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A B S T R A C T

In fMRI, capturing brain activity during a task is dependent on how quickly the k-space arrays for each volume
image are obtained. Acquiring the full k-space arrays can take a considerable amount of time. Under-sampling k-
space reduces the acquisition time, but results in aliased, or “folded,” images after applying the inverse Fourier
transform (IFT). GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) and SENSitivity Encoding
(SENSE) are parallel imaging techniques that yield reconstructed images from subsampled arrays of k-space.
With GRAPPA operating in the spatial frequency domain and SENSE in image space, these techniques have been
separate but can be merged to reconstruct the subsampled k-space arrays more accurately. Here, we propose a
Bayesian approach to this merged model where prior distributions for the unknown parameters are assessed from
a priori k-space arrays. The prior information is utilized to estimate the missing spatial frequency values, unalias
the voxel values from the posterior distribution, and reconstruct into full field-of-view images. Our Bayesian
technique successfully reconstructed simulated and experimental fMRI time series with no aliasing artifacts while
decreasing temporal variation and increasing task detection power.

1. Introduction

1.1. Background

Functional Magnetic Resonance Imaging (fMRI) is a medical imaging
technique that was developed in the early 1990's as a technique to
noninvasively observe human brain activity without exogenous contrast
agents [1]. This technique detects changes in the blood oxygenation
using the blood‑oxygen-level dependent (BOLD) contrast [2] when a
neuron fires in its proximity. This BOLD contrast can then be used to
map brain activity [3]. The magnetic resonance imaging (MRI) scanner
measures arrays of complex-valued spatial frequencies called k-space
[4] which are transformed into brain images using an inverse Fourier
transform (IFT). The reconstructed brain images are made up of
complex-valued voxels which contain the signal intensity (magnitude)
and a measure of local magnetic field (phase) for each pixel in the image.

Despite the phase images generally being discarded using only the
magnitude images for fMRI analysis, the phase images are utilized for
this research. Producing magnitude and phase images is simply a con-
version to polar coordinates from Cartesian coordinates in the complex
plane. For this research, the concentration will be on Cartesian k-space

sampling, with the conversion to polar coordinates used for image
depiction purposes.

In fMRI, obtaining hundreds of volume images is necessary to sta-
tistically detect activation which of the same underlying volume
measured individually through time. Measuring full k-space arrays for
all slices required to form volume images takes a considerable amount of
time due to the size of a dataset from a single experiment. This lengthy
acquisition time limits the temporal resolution of the reconstructed
images which can diminish the ability to capture brain activity. A great
deal of work has been dedicated to reducing the scan time of the fMRI
process by accelerating the number of images acquired per unit of time
using parallel imaging techniques [5,6,7].

1.2. Previous approaches

With the introduction of parallel imaging techniques, the focus of
research has been to acquire more images per unit of time by measuring
less data without losing the ability to form a full field-of-view (FOV)
reconstructed image. With these techniques, multiple receiver coils are
utilized to fully sampled k-space data arrays in parallel instead of using
the historically used single channel receiver coil. Utilization of multiple
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receiver coils allows researchers to skip lines of the k-space arrays during
the acquisition process yielding subsampled spatial frequency arrays for
each coil. This reduces the acquisition time of the k-space arrays, but
causes the images, after using the IFT, to be aliased, or appear “folded
over.” The multiple aliased coil images are required to be unaliased and
combined into a single, full FOV, reconstructed brain image.

There are two common parallel imaging techniques that accomplish
this: GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA)
[5] and SENSitivity Encoding (SENSE) [7]. GRAPPA operates on the
subsampled k-space prior to the IFT by assessing localized weights that
are used to interpolate the unacquired spatial frequencies for each coil.
SENSE operates in image space after the IFT utilizing estimated coil
sensitivities (coil weightings) to unalias and combine the aliased coil
measurements into a single FOV image.

For the GRAPPA method, once the unacquired spatial frequencies are
interpolated, the full coil spatial frequency arrays (acquired plus esti-
mated) are combined into a single k-space array by averaging the coil
spatial frequency values at each location. The averaged, full k-space
array is transformed into a brain image using the IFT. GRAPPA is a
widely used parallel reconstruction technique and is effective with low
acceleration factors since it does not rely on sensitivity coil information.
However, GRAPPA has its deficiencies at higher acceleration factors,
such as low image quality, a low SNR, and diminished task detection
power [8]. Also, since GRAPPA averages the full coil k-space arrays, this
technique does not incorporate the coil sensitivities resulting in mark-
edly lower overall signal intensity for each voxel [9]. We developed a
Bayesian approach to GRAPPA that will incorporate more prior infor-
mation to estimate the unacquired spatial frequencies [10]. This yields
increased SNR and image quality, with improved power in task detec-
tion compared to GRAPPA.

The SENSE method uses complex-valued linear regression with a
fixed design matrix and a least squares solution to estimate the voxel
values of the single, reconstructed brain image. This approach for
parameter estimation can be difficult because the complex-valued
design matrix can be ill-conditioned. This can cause aliasing artifacts,
low image quality, and signal-to-noise ratio (SNR) degradation in the
final reconstructed image, which has led to variations of the traditional
technique [11,12,13,14]. These variations have deficiencies that hardly
mitigate the limitations of the traditional maximum likelihood SENSE
procedure. We have previously developed a Bayesian approach to
SENSE (BSENSE) that incorporates more prior information and does not
use a single a priori fixed complex-valued sensitivity matrix [15]. When
comparing BSENSE to SENSE, the results yielded no aliasing artifacts
with increased SNR, image quality, and improved task detection results
[15].

In this paper, we first introduce a merged utilization of GRAPPA and
SENSE (MUGS) for in-plane accelerated image reconstruction, though it
could be used for through-plane. This technique we are introducing is a
two-step reconstruction process. First, GRAPPA is used to estimate the
unacquired spatial frequencies resulting in full coil k-space arrays. These
k-space arrays are reconstructed into coil-weighted brain images using
the IFT. Then the coil-weighted images are combined into a single,
complex-valued brain image using coil sensitivites via SENSE. This
process utilizes information from both the spatial frequency domain and
the image space domain to reconstruct the subsampled coil k-space ar-
rays into a single full FOV brain image.

Despite this merged utilization of both traditional reconstruction
techniques operating in both the k-space domain and the image domain,
it does not take advantage of all valuable available prior information
that can be incorporated into the reconstructed image. Here, we propose
a Bayesian approach to MUGS (BMUGS) that applies BGRAPPA and
BSENSE in place of GRAPPA and SENSE, respectively. In this paper, we
illustrate how the BMUGS technique out performs the MUGS technique
through a simulation study and their application to experimental data.
The simulation and experimental studies performed for this paper are
both in fMRI analysis but this methodology can also be applied to

diffusion weighted imaging [16].

1.3. Overview

The second section of this paper explains the research problem that
arises from subsampling k-space data and discusses the model of the
MUGS image reconstruction technique. This will lead into our proposed
Bayesian approach to MUGS presented in Section 3. Section 4 shows
results from the simulation study comparing the MUGS and BMUGS
techniques. Section 5 presents a similar comparison with experimental
task fMRI data. In Section 6, we conclude with an overview of the results
from the simulation and experimental studies and discuss future work.

2. MUGS technique

2.1. Research problem

From the single channel coil, full k-space arrays are acquired along a
trajectory as shown in Fig. 1a. In fMRI, the most common acquisition
pattern is Echo Planar Imaging (EPI) and is used for the acquisition of
the experimental data used in this paper. The trajectory follows a Car-
tesian path with turnaround points at the end of each row. These
complex-valued spatial frequency arrays are then reconstructed into full
FOV complex-valued brain images.

Since the objective of parallel imaging is to allow for subsampling of
k-space, Fig. 1b shows the trajectory for undersampling the spatial fre-
quencies. Like the fully sampled k-space array in Fig. 1a, the scanner
starts in the bottom left and moves across the row acquiring complex-
valued spatial frequency points along the row. Then, when it gets to
the end of the row, instead of moving up to the next row, it skips lines
according the acceleration factor nA. With an acceleration factor of nA =

3, we see that in Fig. 1b, the trajectory skips the next two lines acquiring
the third line above the bottom. This process is repeated until all
designated rows of the discretized subsampled k-space array is acquired.
This subsampling pattern reduces the amount of acquired spatial fre-
quencies by the acceleration factor. For example, subsampling a 96 × 96
array with nA = 3, the k-space array then reduces to a 32 × 96 dimen-
sion for each slice.

Instead of a single channel coil, nC > 1 receiver coils are utilized in
parallel to allow for subsampling the spatial frequency arrays. An
example of a four-channel coil alignment can be arranged with the first
coil located at the anterior, second at the right lateral, third at the
posterior, and fourth at the left lateral (clockwise rotation). The coil
sensitivity profiles used in the simulation and experimental studies of
this paper overlap, as they typically do in coil configuration. With nA =

3, each coil acquires subsampled k-space as depicted on the left side of
Fig. 2. The right side of Fig. 2 displays the aliased brain image for each
coil after using the IFT. These coil brain images are rendered useless
from the aliasing so parallel image techniques are utilized to unfold and
combine them into a single composite brain image that can be used for
analysis.

2.2. Reconstruction process

As mentioned in 1.2, multiple steps are required to properly merge
both GRAPPA and SENSE together. Fig. 3 demonstrates the flowchart of
how the subsampled spatial frequencies are reconstructed into a single
brain image using this MUGS technique. In Fig. 3, there are Autocali-
bration Signal (ACS) spatial frequency arrays in step 1 that are utilized
for estimating the localized weights, Wc, for GRAPPA and the coil sen-
sitivities, S, for SENSE (step 2). To calculate the weights used for
interpolation in GRAPPA, a kernel with krow rows and kcol columns is
placed around the acquired spatial frequency points closest to the ACS
point. The points inside the kernel, along with the ACS point, are then
used to calculate the weights via least squares. Step 3 of the process is
then to acquire the subsampled k-space arrays for the fMRI experiment.
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Fig. 1. Trajectories of a fully sampled k-space array (a) and a subsampled k-space array with an acceleration factor of nA = 3 (b).

Fig. 2. Illustration of nC = 4 subsampled coil k-space arrays with an acceleration of nA = 3 (left) and their respective aliased brain images after the IFT (right).

Fig. 3. Flow chart for the MUGS model for image reconstruction.
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All the unacquired spatial frequencies are estimated using GRAPPA
yielding full coil k-space arrays in step 4. The coil k-space arrays are then
inverse Fourier transformed to coil-weighted images (step 5). Then
SENSE reconstruction is utilized to weight and combine the coil images
into a single composite brain image in step 6. This process is repeated at
each time point in the subsampled time series of coil spatial frequency
arrays.

The model for MUGS begins with the GRAPPA model. That is

fec
(ω)

= Wc
(ω)fkc

(ω)
+ ηec

(ω), (2.1)

where ω = 1,…,K, fec ∈ ℂnC×1 represents the complex-valued interpo-
lated k-space values, fkc ∈ ℂp×1 represents the complex-valued acquired
k-space values, ηc ∈ ℂnC×1 represents the additive complex-valued noise
with ηc ∼ N

(
0, τ2(1 + i)

)
, and p = nCkrowskcols. The interpolated spatial

frequencies, fec, are then placed in the respectively locations of the
missing k-space values resulting in full coil k-space arrays, ffull.

The full coil k-space arrays ffull are then inverse Fourier transformed
into coil images. The SENSE model is then applied to the full FOV coil
image measurements with no acceleration factor, i.e. nA = 1. That is

ac
(ν) = Sc

(ν)vc
(ν) + εc

(ν), (2.2)

where ν = 1, …, M, ac ∈ ℂnC×1 represents the complex-valued coil
measurements, Sc ∈ ℂnC×1 represents the matrix of complex-valued coil
sensitivities, vc ∈ ℂ represents the complex-valued unaliased voxel
value, εc ∈ ℂnC×1 represents the additive complex-valued noise where
εc ∼ N

(
0, σ2(1 + i)

)
, and M = nynx where ny and nx are the number of

rows and columns, respectively, in the reconstructed image.

3. Bayesian approach to MUGS

3.1. BGRAPPA model

For the BGRAPPA technique, the same linear model as GRAPPA
(expressed Eq. 2.1) is used except the acquired spatial frequencies will
be the fec variable instead of the fkc variable. This creates a model where
the design matrix and the coefficients can both be treated as unknown
parameters, allowing us to take a Bayesian approach to the linear
regression. Then the weights, Wc, and the unacquired spatial fre-
quencies, fkc, along with the residual k-space variance, τ2, are treated as
unknowns with prior distributions placed on them. We also use an
isomorphic real-valued representation of the linear GRAPPA model in
Eq. 3.1
[

feR
feI

]

=

[

WR − WIWIWR

][
fkR
fkI

]

+

[
ηR
ηI

]

, (ηR, ηI )́ ∼ N
(
0, τ2I2nC

)
.

(3.1)

where feR ∈ ℝnC×1 and feI ∈ ℝnC×1 are the real and imaginary compo-
nents, respectively, of fec, WR ∈ ℝnC×p and WI ∈ ℝnC×p are the real and
imaginary components of Wc, fkR ∈ ℝp×1 and fkI ∈ ℝp×1 are the real and
imaginary components of fkc, and ηR ∈ ℝnC×1 and ηI ∈ ℝnC×1 are the real
and imaginary components of ηc. This equation is a latent variable model
with complex values and can be more compactly written as fe = Wfk + η
where fe ∈ ℝ2nC×1, W ∈ ℝ2nC×2p, fk ∈ ℝ2p×1, and η ∈ ℝ2nC×1 are the real-
valued isomorphic representations of fec, Wc, fkc, and ηc, respectively.

In the BGRAPPA method, two different representations of the
weights will be used. The first representation is the skew-symmetric
design matrix W as shown in Eq. 3.1. The second representation is D =

[WR,WI] which is used in the prior distribution and for parameter esti-
mation of the weights. This ensures that WR and WI are uniquely esti-
mated for W and do not need to be duplicated. Because the real and
imaginary components of fMRI data have been shown to be normally
distributed [17,18], we utilize the normal distribution for the real and
imaginary components of the residual spatial frequency error. The data

likelihood for the acquired spatial frequencies for the nC coils is

P
(
fe|W, fk, τ2)∝

(
τ2)−

2nC
2 exp

[

−
1

2τ2(fe − Wfk )́ (fe − Wfk)

]

. (3.2)

Available prior information about the unacquired spatial frequencies
fk, the weights W, and the residual k-space variance τ2 can be quantified
with assessed hyperparameters of prior distributions. For the prior dis-
tributions, the unacquired spatial frequencies fk are specified to have a
normal prior distribution (Eq. 3.3), the weights D are specified to have a
normal prior distribution (Eq. 3.4), and the k-space noise variance τ2 is
specified to have an inverse gamma prior distribution (Eq. 3.5). That is

P
(
fk|nk, fk0, τ2)∝

(
τ2)

− 2p
2 exp

[
−

nk

2τ2

(
fk − fk0

)ʹ( fk − fk0
) ]

, (3.3)

P
(
D|nw,D0, σ2)∝

(
τ2)

− 2nCp
2 exp

[
−

nw

2τ2 tr(D − D0)(D − D0 )́
]
, (3.4)

P
(
τ2|αk, δ

)
∝
(
τ2)− (αk+1)exp

[
−

δ
τ2

]
, (3.5)

where tr is the trace of the (D − D0)(D − D0 )́ matrix. The ACS spatial
frequencies are utilized to assess the hyperparameters nk, fk0, nw, D0, αk,
and δ, as outlined in [10]. The joint posterior distribution of the unac-
quired spatial frequencies fk, the weights W, and the residual k-space
variance τ2 is

P
(
fk,D, τ2|fe

)
∝P

(
fe|W, fk, τ2)P

(
fk|nk, fk0, τ2)P

(
D|nw,D0, τ2)P

(
τ2|αk, δ

)
,

(3.6)

with the distributions specified from Eqs. 3.2, 3.3, 3.4, and 3.5.
Using the posterior distribution in Eq. 3.6, the priors described in

Eqs. 3.3, 3.4, and 3.5, and the likelihood distribution in Eq. 3.2, the
Maximum A Posteriori (MAP) estimate for the unacquired spatial fre-
quencies fk, the weights W, and the residual k-space variance τ2 is
estimated via the Iterated Conditional Modes (ICM) optimization algo-
rithm [19,20]. Beginning with the prior means for each parameter as
initial estimates, the ICM algorithm iterates over the parameters,
calculating its posterior conditional mode until convergence at the joint
posterior mode. The ICM will produce the global maximum, the MAP,
instead of the local maximum since each of the posterior conditionals are
unimodal. The posterior conditional modes are

f̂ k =
(
WʹW + nkI2p

)− 1( Wʹfe + nkfk0
)
, (3.7)

D̂ =
(
FeFʹ

k + nwD0
)(

FkFʹ
k + nwI2p

)− 1
, (3.8)

τ̂2 =
Φ

2(2nC + 2p + 2nCp + 1)
, (3.9)

where Φ =
(
fe − Wfk

)́ (
fe − Wfk

)
+ nk

(
fk − fk0

)́ (
fk − fk0

)
+ αkδ+

nwtr[(D − D0)(D − D0 )́ ], Fe =
[
feR, feI

]
and Fk ∈ ℝ2p×2 is a skew sym-

metric matrix representation of the unaliased voxel values fk as
expressed by

Fk =

[

fkRfkI − fkIfkR

]

. (3.10)

The full conditional posterior distributions of each parameters fk, D,
and τ2 are given by

fk∣W, τ2, fe ∼ N
{

f̂ k, τ2( WʹW + nkI2p
)− 1

}
, (3.11)

D∣fk, τ2, fe ∼ MN
{

D̂, τ2( Fʹ
kFk + nwI2p

)− 1
}
, (3.12)

τ2∣fk,W, fe ∼ IG{αk*, δ*}, (3.13)
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where αk* = nCp + nC + p + αk and δ* =
[(

fe − Wfk
) ʹ( fe − Wfk

)
+

nk
(
fk − fk0

)́ (
fk − fk0

)
+ nWtr ((D − D0)(D − D0 )́ ) + 2δ

]
/2.

3.2. BSENSE model

For the BSENSE technique, the same linear model as SENSE (Eq. 2.2)
is used. Similar to BGRAPPA, there are two different representations of
the coil sensitivities. The first representation is S ∈ ℝ2nC×2nA as demon-
strated in Eq. 2.2 is necessary for the proper skew symmetric design
matrix for complex-valued multiplication. The second representation is
H = [SR, SI], used in the prior distribution and ultimately for param-
eter estimation of the coil sensitivities. This is because SR and SI
uniquely determine S and do not need to be duplicated. As mentioned
above, because the real and imaginary errors have been shown to be
normally distributed, we use independent and identically distributed
normal errors in the real and imaginary components. The likelihood for
the aliased voxel measurements for the nC coils becomes

P
(
a|S, v, σ2)∝

(
σ2)−

2nC
2 exp

[

−
1

2σ2(a − Sv)́ (a − Sv)
]

. (3.14)

We can quantify available prior information about the unobserved
parameters of the voxel intensities v, the coil sensitivities S, and the
residual variance σ2 in the likelihood with assessed hyperparameters of
prior distributions. For the prior distributions, the voxel values v are
specified to have a normal distribution (Eq. 3.15), the coil sensitivities H
are specified to have a normal distribution (Eq. 3.16), and the noise
variance σ2 is specified to have an inverse gamma distribution (Eq.
3.17).

P
(
v|nv, v0, σ2)∝

(
σ2)−

2nA
2 exp

[
−

nv

2σ2(v − v0 )́ (v − v0)
]

, (3.15)

P
(
H|nS,H0, σ2)∝

(
σ2)−

2nCnA
2 exp

[
−

nS

2σ2 tr(H − H0 )́ (H − H0)
]

, (3.16)

P
(
σ2|α, β

)
∝
(
σ2)− (α+1)exp

[

−
β
σ2

]

, (3.17)

where tr is the trace of the (H − H0 )́ (H − H0) matrix. The hyper-
parameters nS, H0, nv, v0, α, and β are objectively assessed from the ACS
images, as outlined in [15], but can also be determined using a
completely subjective approach. The joint posterior distribution of the
true slice voxel values v, the coil sensitivities S (and H), and the noise
variance σ2 is

P
(
v,H, σ2|a

)
∝P

(
a|S, v, σ2)P

(
v|nv, v0, σ2)P

(
H|nS,H0, σ2)P

(
σ2|α, β

)
,

(3.18)

with the distributions specified from Eqs. 3.14, 3.15, 3.16, and 3.17.
Using the posterior distribution in Eq. 3.18, two approaches are used

to estimate the unaliased voxel values v, coil sensitivities S, and residual
variance σ2: Maximum a posteriori (MAP) estimation using the Iterated
Conditional Modes (ICM) optimization algorithm [19,20] to find the
joint posterior mode, and marginal posterior mean (MPM) estimation
via Markov chain Monte Carlo (MCMC) Gibbs sampling [21,22].
Beginning with the initial estimates of the each parameter, ICM iterates
over the parameters, calculating its posterior conditional mode and
converges to a maximum of the joint posterior density. Since each of the
posterior conditionals are unimodal, the ICM will produce the global
maximum, the MAP. The conditional modes are

v̂ = (SʹS + nvI2nA )
− 1
(Sʹa+ nvv0), (3.19)

Ĥ = (VʹV + nSI2nA )
− 1
(VYʹ+ nSH0), (3.20)

σ̂2 =
Θ

2(2nC + 2nA + α + 2nCnA + 1)
, (3.21)

where Θ = (a − Sv)́ (a − Sv)+ nv(v − v0 )́ (v − v0)+ αβ+
nStr[(H − H0)(H − H0 )́ ], Y = [aR, aI] and V ∈ ℝ2nA×2 is a skew symmetric
matrix representation of the unaliased voxel values v as expressed by

V =

[
vR vI
− vI vR

]

. (3.22)

The full conditional distributions are given by

v∣S, σ2, a ∼ N
{

v̂, σ2(SʹS + nvI2nA )
− 1

}
, (3.23)

H∣v, σ2, a ∼ N
{

Ĥ, σ2(VʹV + nSI2nA )
− 1

}
, (3.24)

σ2∣v, S, a ∼ IG{α*, β*}, (3.25)

where α* = nCnA + nC + nA + α and β* = [(a − Sv)́ (a − Sv)+
nv(v − v0 )́ (v − v0) + nStr((H − H0)(H − H0 )́ ) + 2β ]/2.

3.3. BMUGS model

For our Bayesian approach to MUGS (BMUGS), we treat the unac-
quired spatial frequencies fk, the weights W, the residual k-space vari-
ance τ2, the unaliased voxel values v, the coil sensitivities H, and the
residual image variance σ2 as unknown parameters that are dependent
on the acquired spatial frequencies fe. The priors for each of these pa-
rameters (Eqs. 3.3, 3.4, 3.5, 3.15, 3.16, and 3.17) along with the like-
lihood equations (Eqs. 3.2 and 3.14) are combined to produce the joint
posterior distribution as expressed in Eq. 3.26.

P(Vk,H,Σ,D, Fk*,T|Fe*)∝P
(
Vk,H,Σ|Ffull

)
P(Fk*,D,T|Fe*), (3.26)

where Vk = (v1,…, vM) represents the vector of unaliased voxel values,
H = IM × (H1,…,HM) represents the matrix of coil sensitivities, Σ =
(
σ2

1,…, σ2
M
)

represents the vector of residual noise variances, Fk* =
(
fk1,…, fkL

)
represents the vector of unacquired spatial frequencies, D =

IL × (D1,…,DL) represents the matrix of localized weights, T = (T1,…
,TL) represents the vector of k-space noise variance, Fe* =

(
fe1,…, feJ

)
)

represents the vector of acquired spatial frequencies, Ffull represents the
vector of the acquired spatial frequencies fe and the fk spatial frequencies
after interpolation, M = nynx, L is the number of unacquired spatial
frequencies, and J is the number of acquired spatial frequencies.

The P(Fk*,D,T|Fe*) represents the posterior distribution of BGRAPPA
and the P

(
Vk,H,Σ|Ffull

)
represents the posterior distribution of BSENSE.

With the BSENSE posterior component being dependent on full coil k-
space arrays Ffull, we must first estimate the unacquired spatial fre-
quency values using BGRAPPA. Then the interpolated spatial fre-
quencies are appended with the acquired spatial frequencies yielding
full FOV coil k-space arrays. After applying the IFT to the coil spatial
frequency arrays Ffull, our BSENSE technique is then used to complete
the image reconstruction process for BMUGS. The process is the same
process illustrated in Fig. 3 except BGRAPPA and BSENSE are used
instead of GRAPPA and SENSE, respectively.

The hyperparameter determination for the BGRAPPA component of
our BMUGS technique follows the assessment outlined in [10]. The
parameter estimation for the BGRAPPA part of BMUGS follows the
estimation outlined in Section 3.1. This means that the unacquired
spatial frequencies fk, the localized weights W, and the k-space noise
variance τ2 have the same posterior conditional modes and posterior
conditional distributions as expressed in eqs. 3.7, 3.8, 3.9, 3.11, 3.12,
and 3.13 respectively.

For the BSENSE part, the hyperparameter determination follows that
detailed in [15], and the parameter estimation follows the estimation
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process outlined in Section 3.2. For this paper, only the MAP estimate
using the ICM was utilized for parameter estimation. Since the coil
measurements are full FOV images after the IFT, the acceleration factor
would be nA = 1. This makes the posterior conditional modes to be

v̂ = (SʹS + nvI2)− 1
(Sʹa+ nvv0), (3.27)

Ĥ = (VʹV + nSI2)− 1
(VYʹ+ nSH0), (3.28)

σ̂2 =
Θ

2(4nC + α + 3)
, (3.29)

where Θ = (a − Sv)́ (a − Sv)+ nv(v − v0 )́ (v − v0)+ αβ+
nStr[(H − H0)(H − H0 )́ ], Y = [aR, aI] and V ∈ ℝ2×2 is a skew symmetric
matrix representation of the unaliased voxel values v as expressed in Eq.
3.22.

With an acceleration factor of one, the posterior conditional distri-
butions become

v∣S, σ2, a ∼ N
{

v̂, σ2(SʹS + nvI2)− 1
}
, (3.30)

H∣v, σ2, a ∼ MN
{

Ĥ, σ2(VʹV + nSI2)− 1
}
, (3.31)

σ2∣v, S, a ∼ IG{α*, β*}, (3.32)

where α* = 2nC + α + 1 and β* = [(a − Sv)́
(a − Sv) + nv(v − v0 )́ (v − v0) + nStr((H − H0)(H − H0 )́ ) + 2β ]/2.

4. Simulation study

The software used for this research was MATLAB 2022b run on a
12th Gen Intel(R) Core(TM) i7-1255U laptop computer with 16GB RAM,
operating on Windows 11.

4.1. Non-task data

To mimic the experimental data shown in Section 5, a single slice
noiseless, non-task image was used to generate two series of 510 simu-
lated full FOV coil images. The magnitude scale of the non-task simu-
lated image was determined by taking the root sum of squares of the cull
coil images. This combines the complex-valued coil images into a single,
real-valued image yielding the scale for the magnitude. The complex-
valued image was multiplied by a designed sensitivity map with nC =

8 coils and replicated nTR = 510 times for the 510 repetition times (TR)
for both series. The first three images in both the simulated series were
appropriately scaled, based on the experimental data, replicating the
increased signal due the time it takes for the magnetization to reach a
stable state for real-world MRI experiments. The series of images were
Fourier transformed into full coil spatial frequency arrays. These series
of coil k-space arrays were simulated by adding separate
N
(
0, 0.0036nxny

)
noise to both time series to the real and imaginary

parts of the coil k-space arrays. This particular noise level corresponds to
the noise in the fMRI experimental data used in Section 5. This data
generation follows a general linear model with normally distributed
noise and no spatial or temporal dependencies.

The last ncal time points of the first time series of non-task images
served as ACS images that were utilized for hyperparameter assessment
so nothing more done to this time series. The second time series was used
as the simulated non-task experiment. After applying noise to the k-
space arrays, the first 20 time points of the second series were discarded
leaving 490 time points of non-task images for the single slice. This is to
mimic the experimental study as those time points are not utilized in the
fMRI analysis. However, those time points could be used to estimate T1
and static magnetic field maps. The remaining 490 time points in the
time series were subsampled by censoring lines in k-space according to

the different acceleration factors used for the simulation.

4.2. Reconstruction results

To examine the reconstruction performance between BMUGS vs.
MUGS, we first reconstructed the subsampled coil k-space measure-
ments at one time point, giving us a single unaliased image for both
methods. With an acceleration factors of nA = 3, we evaluated the first
time point of the 490 simulated non-task time series, shown in Fig. 4
(left).

From the first 510 non-task full FOV ACS time series, we used the last
ncal = 30 time points to assess the hyperparameters in both the k-space
domain (BGRAPPA/GRAPPA) and the image domain (BSENSE/SENSE).
For the BGRAPPA component, the prior means from the ACS informa-
tion for the unacquired spatial frequency arrays fk0 and the localized
weights D0 were used as initial values for fk and D. These initial values
were utilized to generate a τ2 value from the posterior conditional mode
(Eq. 3.9), initializing the ICM optimization algorithm. For the BSENSE
component, the prior means from the ACS images, after IFT, for the
unaliased voxels v0 and the sensitivity coils H0 were used as initial
values for v and H. These initial values were utilized to generate a σ2

value from the posterior conditional mode (Eq. 3.21), initializing the
ICM algorithm. For estimating the parameters, the ICM algorithms only
needed three iterations before converging. This resulted in having
computation times of about 0.50 s per time point for the BGRAPPA
component (about 0.16 s for the GRAPPA component of MUGS) and
0.10 s per time point for the BSENSE component (about 0.04 s for the
SENSE component of MUGS). Fig. 5 displays the true simulated
magnitude and phase images (first column) along with the BMUGS
unaliased images (second column), and the MUGS unaliased images
(third column).

From a visual standpoint, we can see that the joint MAP estimate
from BMUGS produces magnitude and phase images that more closely
resemble the true non-aliased magnitude and phase images in Fig. 5 (left
column). MUGS, on the other hand, produced an image with a higher
noise level and slight bias in the magnitude image compared to our
BMUGS technique. This is evident by the noise level in the voxels outside
of the brain being markedly higher, which is typically masked out in
fMRI studies. Here we retain them to evaluate the spatial noise level of
the reconstructed images for both techniques. Unlike the BMUGS and
true phase images, the MUGS technique also produced a phase image
with no anatomical structure, rendering it essentially unusable. Phase
images are commonly discarded in analysis but we use them to further
analyze the different reconstruction techniques. Further, using both
magnitude and phase images have been shown to yield increased power
of activity detection [23,24] and additional biological information
outside of the just using magnitude images [25].

Next, we evaluated how different number of ACS time points, ncal,
used for hyperparameter assessment affected the reconstructed images.
For this analysis, we fixed the acceleration factor to be nA = 3 for sub-
sampling the coil k-space measurements of the simulated non-task time
series with nTR = 490 time points. For separate hyperparameter assess-
ments, we set the number of ACS time points to be ncal =

5, 10,15,20,25,30 and After hyperparameter determination, the sub-
sampled non-task time series was reconstructed using BMUGS and
MUGS.

The results displayed in Fig. 6 show that increasing the number of
ACS time points noticeably decreases the noise level outside of the brain
for BMUGS but only slightly decreases for the MUGS reconstructed
magnitude images. For both techniques, it appears that increasing the
ACS time points has negligible effect inside the brain.

To quantify the differences between the true and reconstructed
magnitude images inside the brain, we use the mean squared error,
MSE = 1

K
∑K

j=1
(
vj − vj

)2, where K is the number of voxels inside the brain
in the reconstructed image, vj is the reconstructed magnitude value of
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the jth voxel, and vj is the true magnitude value of the jth voxel. This
measure indicates how accurate a reconstructed image is compared to
the true simulated image. Having a lower MSE estimate indicates higher
accuracy with the reconstructed image. The MSE of inside the brain for
both BMUGS and MUGS for each number of ACS time points is displayed
in Fig. 7a. The MSE for inside the brain for the BMUGS reconstructed
magnitude images is smaller than the MUGS reconstructed magnitude
images indicating a more accurate reconstruction.

Along with the MSE, we also evaluated entropy of the reconstructed
magnitude images for both techniques. Entropy analyzes uncertainty
and smoothness across the entire reconstructed image. Similar to the
MSE estimate, lower entropy means less uncertainty throughout the

image [26]. The equation for entropy is given by E = −

∑N
j=1

[
vj

vmax
ln
(

vj
vmax

)]

, where ln is the natural log, N is the number of

voxels in the reconstructed image, vj is the reconstructed magnitude
value of the jth voxel, and vmax is the voxel intensity if all the image

intensities were in one pixel [1] given by vmax =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
j=1vj2

√

. The results
for calculating the entropy for both BMUGS and MUGS using different
ACS time points is shown in Fig. 7b. BMUGS appears to have markedly
lower entropy as it decreases from 195.7 to 181.6 compared to MUGS
which also decreases from 198.9 to 189.6 as the number of ACS time
points increases. The phase results for both reconstruction techniques

Fig. 4. Real and imaginary simulated noisy subsampled coil k-space arrays (left) and the aliased coil images after IFT (right) for first time point in the non-task
time series.

Fig. 5. True non-task unaliased images (first column), BMUGS unaliased non-task images (second column) using ICM, and MUGS non-task images (third column)
with magnitude images in the first row and phase images in the second row.
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using different ACS time points is shown in Section 1 of the Supple-
mentary Material.

To further analyze BMUGS compared to MUGS, we also evaluated
how different acceleration factors, nA, affected the reconstructed im-
ages. For this analysis, we fixed the number of ACS time points to be
ncal = 30 for hyperparameter assessment. Then we set the acceleration
factors to be nA = 2,3, 4,6, 8,12 to indicate the subsampling pattern for
the non-task time series. These subsampled k-space coil measurements
with separate acceleration factors were reconstructed into full FOV
images using BMUGS and MUGS with comparisons along the way.

Fig. 8 exhibits the reconstructed magnitude images from BMUGS
(top row) and MUGS (bottom row) for different acceleration factors. The
results show that the reconstructed magnitude images from BMUGS and
MUGS are negligibly affected by increasing the acceleration factor. The
reconstructed phase image results for different acceleration factors
resemble the results displayed in the bottom row of Fig. 5 and are shown
in Section 1 of the Supplementary Material. We also evaluated the
temporal variance and SNR images for separate acceleration factors and

the results are illustrated in Fig. 9. Note that the scale for the temproal
variance for BMUGS (first row) is remarkably smaller than the scale for
the temporal variance for MUGS. This indicates that BMUGS has a
considerably smaller variance through time. As the acceleration factor
increases, the temporal variance for BMUGS decreases while the tem-
poral variance for MUGS remains relative constant inside the brain but
decreases outside the brain. With noticeably smaller temporal variance,
this yields a considerably higher SNR for BMUGS (third row of Fig. 9)
compared to MUGS (fourth row of Fig. 9). This is evident by the scale of
the SNR images for BMUGS having a much larger maximum value
compared to MUGS. Increasing acceleration factor also markedly in-
creases the SNR for BMUGS (as expected with the decreasing temporal
variance) and remains constant for MUGS. With higher SNR values, this
shows that BMUGS is largely unaffected by noise compared to MUGS.

4.3. Task activation

In task-based fMRI, a baseline signal value for each voxel is given by

Fig. 6. Reconstructed magnitude images for different number of ACS images using BMUGS estimate (top row) and MUGS (second row).

Fig. 7. (a) MSE for inside the brain for BMUGS and MUGS comparing both methods' reconstructed images to the true simulated magnitude image for each number of
ACS time points. (b) Entropy plot for BMUGS and MUGS for each number of ACS images. For both plots, BMUGS is shown in red and MUGS is shown in blue. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the non-task reconstructed images, giving us an intercept only simple
linear regression y = β0 + ε where y is the voxel value in the recon-
structed image. Adding in task activation to certain images in the series
gives us simple linear regression y = β0 + xβ1 + ε for the reconstructed
voxel values where β0 is the baseline voxel value, which determines the
SNR = β0/σ, and β1 is the estimated signal increase (related to task)
from β0 determining the contrast-to-noise ratio CNR = β1/σ. The vector
x ∈ {0,1}nIMG , where nIMG is the number of reconstructed images in the
series, is a vector composed of zeros and ones corresponding to the time
points in the series without task activation (zero) and time points with
task (ones). This can then be written as the linear regression y = XB+ ε,
where X = [1, x] ∈ ℝnIMG×2 and B = [β0, β1 ]́ .

Typically, the CNR is much smaller than the SNR, rendering the task
is not visible on the reconstructed images. Instead, a right-tailed t-test is
performed with H0 : β1 ≤ 0 and Ha : β1 > 0. We only anticipate an
increased signal from the task activation which is why our alternative
hypothesis is > and not ∕=. A β1 = 0.045 magnitude-only signal increase
is added to the true noiseless non-task image to simulate task. With ε ∼

N(0, 0.0036) noise added to the simulated time series, we obtain a CNR
of 0.75 showing that the added signal increase is not higher than the
noise level. A simulated phase task of π/120 was also added and
analyzed in Section 1 of the Supplementary Material. Since the region of
interest (ROI) in the experimental data is in the left motor cortex, we
added this simulated task activation in that region. The brain activity
from the experimental fMRI is in the left motor cortex because of the
unilateral right-hand finger tapping experiment [27] performed during
the MRI scan.

4.4. FMRI time series data generation

Along with the same noiseless task image mentioned in Subsection
4.1, a true noiseless task image was used to simulate a series of 510 full
FOV coil images for one slice. These true images were multiplied by the
same nC = 8 coil sensitivity maps used for the non-task simulated time
series (Subsection 4.1), generating coil-weighted brain images. This
series of images was Fourier transformed in full coil k-space arrays with
N
(
0, 0.0036nxny

)
noise added to the real and imaginary parts of the k-

space arrays. To simulate the experimental fMRI data described in
Subsection 5.1, the series was generated by starting with 20 non-task
time points. The series is then followed by 16 epochs, a stimulation

period where the subject is at rest (non-task) or performing an action
(task), of 15 non-task and 15 task time points. The series was then
finished with 10 non-task time points producing the simulated fMRI
series of nTR = 510 time points. The scaling for the first few non-task
images in the simulated series was the same as the signal increases
outlined in Subsection 4.1 for each of the tissue types. The first 20 time
points were discarded leaving 490 time points in the series, mimicking
the experimental study performed Section 5. The last ncal time points in
the non-task time series from Subsection 4.1 were utilized to assess the
hyperparameters from full FOV coil ACS time points. For this fMRI
simulation, we evaluate task detection results using both BMUGS and
MUGS using different acceleration factors, nA = 2,3, 4. We also evalu-
ated how different ACS time points effect the task detection results but
omitted them from this paper as they do not add any extra value that the
acceleration factor testing does not have.

4.5. FMRI time series reconstruction results

The hypothesis test described in Subsection 4.3 was carried out to
determine which voxels experienced statistically significant signal in-
crease i.e. task activation. The statistically significant voxels from the
BMUGS and MUGS reconstructed time series for each acceleration factor
were analyzed using the 5 % false discovery rate (FDR) threshold pro-
cedure [28,29,30]. The ROI, left motor cortex, consists of 28 voxels with
the added simulated task.

Fig. 10 displays the statistically significant voxels for the magnitude-
only task detection from the BMUGS reconstructed time series (first row)
and the MUGS reconstructed time series (second row) for the separate
acceleration factors. The t-statistics are also summarized in Fig. 10 for
both reconstruction techniques using each acceleration factor. The re-
sults in Fig. 10 show that BMUGS identified more statistically significant
voxels in the ROI for each acceleration factor compared to MUGS. For
acceleration factors nA = 3, 4, MUGS captures very few active voxels.
Analyzing the summary of the t-statistics, we see that the mean value
was much higher for BMUGS with a lower standard deviation compared
to MUGS for each of the acceleration factors. This demonstrates that
BMUGS performs better with its power in task detection. Increasing the
acceleration factor does decrease the number of voxels identified and
the mean of the t-statistics for both techniques, especially with MUGS.

Fig. 8. Reconstructed magnitude images for different acceleration factors using BMUGS (top row) and MUGS (second row).
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5. Experimental study

5.1. Data description

An fMRI experiment on a single subject was conducted using a 3.0 T
General Electric Signa LX magnetic resonance imager. This experiment
consisted of two time series containing 510 time points each: one non-
task and one fMRI series. For each volume image in the experimental
series, a time dependent echo time, TEt , consisted of three parts. The first
part was fixed to have a value of TE = 42.7 ms at the first 10 time points.
In the second part, the next five TE values were an equally spaced in-
terval of values 42.7 ms, 45.2 ms, 47.7 ms, 50.2 ms, and 52.7 ms and was
repeated for another 5 time points. For the final part, the last 490 time
points were fixed at 42.7 ms. To account for T1 effects and varying echo
times, the center row of k-space for each TR in each receiver coil was
acquired with three navigator echoes which is used to correct any po-
tential Nyquist “ghosting.” The additional rows of k-space were inte-
grated to estimate and adjust the error in the center frequency and group
delay offsets between the odd and even lines of k-space [31].

The last ncal = 30 full coil k-space arrays of a non-task series utilized
for hyperparameter assessment, similar to the simulated study. After an
initial 20 s of rest, a bilateral finger-tapping action was performed in a
block design with 16 epochs of 15 s off and 15 s on and concluded with
10 s of rest yielding the series of nTR = 510 repetitions. Each repetition
in the series was 1 s with a flip angle of 90◦ and an acquisition band-
width of 125 kHz. The data was collected using nC = 8 receiver coils
obtaining nine 2.5 mm thick axial slices with a 96 × 96 dimension and a
posterior to anterior phase encoding direction.

Typically, the magnetic fields in an fMRI experiment will induce a
drift in the phase over time which we correct before reconstruction to
give us a stable phase through time. First, the angular phase temporal
mean of the time-series is calculated and angularly subtracted for each
voxel time-series. A local second order polynomial was spatially fit to
the resultant difference of the voxel phase time-series. Then the fitted
phase is angularly subtracted from the original producing a steady phase
over time for each coil.

For this paper, the time series for the second slice was used to analyze
the effects of applying the nA = 2, 3,4 different acceleration factors for

Fig. 9. Temporal variance and SNR images for different acceleration factors using BMUGS (first row and third row, respectively) and MUGS (second row and fourth
row, respectively).
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both BMUGS and MUGS. Like the simulation study, the subsampled coil
spatial frequency arrays came from artificially skipping lines in k-space,
mimicking the effect of actual subsampling. The first 20 images were
discarded due to magnetization stability and varying echo times, leaving
nIMG = 490 time points for the fMRI experiment. However, the first 10
images of the 20 discarded can be used to estimate a T1 map [27] and the
second 10 images could be used for static magnetic field mapping [32].

5.2. Experimental results

Each image in the entire time series of subsampled coil k-space
measurements were reconstructed using BMUGS and MUGS separately,
similar to the simulation study. The magnitude reconstructed images for
both BMUGS (top row) and MUGS (bottom row) of the first time point
are displayed in Fig. 11 for each acceleration factor. The results in
Fig. 11 show that BMUGS reconstruction produced clearer, less noisy
images compared to MUGS. Inside the brain, it is noticeable when
analyzing the reconstructed images using nA = 3, 4 acceleration factors
(columns 3 and 4) but is apparent outside the brain for each nA.

To quantify the differences inside the brain, MSE estimates were used

to compare the reference image and reconstructed images. The MSE for
BMUGS was approximately 0.015 for each acceleration factor. For
MUGS, the MSEs inside the brain were 0.052, 0.103, and 0.145 for ac-
celeration factors 2, 3, 4, respectively. This means MUGS had an 247 %,
587 %, and 867 % larger MSE inside the brain for each acceleration
factor, respectively, than BMUGS. These results reflect the lesser noise
from the BMUGS reconstructed magnitude images compared to MUGS.
The entropy for BMUGS (191.1, 191.3, and 191.4, respectively) was also
lower than the entropy for MUGS (201.9, 200.1, 198.8) indicating less
uncertainty for each reconstructed image.

For detecting task activation, the hypothesis test outlined in Sub-
section 4.3 was carried out, similar to Subsection 4.5. Fig. 12 displays
the statistically significant voxels for BMUGS (top row) and MUGS
(bottom row) using the 5 % FDR threshold. The summary of the t-sta-
tistics for both BMUGS (red) and MUGS (blue) are also shown in Fig. 12.
With the ROI containing 28 voxels that experience task activation,
BMUGS correctly detected more active voxels than MUGS for all three
acceleration factors. Our BMUGS technique also had a much higher
mean t-statistic and lower standard deviation for all the acceleration
factors. With task detection being the primary objective of fMRI, these

Fig. 10. Statistically significant voxels in the ROI using FDR for BMUGS (first row), significant voxels in the ROI using FDR for MUGS (second row), and analysis of
the t-statistics in the boxes on the right with BMUGS in red and MUGS in blue. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 11. BMUGS unaliased non-task magnitude images for each acceleration factor (first row), and MUGS unaliased non-task magnitude images for each acceleration
factor (second row) with the magnitude reference image (left).
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results show that BMUGS is the superior reconstruction technique
compared to MUGS.

6. Discussion

Parallel imaging techniques have become very common in fMRI for
reducing scan time and capturing brain activity. These techniques
reconstruct subsampled k-space data, which is unusable, into full FOV
brain images which can be utilized for fMRI analysis. Subsampling k-
space data sets allows for practitioners to increase the number of slices
or images in the series, reconstruct higher resolution images, or a
combination of both in the same time it takes to acquired fully sampled
k-space. The importance of time determines the acceleration factor
while the coil configuration is determined by what configurations the
facility possesses.

Applying an acceleration factor in an fMRI experiment can signifi-
cantly reduce the acquisition time of spatial frequency arrays and vol-
ume images. However, taking the IFT of the subsampled k-space arrays
yields aliased coil images. SENSE and GRAPPA are common recon-
struction techniques that reconstruct these subsampled k-space arrays or
aliased coil images into full FOV brain images. GRAPPA estimates the
unacquired spatial frequencies that are skipped during the acquisition of
the subsampled k-space arrays yielding full FOV coil spatial frequency
arrays. These coil spatial frequency arrays are then averaged together
and inverse Fourier transformed to get a single composite brain image.
However, GRAPPA has its drawbacks which include reduced signal in-
tensities, low image quality, low SNR, and weakened task detection
power at higher acceleration factors. The reduced signal intensities are
due to GRAPPA not utilizing coil sensitivity information in its recon-
struction process. In SENSE image reconstruction, the aliased coil im-
ages are simultaneously unaliased and combined, resulting in a single
composite brain image. This image reconstruction method can be diffi-
cult in the presence of an ill-conditioned design matrix. Here, we include
a model that merges both GRAPPA and SENSE (MUGS) since GRAPPA
operates in the spatial frequency domain and SENSE operates in the
image domain. Despite this merged model, there are still discrepancies
with applying this model as valuable prior information that can incor-
porated into the image reconstruction is discarded.

Hence, we introduce a Bayesian approaches to MUGS which utilizes
previously addressed methods of BSENSE and BGRAPPA. Using more
available information from the ACS spatial frequencies and images to
assess the hyperparameters, our proposed Bayesian approach success-
fully reconstructed a series of simulated non-task images without any
aliasing artifacts. Our BMUGS technique also showed to have numerous

improvements over the reconstructed images of the MUGS techniques
when applied to both simulated and experimental fMRI data. With
BMUGS exhibiting superior results compared to MUGS, fMRI research
could benefit on a larger scale with contributions to the human con-
nectome project.

Both BMUGS and MUGS does not incorporate denoising or smooth-
ing techniques either during or after the reconstruction process. These
techniques are commonly used techniques in fMRI for reducing spatial
noise in the images and enhancing the assessment of task activation.
Extension of denoising and spatial smoothing techniques to these
reconstruction process can be considered for future work of this research
for a full comprehensive reconstruction process. These reconstruction
techniques can be further analyzed by mixing the BMUGS and MUGS
processes. This can be done by using GRAPPA to estimate the unac-
quired spatial frequencies and BSENSE to combine the coil images and
vice versa.

This paper used the full posterior distribution for reconstructing
images, meaning available prior information was quantified on all six
parameters (fk, D, τ2 v, S, and σ2) and utilized for parameter estimation.
Only the MAP estimate using the ICM algorithm for both the BGRAPPA
component and the BSENSE component was used to reconstruct the time
series for both the simulated and experimental studies. We also
considered using a Gibbs sampling algorithm to estimate the unknown
parameters as this would yield in entire posterior distribution for each
parameter. We did not run the Gibbs sampler for practicality reasons
since it is more computationally expensive compared to the ICM algo-
rithm. There is still value in running a Gibbs sampler as it has the
additional benefit of quantifying uncertainty. For instance, it could be
utilized on a shorter series of images, provide us more statistical infor-
mation about any voxel, or for hypothesis testing between two images. It
is possible to hybridize the ICM and Gibbs sampler with a couple of ICM
steps followed by a short or no-burn Gibbs sampler. We can also hy-
bridize by using the ICM for the BGRAPPA component and Gibbs sam-
pling for the BSENSE component or vice versa.

Our proposed procedure can also be repeated for vertical aliasing as
opposed to the horizontal aliasing used here. In Section 1.2, we mention
that MUGS (and BUMGS) can be utilized as a simultaneous multi-slice
(SMS) image reconstruction technique. We can further test these
models by comparing to other SMS technqiues [33,34,35]. In this paper,
a magnitude-only activation model was utilized to detect task activation.
In Section 1.3 of Supplementary Material, phase-only activation for
BMUGS and MUGS is analyzed with the results showing strong task
detection power for the BMUGS technique. Since the reconstructed
images are complex-valued, our proposed model is expected to be

Fig. 12. Statistically significant voxels in the ROI using FDR for BMUGS reconstructed images (first row) for three different acceleration factors, significant voxels in
the ROI using FDR for MUGS (second row) for three different acceleration factors, and analysis of the t-statistics to the right of the images with BMUGS in red and
MUGS in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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applicable for complex activation models for task detection [36,23,24].
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