

A Bayesian Approach to Fused GRAPPA and SENSE MR Image Reconstruction

Chase J. Sakitis Doctoral Program in Computational Sciences Department of Mathematical and Statistical Sciences Marquette University

August 8, 2024

Outline

- **1. Introduction**
- 2. Bayesian MUGS (BMUGS)
- 3. Simulated/Experimental Results
- 4. Discussion

- Subsample
- Functional Magnetic Resonance Imaging (fMRI) is a noninvasive medical imaging technique that observes the brain in action
 - Machine uses receiver coils to capture complex-valued arrays of spatial frequencies called *k*-space
 - Takes a considerable amount of time to fully sample *k*-space arrays
 - Can diminish effectively capturing brain activity
 - Solution: Measure less data
 - Subsample spatial frequencies by skipping lines in the acquisition process

 $f_{\mathcal{C}} = W_{\mathcal{C}} f_{k} + \eta$ $\eta \sim N(0, \tau^{2} I_{2n_{c}})$

○Unacquired

Acquired

 f_k = Acquired spatial frequencies

 W_C = Estimated localized weights

• Estimated using full FOV coil *k*-space arrays

 f_e = Unacquired spatial frequencies

• White dots in the top middle of figure

**Interested in interpolating these points (green dots in top right of figure)

• Estimated

BGRAPPA - Model

Subsampled k-space array

BGRAPPA Likelihood and Prior Distributions

- Subsampled *k*-space measurements are observed with random error
 - $f_{\mathcal{C}} = W f_k + \eta$, where $\eta \sim N(0, \tau^2 I_{2n_c})$
- Data Likelihood

•
$$P(f_e \mid W, f_k, \tau^2) \propto (\tau^2)^{-\frac{2n_c}{2}} \exp\left[-\frac{1}{2\tau^2}(f_e - Wf_k)'(f_e - Wf_k)\right] \leftarrow \text{normal}$$

• Priors

•
$$P(\tau^2 \mid \alpha_k, \delta) \propto (\tau^2)^{-(\alpha_k+1)} \exp\left[-\frac{\delta}{\tau^2}\right]$$
 inverse gamma

- Assessed Hyperparameters: n_w , D_0 , n_k , f_{k0} , α_k , and δ
- Posterior

Chase Sakitis

• $P(D, f_k, \tau^2 | f_e) \propto P(f_e | W, f_k, \tau^2) P(f_k | n_k, f_{k0}, \tau^2) P(D | n_W, D_0, \tau^2) P(\tau^2 | \alpha_k, \delta)$

 $n_{C} = number \ of \ coils$ $n_{A} = acceleration \ factor$

$$f_{e} = \begin{bmatrix} f_{eR} \\ f_{eI} \end{bmatrix}$$
$$W_{2n_{c} \times 2p} = \begin{bmatrix} W_{R} & -W_{I} \\ W_{I} & W_{R} \end{bmatrix}$$
$$D_{n_{c} \times 2p} = \begin{bmatrix} W_{R} & W_{I} \end{bmatrix}$$
$$f_{k} = \begin{bmatrix} f_{kR} \\ f_{kI} \end{bmatrix}$$

6

Mathematical & Statistical Sciences

1. Introduction

SENSE - Introduction

**All Parameters $n_{c} = number of coils(4)$ $n_A = acceleration factor(3)$ are complex-valued Observed: a (aliased) a = SvUnobserved: v, S $\begin{bmatrix} a_{1c} \\ a_{2c} \\ a_{3c} \\ a_{4c} \end{bmatrix} = \begin{bmatrix} S_{11c} & S_{12c} & S_{13c} \\ S_{21c} & S_{22c} & S_{23c} \\ S_{31c} & S_{32c} & S_{33c} \\ S_{41c} & S_{42c} & S_{43c} \end{bmatrix} \begin{bmatrix} v_{1c} \\ v_{2c} \\ v_{3c} \end{bmatrix}$ \hat{S} is estimated from calibration images $\hat{v} = \left(\hat{S}'\hat{S}\right)^{-1}\hat{S}'a$ $*\hat{S}\hat{S}$ is not generally positive definite

BSENSE Model, Likelihood, and Prior Distributions

• Aliased voxel measurements are observed with random error

•
$$a = Sv + \varepsilon$$
, where $\varepsilon \sim N(0, \sigma^2 I_{2n_c})$

• Data Likelihood

•
$$P(a \mid S, v, \sigma^2) \propto (\sigma^2)^{-\frac{2n_c}{2}} \exp\left[-\frac{1}{2\sigma^2}(a - Sv)'(a - Sv)\right]$$
 — normal

• Priors

•
$$P(v \mid n_v, v_0, \sigma^2) \propto (\sigma^2)^{-\frac{2n_A}{2}} \exp \left[-\frac{n_v}{2\sigma^2} (v - v_0)' (v - v_0) \right]$$
 — normal

•
$$P(H \mid n_S, H_0, \sigma^2) \propto (\sigma^2)^{-\frac{2n_c n_A}{2}} \exp\left[-\frac{n_S}{2\sigma^2} tr[(H - H_0)'(H - H_0)]\right]$$
 — normal

•
$$P(\sigma^2 | \alpha, \beta) \propto (\sigma^2)^{-(\alpha+1)} \exp\left[-\frac{\beta}{\sigma^2}\right]$$
 — inverse gamma

- Assessed Hyperparameters: n_S , H_0 , n_v , v_0 , α , and β
- Posterior

Chase Sakitis

• $P(H,v,\sigma^2 \mid a) \propto P(a \mid S,v,\sigma^2) P(H \mid n_S, H_0,\sigma^2) P(v \mid n_v,v_0,\sigma^2) P(\sigma^2 \mid \alpha,\beta)$

 $n_{C} = number of coils$ $n_{A} = acceleration factor$

$$a_{2n_{C}\times 1} = \begin{bmatrix} a_{R} \\ a_{I} \end{bmatrix}$$
$$S_{2n_{C}\times 2n_{A}} = \begin{bmatrix} S_{R} & -S_{I} \\ S_{I} & S_{R} \end{bmatrix}$$
$$H_{n_{C}\times 2n_{A}} = \begin{bmatrix} S_{R} & S_{I} \end{bmatrix}$$
$$V_{2n_{A}\times 1} = \begin{bmatrix} v_{R} \\ v_{I} \end{bmatrix}$$

8

Mathematical & Statistical Sciences

3. Simulated/Experimental Results

Simulated Data

- 490 time points in the simulated fMRI time Coisseries
 - Started with 510 time points discarding Confirst 20 to mimic experimental fMRI
- 30 calibration time points utilized for hyperparameter assessment
 - Calibration time points from a separate simulated series
- Number of coils used is 8 with an acceleration factor of 3
- 2x1 kernel size used for GRAPPA/BGRAPPA components hyperparameter assessment and parameter estimation
- Reconstruction Method: MAP estimate via ICM for BMUGS

3. Simulated/Experimental Results

Simulated Data Results

 $n_{C} = number \ of \ coils(8)$ $n_{A} = acceleration \ factor(3)$

3. Simulated/Experimental Results

Experimental Data Results

 $n_{C} = number \ of \ coils(8)$ $n_{A} = acceleration \ factor(3)$

4. Discussion

Conclusion and Future Work

- Acquiring all data points takes a considerable amount of time
 - Subsampling k-space reduces acquisition time but causes aliasing
- SENSE and GRAPPA reconstruct the subsampled data into full FOV brain images
- Here, we discuss the Merged Utilization of GRAPPA and SENSE (MUGS) technique
 - Operates in both the spatial frequency domain and the image domain
- BMUGS incorporates more valuable prior information in estimating the missing spatial frequency values and the unaliased voxels
 - BMUGS reconstructed images more accurately, decreased temporal variation, increased SNR, and improved task detection power
- <u>Future work:</u>
 - Analyze correlation between previously aliased voxels and all other voxels
 - Potential bootstrapping of the calibration images

Thank You

Questions?