, which yields:

xcβ
v
Re,1 = ΛvRexcβ

v
1 ,

xcβ
v
Im,1 = ΛvImxcβ

v
1 ,

where xc is the centered x. This becomes similar to the previous model:

β̂v,2Re,1 + β̂v,2Im,1 = βv,21

(
x′
cxc
)−2 [

x′
c

(
xcx

′
c ⊙P

)
xc
]

= βv,21

(
x′
cxc
)−2 [

x′
c

(
xcx

′
c

)
xc
]
= βv,21 ,

as P is exactly 1T×T now. Consequently, [2]’s model is found to be equivalent to [6]’s
constant phase model.

2. Full conditional posterior distributions in the CV-sSGLMM model for
Gibbs sampling

This appendix gives full conditional posterior distributions of γv, β
v
r , ρ

v
r , σ

2
v , τ

2
g , ηv,

δg, κg for Gibbs sampling. All derivations will omit the subscript of g (parcel index)
from the parcel-level parameters τ2g , δg, and κg, since all parcels run the algorithm
identically.

Full conditional distribution of γv

For the voxel v (v = 1, ..., V ):

p(γv = 1 | yvr ,βvr ,ρvr , σ2v , τ2, ηv) =
p(γv = 1 | ηv)

p(γv = 1 | ηv) + L0

L1
·p(γv = 0 | ηv)

,

where

L0 = p(yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2 | γv = 0),

L1 = p(yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2 | γv = 1).

To determine L0 and L1, which are the joint distributions of yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2 under
the condition of γv = 0 and γv = 1, respectively, we recall the CV-sSGLMM model:

yv = xβv + rvρv + εv, εv ∼ CNT (0, 2σ
2
vI,0).

Applying Prais-Winsten transformation (order one backward operator) on yv and x,
we have:

yv∗ = yvnow − ρvyvlag1,

xv∗ = xnow − ρvxlag1,

where yvnow and yvlag1 are vectors containing the last and the first T − 1 elements in
yv, respectively. The vectors xnow and xlag1 are from x by the same rule of truncation.

3



Note that if a higher order autoregressive model is needed, such as AR(p) with p > 1,
the higher order backward operator can be applied, i.e., yv∗ = yvnow−ρv1yvlag1−ρv2yvlag2−
· · · − ρvpy

v
lagp. Now it becomes a model without autoregressive errors:

yv∗ = xv∗βv + εv, εv ∼ CNT−1(0, 2σ
2
vI,0),

with equivalent real-valued representation:(
yv∗Re
yv∗Im

)
︸ ︷︷ ︸

yv∗
r

=

(
xv∗Re −xv∗Im
xv∗Im xv∗Re

)
︸ ︷︷ ︸

Xv∗
r

(
βvRe
βvIm

)
︸ ︷︷ ︸

βv
r

+

(
εvRe
εvIm

)
︸ ︷︷ ︸

εv
r

.

Using the symbols in underbraces for a more compact form:

yv∗r = Xv∗
r βvr + εvr , εvr ∼ N2(T−1)(0, σ

2
vI).

Therefore, when γv = 1:

L1 = p(yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2) ∝ p(yvr | βvr ,ρvr , σ2v) p(βvr | τ2),

where

p(yvr | βvr ,ρvr , σ2v) = (2πσ2v)
− 2(T−1)

2 exp

{
− 1

2σ2v
(yv∗r −Xv∗

r βvr)
′(yv∗r −Xv∗

r βvr)

}
,

p(βvr | τ2) = (2πτ2)−
2

2 exp

{
− 1

2τ2
(βvr)

′(βvr)

}
.

Similarly, when γv = 0:

L0 = p(yvr ,β
v
r = 0,ρvr , σ

2
v , τ

2) ∝ p(yvr | βvr = 0,ρvr , σ
2
v) p(β

v
r = 0 | τ2),

where

p(yvr | βvr = 0,ρvr , σ
2
v) = (2πσ2v)

− 2(T−1)

2 exp

{
− 1

2σ2v
(yv∗r )′(yv∗r )

}
,

p(βvr = 0 | τ2) = 1.

Integrating βvr out of L1 yields:

L∗
1 = (2πσ2v)

− 2(T−1)

2 · σ
2
v

τ2
· exp

{
− 1

2σ2v
(yv∗r )′yv∗r

}{
det

[
(Xv∗

r )′Xv∗
r +

σ2v
τ2

I

]}− 1

2

· exp

{
1

2σ2v

[
(Xv∗

r )′yv∗r
] ′ [(Xv∗

r )′Xv∗
r +

σ2v
τ2

I

]−1 [
(Xv∗

r )′yv∗r
]}

.
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Then, the ratio is:

L0

L∗
1

=
τ2

σ2v

{
det
[
(Xv∗

r )′Xv∗
r + σ2

v

τ2 I
]} 1

2

exp

{
1

2σ2
v
[(Xv∗

r )′yv∗r ] ′
[
(Xv∗

r )′Xv∗
r + σ2

v

τ2 I
]−1

[(Xv∗
r )′yv∗r ]

} .
Using this ratio and p(γv = 1 | ηv) = Φ(ψ+ ηv), the full conditional distribution of γv
is:

π(γv | yvr ,βvr ,ρvr , σ2v , τ2, ηv) = Bern (P ) ,

where

P = p(γv = 1 | yvr ,βvr ,ρvr , σ2v , τ2, ηv) =
Φ(ψ + ηv)

Φ(ψ + ηv) +
L0

L∗
1
· [1−Φ(ψ + ηv)]

.

Full conditional distribution of βvr

For the voxels with γv = 0, we assign them βvr = 0. For the voxels with γv = 1:

π(βvr | yvr ,ρvr , σ2v , τ2) ∝ p(yvr | βvr ,ρvr , σ2v)p(βvr | τ2)

∝ exp

{
− 1

2σ2v
(yv∗r −Xv∗

r βvr)
′(yv∗r −Xv∗

r βvr)

}
exp

{
− 1

2τ2
(βvr)

′(βvr)

}
∝ exp

{
−1

2

[
(βvr)

′ (X
v∗
r )′Xv∗

r

σ2v
βvr − 2(βvr)

′ (X
v∗
r )′

σ2v
yv∗r + (βvr)

′ 1

τ2
(βvr)

]}
= exp

{
−1

2

[
(βvr)

′ τ
2(Xv∗

r )′Xv∗
r + σ2vI

σ2vτ
2

βvr − 2(βvr)
′ (X

v∗
r )′

σ2v
yv∗r

]}
,

which is a kernel of multivariate normal distribution. Thus:

π(βvr | yvr ,ρvr , σ2v , τ2, γv = 1) = N2(µβv
r
,Σβv

r
),

where

µβv
r
=

[
τ2(Xv∗

r )′Xv∗
r + σ2vI

σ2vτ
2

]−1
(Xv∗

r )′

σ2v
yv∗r =

[
(Xv∗

r )′Xv∗
r +

σ2v
τ2

I

]−1

(Xv∗
r )′yv∗r ,

Σβv
r
=

[
τ2(Xv∗

r )′Xv∗
r + σ2vI

σ2vτ
2

]−1

= σ2v

[
(Xv∗

r )′Xv∗
r +

σ2v
τ2

I

]−1

.

Full conditional distribution of ρvr

Since ρvr is the autoregression coefficient for AR(1) errors, let:

wv = yv − xβv

5



be the predicted errors. Let wv
now and wv

lag1 be the vectors containing the last and the
first T − 1 components in wv, then:

wv
now = wv

lag1ρ
v + εv, εv ∼ CNT−1(0, 2σ

2
vI,0),

with equivalent real-valued representation:(
wv
now,Re

wv
now,Im

)
︸ ︷︷ ︸

wv
now,r

=

(
wv
lag1,Re −wv

lag1,Im

wv
lag1,Im wv

lag1,Re

)
︸ ︷︷ ︸

Wv
lag1,r

(
ρvRe
ρvIm

)
︸ ︷︷ ︸

ρv
r

+

(
εvRe
εvIm

)
︸ ︷︷ ︸

εv
r

.

Using the symbols in underbraces for a more compact form:

wv
now,r = Wv

lag1,rρ
v
r + εv, εv ∼ N2(T−1)(0, σ

2
vI).

Assigning a uniform prior, p(ρvr) ∝ 1, the full conditional distribution of ρvr is:

π(ρvr | yvr , ·) = N2(µρv
r
,Σρv

r
),

where

µρv
r
=
[
(Wv

lag1,r)
′Wv

lag1,r

]−1
(Wv

lag1,r)
′wv

now,r,

Σρv
r
= σ2v

[
(Wv

lag1,r)
′Wv

lag1,r

]−1
.

Full conditional distribution of σvr

The full conditional distribution of σvr is also from:

wv
now,r = Wv

lag1,rρ
v
r + εv, εv ∼ N2(T−1)(0, σ

2
vI).

Assigning a Jeffreys prior, p(σ2v) ∝ 1/σ2v , we have:

π(σ2v | yvr , ·) = IG
(
2(T − 1)

2
,

1

2
(wv

now,r −Wv
lag1,rρ

v
r)

′(wv
now,r −Wv

lag1,rρ
v
r)

)
.

Full conditional distribution of τ2

The full conditional distribution of τ2 should be related to the number of ac-
tive voxels and could be imposed a Jeffreys prior, p(τ2) ∝ 1/τ2. After updating
γ = (γ1, . . . , γV )

′ and filtering βr = (β1Re, · · · , βVRe, β1Im, · · · , βVIm)′ by γ to make them
strictly zeros and non-zeros in each iteration, we have:

π(τ2 | βr) = IG
(
2γ ′γ

2
,
1

2
βr

′βr

)
.
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Full conditional distribution of ηv

Without considering the condition of γv, we focus on π(ηv | κ) first. Let Qs = M′QM
and Qκs = κQs = κM′QM, then:

π(ηv | κ) =
∫
π(ηv, δ | κ)dδ

=

∫
π(ηv | δ)π(δ | κ)dδ

=

∫
N (mv

′δ, 1)×N
(
0,Q−1

κs

)
dδ

∝
∫

exp

{
−η

2
v − 2mv

′δηv + δ′mvmv
′δ

2

}
exp

{
−δ′Qκsδ

2

}
dδ

= exp

{
−η

2
v

2

}∫
exp

{
−1

2

[
δ′(Qκs +mvmv

′)δ − 2mv
′δηv

]}
dδ

= exp

{
− η2v

2 [1−mv
′(Qκs +mvmv

′)−1mv]
−1

}
.

Thus, ηv | κ follows normal distribution with mean 0 and variance:[
1−mv

′(Qκs +mvmv
′)−1mv

]−1
.

By Woodbury’s matrix identity:[
1−mv

′(Qκs +mvmv
′)−1mv

]−1
= 1 +mv

′Q−1
κsmv.

That is:

π(ηv | κ) = N (0, 1 +mv
′Q−1

κsmv).

If the condition of γv is considered, by [1]:

π(ηv | γv, δ) =

{
T N (mv

′δ, 1, 0, ∞) if γv = 1

T N (mv
′δ, 1, −∞, 0) if γv = 0

,

where T N denotes the truncated normal distribution. Thus, when γv = 1:

π(ηv | γv, κ) =
∫
π(ηv, δ | γv, κ)dδ

=

∫
π(ηv | γv, δ)π(δ | κ)dδ

=

∫
T N (mv

′δ, 1, 0, ∞)×N
(
0,Q−1

κs

)
dδ

= T N
(
0, 1 +mv

′Q−1
κsmv, 0, ∞

)
.
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Similarly, when γv = 0:

π(ηv | γv, κ) = T N
(
0, 1 +mv

′Q−1
κsmv, −∞, 0

)
.

Notice that the variance 1 + mv
′Q−1

κsmv = 1 + mv
′(κQs)

−1mv. As κ functions as a
spatial smoothing parameter, it can be moved out of the parentheses to control the
entire variance and play the same role. That is:

π(ηv | γv, κ) =


T N (0, 1

κ

(
1 +mv

′Q−1
s mv

)︸ ︷︷ ︸
ν2
v

, 0, ∞) if γv = 1

T N (0, 1
κ

(
1 +mv

′Q−1
s mv

)︸ ︷︷ ︸
ν2
v

, −∞, 0) if γv = 0
.

Since I + MQ−1
s M′ doesn’t contain any parameters, it can be pre-calculated, then

ν2v = 1+mv
′Q−1

s mv is its vth diagonal element. This will accelerate the computation.

Full conditional distribution of δ

The full conditional distribution of δ is:

π(δ | η, κ) = N
((

Qκs +M′M
)−1

M′η,
(
Qκs +M′M

)−1
)
.

Similar to how we deal with κ for ηv, this distribution becomes:

π(δ | η, κ) = N

1

κ

(
Qs +M′M

)−1︸ ︷︷ ︸
Q̂−1

s

M′η,
1

κ

(
Qs +M′M

)−1︸ ︷︷ ︸
Q̂−1

s

 ,

where Q̂−1
s = (Qs +M′M)−1 can be pre-calculated to accelerate the computation.

Full conditional distribution of κ

We assume η1, ..., ηV are conditionally independent when given κ, thus:

π(η | κ) =
V∏
v=1

π(ηv | κ)

=

[(
1

κ

)−V

2
V∏
v=1

(
1 +mv

′Q−1
s mv

)− 1

2

]
exp

{
−

V∑
v=1

η2v
2 · 1

κ · (1 +mv
′Q−1

s mv)

}

∝ κ
V

2 · exp

{
−κ · 1

2
·
V∑
v=1

η2v
(1 +mv

′Q−1
s mv)

}
.
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Therefore, the full conditional distribution of κ is:

π(κ | η) ∝ π(η | κ)π(κ)

∝ κ
V

2 · exp

{
−κ · 1

2
·
V∑
v=1

η2v
(1 +mv

′Q−1
s mv)

}
· κ

1

2
−1 · exp

{
− κ

2000

}
= κ

V +1

2
−1exp

{
−κ

[
1

2

(
V∑
v=1

η2v
(1 +mv

′Q−1
s mv)

)
+

1

2000

]}
.

That is:

π(κ | η) = Gamma

a =
V + 1

2
, b =

[
1

2

(
V∑
v=1

η2v
(1 +mv

′Q−1
s mv)

)
+

1

2000

]−1


= Gamma

(
a =

V + 1

2
, b =

[
1

2

(
η21
ν21

+ · · ·+
η2V
ν2V

)
+

1

2000

]−1
)
,

where b is the scale, and the details for ν2v are in the full conditional distribution of
ηv.

3. More estimations by the CV-sSGLMM model

3.1. Effects of experimental and parameter settings on CV-sSGLMM

The performance of our CV-sSGLMM is determined in part by three choices: the tun-
ing parameter ψ, the parcel number G, and the time length T . Here we assess their
influence using the AR(1) data exclusively. For a single dataset, estimated activation
maps generated from varying these settings are depicted in Figure 1, with their cor-
responding estimated magnitude maps displayed in Figure 2. A summary of average
metrics over 100 replicated datasets is shown in Table 1.

Figure 1(a)-(c) illustrates the results using ψ values of Φ−1(0.02), Φ−1(0.20),
Φ−1(0.35), respectively, which govern the a priori likelihood of a voxel being deter-
mined active. Along with the results from simulation study in the main paper using
ψ = Φ−1(0.47), we can observe a trade-off in selecting ψ: larger values lead to an in-
crease in active voxels and false positives, whereas smaller values result in fewer active
voxels and increased false negatives, all of which are as expected. In a simulated sce-
nario, the optimal ψ can be determined by maximizing metrics like prediction accuracy
or F1-score. In practical applications, ψ can be tuned to achieve a target percentage
of active voxels based on prior experiments, cross-validation, WAIC [7], etc.

The effects of varying G = 1, 4, 16 are exhibited in Figure 1(d)-(f), respectively.
Along with the results from simulation study in the main paper using G = 9, we
observe negligible edge effects, that is, voxel classifications at parcel borders remain
unaffected. Some metrics, such as F1-score, slope, CCC, and X-Y MSE, even exhibit
slight improvements through G = 1, 4, 9. Moreover, the computation time drops sig-
nificantly as G increases, as expected. These results coincide with the findings of [3].
However, with G = 16, performance starts decreasing compared to that of using G = 9
due to insufficient numbers voxels within each parcel. The choice of G and correspond-
ing parcel size Vg can be guided by prior experience or domain-specific knowledge of,
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Parameter Accuracy Precision Recall F1 Score AUC Slope CCC X-Y MSE Time (s)

ψ = Φ−1(0.02) 0.9486 0.9985 0.6179 0.7585 0.9908 0.8180 0.8924 2.16e-5 5.39

ψ = Φ−1(0.20) 0.9728 0.9823 0.8123 0.8880 0.9878 0.8894 0.9316 1.38e-5 5.66

ψ = Φ−1(0.35) 0.9783 0.9628 0.8706 0.9136 0.9876 0.8893 0.9251 1.47e-5 5.71

G = 1 0.9784 0.9220 0.9096 0.9151 0.9929 0.8129 0.8818 2.09e-5 63.37

G = 4 0.9796 0.9381 0.9352 0.9064 0.9908 0.8464 0.9010 1.83e-5 12.06

G = 16 0.9787 0.9306 0.9045 0.9167 0.9874 0.8944 0.9142 1.68e-5 3.74

T = 80 0.9325 0.9070 0.5449 0.6765 0.8952 0.6961 0.7537 4.22e-5 3.62

T = 500 0.9986 0.9982 0.9919 0.9951 0.9999 0.9749 0.9881 2.59e-5 11.98

T = 1000 0.9999 0.9997 1 0.9999 1 0.9889 0.9950 0.11e-5 21.17

Table 1. Summary of average metrics across 100 AR(1) datasets produced by the CV-sSGLMM model using
different parameters

e.g., anatomical regions.
Figure 1(g)-(i) depicts the impact of varying the time length T = 80, 500, 1000,

respectively. The length of each epoch remains the same as 40 time points so that the
number of epochs will change correspondingly. Along with the results from simulation
study in the main paper using T = 200, we observe improvements in both classification
and estimation as T increases. in this case, an accuracy of 100% is achieved when
T = 1000, and its estimated magnitude map almost perfectly reproduces the truth. It
is worth noting that we adopt a relatively low ψ = Φ−1(0.02) for T = 1000, suggesting
a stringent selection of active voxels. Thus, when an ample number of repeated epochs
are available for the stimulus, the signal is strong enough to let us select most of the
positive voxels while avoiding false positives. This suggests that choosing a low ψ in
this situation can enhance discriminative capability.

3.2. Realistic simulation

Here we simulate a dataset similar that that done by [8] in which we mimic the
environmental conditions of a human brain. The data contain iid noise. The dataset
comprises seven slices, each of size 96×96 voxels, with signals generated across T = 490
time points. The brain’s active regions are two 5 × 5 × 5 cubes formed by two 5 × 5
squares within each of slice 2-6. In contrast to the data generated in the simulation
study in the main paper, which exhibits a constant phase, this dataset has a dynamic
phase. The cv-fMRI signal for voxel v at time t is thus simulated as

yvt,Re = (β0 + βv1xt)cos(θ0 + θv1xt) + εvt,Re, εvt,Re ∼ N (0, σ2),

yvt,Im = (β0 + βv1xt)sin(θ0 + θv1xt) + εvt,Im, εvt,Im ∼ N (0, σ2).

The slice with the greatest maximum magnitude and phase CNR is slice 4 (Eq. (1)):

CNRMag = (maxβv1)/σ = 0.5/1,

CNRPh = (max θv1)/SNRMag = (π/120)/25.
(1)

Activation then decreases from slice 4 to slices 3 and 5 and is weakest in slices 2 and 6.
Slices 1 and 7 exhibit no activation. It’s important to note that, with dynamic phase,
the model from [2] is not equivalent to that from [4] as indicated in [5]. This discrepancy
suggests the proposed model is under model misspecification in this scenario. However,
as both βvRe and β

v
Im in CV-sSGLMMmodel include magnitude and phase information,
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Figure 1. (a)-(c) are estimated activation maps for an AR(1) dataset as produced by the CV-sSGLMM model

using various tuning parameters ψ’s. (d)-(f) are estimated activation maps using various parcel numbers G’s.
(g)-(i) are estimated activation maps derived from datasets with various time lengths T ’s.
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Figure 2. (a)-(c) are estimated magnitude activation maps for an AR(1) dataset as produced by the CV-

sSGLMM model using various tuning parameters ψ’s. (d)-(f) are estimated magnitude maps using various
parcel numbers G’s. (g)-(i) are estimated magnitude maps derived from datasets with various time lengths T ’s.
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Slice Model TP FP FN TN Precision Recall Time (s)

2

MO-sSGLMM 1 0 49 9166 1 0.02 11.59

CV-nonSpatial 5 0 45 9166 1 0.1 311.55

CV-sSGLMM 8 0 42 9166 1 0.16 27.86

3

MO-sSGLMM 22 2 28 9164 0.9166 0.44

same as
Slice 2

CV-nonSpatial 25 1 25 9165 0.9615 0.50

CV-sSGLMM 27 0 23 9166 1 0.54

4

MO-sSGLMM 30 1 20 9165 0.9677 0.60

CV-nonSpatial 30 1 20 9165 0.9677 060

CV-sSGLMM 35 0 15 9166 1 0.70

5

MO-sSGLMM 16 5 34 9161 0.7619 0.32

CV-nonSpatial 25 1 25 9165 0.9615 0.50

CV-sSGLMM 28 1 22 9165 0.9655 0.56

6

MO-sSGLMM 0 0 50 9166 NA 0

CV-nonSpatial 4 0 46 9166 1 0.08

CV-sSGLMM 13 0 37 9166 1 0.26

Table 2. Metrics of slices (50 positives and 9166 negatives on each slice) produced by the MO-sSGLMM,

CV-nonSpatial, and CV-sSGLMM models

and given that prior studies [8, 9] have used the [2]-based model to process this dataset,
we deem it worthwhile to test our model on these data. We set G = 49 and a threshold
of 0.8722 for both MO-sSGLMM and CV-sSGLMM, with ψ set to Φ−1(0.50) and
Φ−1(0.11), respectively. For CV-nonSpatial, the threshold is set to 0.5, again following
the advice of [8]. Activation maps are presented in Figure 3. We indeed observe that our
model tends to overestimate the magnitude. Since the magnitudes are overestimated,
we scale the estimated magnitude to the range of true magnitude in the corresponding
slice. True and (scaled) estimated magnitude maps are displayed in Figure 4.

Further numerical results, displayed in Table 2, show a pattern of the CV-sSGLMM
model outperforming both the MO-sSGLMM and CV-nonSpatial models across dif-
ferent slices in terms of detecting true positives (TP). It should be noted, however,
that the MO-sSGLMM model achieves a 100% precision (no false positives, FP) for
most slices, albeit at the cost of a low recall rate (high false negatives, FN), indi-
cating that the model is more conservative in identifying activated voxels. For the
CV-nonSpatial model, although it exhibits good precision across the slices, the recall
rates remain lower, specifically in the slices with weaker activation strengths (slices 2
and 6). This performance pattern suggests that the model struggles to detect activa-
tions in areas with low CNR, highlighting a limitation when dealing with real-world
fMRI datasets that often feature low CNR. In comparison, the CV-sSGLMM model
consistently detects a higher number of true positives across all slices, demonstrating a
stronger detection power even in slices with weak activations (slices 2 and 6). This un-
derscores the benefit of incorporating spatial information, which enhances the model’s
capacity to detect weaker activations in the presence of complex noise conditions. The
model also maintains a 100% precision across all slices, suggesting that the inclusion
of spatial information does not lead to an increase in false positives.
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Figure 3. True and estimated activation maps for a realistic simulation as produced by the MO-sSGLMM,

CV-nonSpatial, and CV-sSGLMM models
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Figure 4. True and (scaled) estimated magnitude maps for a realistic simulation as produced by the MO-

sSGLMM, CV-nonSpatial, and CV-sSGLMM models
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Figure 5. (a) is marginal posterior distributions of γ, βRe, and βIm for a voxel exhibiting high magnitude.

(b)-(c) are similar distributions for a medium-magnitude voxel and an inactive voxel, respectively.

3.3. MCMC behavior

The CV-sSGLMM model is applied to estimate the marginal posterior distributions
from three distinct types of voxels (strongly active, moderately active, inactive) within
an AR(1) dataset, as showcased in Figure 5. The bell-shaped distributions of βRe
and βIm corroborate the theoretical derivation and affirm the reliable performance
of the MCMC algorithm during the sampling process. Figures 6 and 7 indicate the
convergence of the MCMC chains and proper posterior distributions of βRe and βIm.
The true and estimated time series from these three voxel are presented in Figure 8.
The congruence between the generator using true parameters (in black) and that using
estimated parameters (in red) is evident. Additionally, both sets of time series aptly
capture the pattern of the simulated time series (in blue). This alignment serves as a
further testament to the good estimation performance of our CV-sSGLMM model.

3.4. Phase estimation

The phase of voxels is also estimated by the CV-sSGLMMmodel, and the outcomes are
displayed in Figure 9. Figure 9(a) presents the true phase map, simulated using a con-
stant phase value of θ = π/4 ≈ 0.79 for active voxels. Figure 9(b) demonstrates that the

CV-sSGLMM model effectively estimated this phase map by θ̂v = arctan
(
β̂vIm/β̂

v
Rm

)
.
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