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Abstract 

In fMRI, capturing brain activity during a physical task is dependent on how quickly each 

volume k-space array is obtained. Acquiring the full k-space arrays can take a considerable amount 

of time. Under-sampling k-space reduces the acquisition time, but results in aliased, or “folded”, 

images after applying the inverse Fourier transform (IFT). GeneRalized Autocalibrating Partial 

Parallel Acquisition (GRAPPA) and SENSitivity Encoding (SENSE) are parallel imaging 

techniques that yield full images from subsampled arrays of k-space. With GRAPPA operating in 

the spatial frequency domain and SENSE in image space, these techniques can be fused to 

reconstruct the subsampled k-space arrays more accurately. Here, we propose a Bayesian approach 

to this combined model where prior distributions for the unknown parameters are assessed from a 

priori k-space arrays. The prior information is utilized to estimate the missing spatial frequency 

values, unalias the voxel values from the posterior distribution, and reconstruct into full field-of-

view images. Our Bayesian technique successfully reconstructed a simulated fMRI time series with 

no aliasing artifacts while decreasing temporal variation. 
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1. Introduction 

 

1.1 Background 
 

Functional Magnetic Resonance Imaging (fMRI) is a medical imaging technique that was 
developed in the early 1990’s as a technique to noninvasively observe human brain activity without 

exogenous contrast agents [2]. When a neuron fires, changes in the blood oxygenation using the 

blood oxygen-level dependent (BOLD) contrast is detected in its proximity [14] which can be used 

to map brain activity [15]. The magnetic resonance imaging (MRI) scanner measures arrays of 

complex-valued spatial frequencies called k-space [9]. These k-space arrays are then transformed 

into brain images using an inverse Fourier transform (IFT). The reconstructed brain images are made 

up of complex-valued voxels which contain the signal intensity (magnitude) and a measure of local 

magnetic field (phase) for each pixel in the image. 

For fMRI analysis, the phase images are typically discarded. For this research, phase images 

will be utilized for reconstruction analysis. Producing magnitude and phase images is simply a 

conversion to polar coordinates from Cartesian coordinates in the complex plane. The concentration 

here will be on Cartesian k-space sampling with the conversion to polar coordinates used for 
reconstruction analysis and image depiction purposes. 

In fMRI, obtaining hundreds of volume images is necessary to statistically detect activation. 

This series of images is the same underlying volume image measured individually through time. It 

takes a considerable amount of time to measuring full k-space arrays for all slices required to form 

volume images due to the size of a dataset from a single experiment. This lengthy acquisition time 

limits the temporal resolution of the reconstructed images which can diminish the ability to capture 

brain activity. A key focus in recent MR research has been reducing the scan time of the fMRI 

process has been by accelerating the number of images acquired per unit of time [6, 7, 16]. 

 

 



1.2 Previous Approach 
 
 The introduction of parallel imaging techniques allow more images per unit of time to be 

acquired by measuring less data without losing the ability to form a full field-of-view (FOV) 

reconstructed image. With these techniques, multi-channel receiver coils are utilized in parallel to 

fully sample k-space data arrays instead of using the historically used single channel receiver coil. 

Utilization of multiple receiver coils allows researchers to skip lines of the k-space arrays during the 

acquisition process. This yields subsampled spatial frequency arrays for each coil and reduces the 

acquisition time of the k-space arrays. However, skipping lines in k-space causes the images in each 

coil, after using the IFT, to be aliased, or appear “folded over.” To produce a single, full FOV, 

reconstructed brain image, the multiple aliased coil images are required to be unaliased and 

combined. 

 There are two common parallel imaging techniques that accomplish this: GeneRalized 

Autocalibrating Partial Parallel Acquisition (GRAPPA) [6] and SENSitivity Encoding (SENSE) 

[16]. GRAPPA operates on the subsampled k-space prior to the IFT by assessing localized weights 

that are used to interpolate the unacquired spatial frequencies for each coil. SENSE operates in 

image space after the IFT utilizing estimated coil sensitivities (coil weightings) to unalias and 

combine the aliased coil measurements into a single FOV image. 

 For the GRAPPA method, once the unacquired spatial frequencies are interpolated, the full coil 

spatial frequency arrays (acquired plus estimated) are combined into a single k-space array by 

averaging the coil spatial frequency values at each location. The IFT is applied to the averaged, full 

k-space array to transform the spatial frequency array into a brain image. GRAPPA is effective with 

low acceleration factors since it does not rely on sensitivity coil information but has its deficiencies 

at higher acceleration factors. These deficiencies include low image quality, low SNR, and 

diminished task detection power [4]. We developed a Bayesian approach to GRAPPA (BGRAPPA) 

that incorporates more prior information to estimate the unacquired spatial frequencies [20]. 

BGRAPPA increased SNR and image quality and displayed improved power in detecting task 

compared to GRAPPA. 

 The SENSE method uses complex-valued linear regression with a fixed design matrix on the 

aliased coil measurements after the IFT. SENSE then uses a least squares solution to estimate the 

voxel values of the single, reconstructed brain image, but this can be difficult because the complex-

valued design matrix can be ill-conditioned. This parameter estimation approach can cause low 

image quality, aliasing artifacts, and signal-to-noise ratio (SNR) degradation in the final 

reconstructed image. These deficiencies have led to variations of the traditional technique [8, 10, 

11, 12], but hardly mitigate the limitations of the traditional maximum likelihood SENSE procedure. 

We have previously developed a Bayesian approach to SENSE (BSENSE) that incorporates more 

prior information in the estimated voxel values of the full FOV reconstructed image [19]. When 

comparing BSENSE to SENSE, the results yielded no aliasing artifacts with increased SNR, image 

quality, and task detection power [19]. 

 Here, we first introduce a merged utilization of GRAPPA and SENSE (MUGS) for in-plane 

accelerated image reconstruction. This technique is a two-step reconstruction process. First, 

GRAPPA is utilized to estimate the unacquired spatial frequencies yielding full coil k-space arrays. 

Using the IFT, these full coil k-space arrays are reconstructed into coil-weighted brain images. The 

second step uses SENSE to combine the coil-weighted images into a single, complex-valued brain 

image. This MUGS technique utilizes information from both the spatial frequency domain and the 

image space domain to reconstruct the subsampled coil k-space arrays into a single full FOV brain 

image. Despite this merged utilization of both traditional reconstruction techniques, it does not take 

advantage of all valuable available prior information that can be incorporated into the reconstructed 

image. Here, we propose a Bayesian approach to MUGS (BMUGS) that instead of merging 

GRAPPA and SENSE, we merge BGRAPPA and BSENSE. An fMRI simulation study is performed 

illustrating how the BMUGS technique outperforms the MUGS technique. 

 



2. BMUGS Technique 

 

2.1 Research Problem 

 
From a single channel coil, full spatial frequency arrays are acquired along a trajectory, as 

shown in Figure 1 (left), following a Cartesian path with turnaround points at the end of each row. 

With acquiring full complex-valued spatial frequency arrays from a single channel coil, one only 
needs to use the IFT to yield a full FOV complex-valued brain image. Since the objective of this 

research is to acquire more images per unit of time, parallel imaging is utilized. This allows for 

subsampling of k-space. The right of Figure 1 shows the trajectory for undersampling the spatial 

frequencies. Like the fully sampled k-space array on the left side of Figure 1, the scanner starts in 

the bottom left and moves across the row acquiring complex-valued spatial frequency points along 

the row. Then, at the end of the row, it skips lines according to the acceleration factor nA as it moves 

up the rows. We see that in Figure 1 (right), the trajectory skips the next one line, with an 

acceleration factor of nA = 2, acquiring the second line above the bottom. This acquisition process 

is repeated until all designated rows of the discretized subsampled k-space array are acquired. 

 

 
Figure 1: Trajectories of a fully sampled k-space array (left) and a subsampled k-space array 

with an acceleration factor of nA = 2 (right). 

 

To appropriately subsample the k-space arrays, nC > 1 receiver coils are utilized in parallel 

instead of a single channel coil. For example, if there was a four-channel coil alignment, it can be 

arranged with the first coil located at the anterior and rotated clockwise around a subjects head when  

 

 
Figure 2: Illustration of nC = 4 subsampled coil k-space arrays with an acceleration factor of 

nA = 3 (left) and their respective aliased brain images after the IFT (right). 



looking from the top of the head. With nA = 3, each of the nC = 4 coils acquire subsampled k-space 

as depicted on the left side of Figure 2. Then, using the IFT yields aliased brain images for each coil 

as shown on the right side of Figure 2. Due to the aliasing, these coil brain images are rendered 

useless as there is no distinct anatomical structure which makes it difficult to perform any fMRI 
analysis. Since these aliased images cannot be used, parallel imaging techniques are required to 

unfold and combine them into a single composite brain image. 

 

2.2 Reconstruction Process 

 
As previously mentioned, multiple steps are required to properly merge GRAPPA and SENSE 

together for in-plane accelerated image reconstruction. The process for reconstructing subsampled 
coil k-space arrays into a single brain image using the MUGS (and BMUGS) technique is 

demonstrated in Figure 3. In step 1 of Figure 3, pre-scan calibration spatial frequency arrays are 

acquired and utilized for estimating the localized weights, Wc, for GRAPPA in step 2. Also from 

step 1, the full coil spatial frequency arrays are transformed using the IFT to full coil-weighted brain 

images that are utilized to assess the coil sensitivities, S, for SENSE (step 2). Step 3 is then to acquire 

the subsampled spatial frequency arrays for the fMRI experiment. In step 4, GRAPPA is utilized to 

estimate all the unacquired spatial frequencies yielding full coil k-space arrays. These full coil k-

space arrays are then transformed to coil-weighted images (step 5). Then SENSE reconstruction 

uses the pre-assessed coil sensitivity information to combine the coil images into a single composite 

brain image in step 6. This process is repeated for each time point in the subsampled fMRI time 

series. For the BMUGS technique, it follows the same procedure as the MUGS technique, but 

instead of GRAPPA and SENSE, BGRAPPA and BSENSE are applied respectively. 

 
Figure 3: Flow chart for the BMUGS and MUGS model for image reconstruction. 

  

 The model for MUGS begins with the GRAPPA model. That is 
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where ω = 1, ..., K, f
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 ∈ ℂnC×1 represents the complex-valued interpolated k-space values,  f
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 ∈ 

ℂ𝑝×1 represents the complex-valued acquired k-space values, 𝜂c ∈ ℂnC×1 represents the additive 

complex-valued noise with 𝜂c ~ N(0, τ2(1+i)), and p = nCkrowskcols and K = nynx(1 - 1/nA), where ny 

and nx are the number of rows and columns, respectively, in the reconstructed image. For the 

BGRAPPA component of the BMUGS technique, the same linear model expressed in Eq. 2.1 is 

utilized, but the assignment of the parameters are different compared to MUGS. For BGRAPPA, 

f
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 ∈ nC×1 represents the complex-valued acquired k-space values and  f
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 ∈ ℂ𝑝×1 represents the 

complex-valued interpolated k-space values. This allows for the f
kc
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treated as unknowns and place prior distributions on them. The interpolated spatial frequencies, f
ec

 

for GRAPPA and f
kc

 for BGRAPPA, are then imputed in the respective locations of the missing k-

space values resulting in full coil k-space arrays, f
full

. 

 The full coil k-space arrays f
full

 are then inverse Fourier transformed into coil images. The 

SENSE model is then employed to combine the full FOV coil image measurements to obtain a single 
composite brain image. The model for SENSE is  
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where 𝛿 = 1, ..., M, ac ∈ ℂnC×1 represents the complex-valued coil measurements, Sc ∈ ℂnC×1 

represents the matrix of complex-valued coil sensitivities, vc ∈ ℂ represents the complex-valued 

unaliased voxel value, 𝜀c ∈ ℂnC×1 represents the additive complex-valued noise where 𝜀c ∼ N(0, σ2 

(1+i)), and M = nynx. For the BSENSE component of the BMUGS technique, the same linear model 

expressed in Eq. 2.2 is used. For BSENSE, the Sc, vc, and σ2 parameters are treated as unknowns 

with prior distributions. The BGRAPPA and BSENSE reconstruction techniques are detailed in the 

[20] and [19] papers. 
 

3. Simulation Study 

 

3.1 Spatial Frequency Data 
 

 A noiseless non-task image was used to create a series of 510 simulated full coil images for one 

slice that was utilized for pre-scan calibration assessment (step 1 in Figure 3). A noiseless task image 

was also used along with the noiseless non-task image was used to generate a separate series of 510 

simulated full coil images for one slice mimicking real-world fMRI data. The region of interest 

(ROI) for the simulated task activation was derived from an fMRI experiment in which the subject 

tapped their right fingers leading to activity in the left motor cortex. With this knowledge, artificial 

magnitude intensity and phase angle signal increase was added to the voxels in the ROI. These two 

data sets were used for testing and comparing BMUGS and MUGS. 

 

 For the simulated experiment, the last 𝑛𝑐𝑎𝑙  = 30 time points of the non-task time series served 
as the calibration information utilized for prior information for MUGS (i.e. estimating the localized 

weights for the GRAPPA component and coil sensitivities for the SENSE component) and 

hyperparameter assessment for BMUGS. The second series, containing both non-task and task time 

points, was used for simulating a subsampled real-world fMRI experiment. The complex-valued 

images in both series were multiplied by a designed sensitivity map with nC = 8 coils. In real-world 

MRI experiments, magnetization takes a few seconds to stabilize, leading to the first few images 

having increased signal compared to the rest of the series. To replicate this increased signal, the first 

three images in both time series are appropriately scaled based on experimental data. Both series 

were then Fourier transformed into full coil k-space arrays. These series were simulated by adding 

N(0, 0.0036nynx) spatial noise, where ny and nx are the number of rows and columns, respectively, 

to the real and imaginary parts of the full coil k-space arrays, corresponding to the noise in real-

world fMRI experimental data. The series of 𝑛𝑐𝑎𝑙  = 30 non-task time points were utilized to assess 

prior information for the BGRAPPA component and GRAPPA component of BMUGS and MUGS, 

respectively, while still in the spatial frequency domain. This non-task series was then inverse 

Fourier transformed into the  image domain to assess the prior information for BSENSE and SENSE 
components of BMUGS and MUGS, respectively. The series of images for the fMRI simulated 

experiment were Fourier transformed into full coil k-space arrays. To mimic the fMRI experiment, 

the first 20 time points of the fMRI time series were discarded leaving 490 time points of spatial 

frequency arrays for the single slice. The remaining 490 time points in the time series were 

subsampled by censoring lines in k-space according to an acceleration factor of nA = 3, leaving a 

series of 490 time points with an 8-channel coil of 32×96 subsampled arrays to be reconstructed by 

BMUGS and MUGS. 

 

 

 



3.2 Reconstruction Results 

 
 To analyze the reconstruction performance of BMUGS vs. MUGS, we first evaluate the first 

time point of the reconstructed subsampled coil spatial frequencies. The magnitude (first row) and 

the phase (second row) of the true simulated image (first column), the BMUGS reconstructed image 

(second column), and MUGS reconstructed image (third column) are displayed in Figure 4. 

 
Figure 4: Magnitude (top row) and phase (bottom row) of the BMUGS (second column) and 

MUGS (third column) reconstructed images compared to the true simulated images (first 

column). 

  

 Analyzing Figure 6, we see that the BMUGS and MUGS magnitude images both closely 

resemble the true magnitude image inside the brain with the MUGS magnitude image being slightly 

noisier. This is more evident when looking outside the brain as the noise level is noticeably higher 
for MUGS compared the BMUGS which has little noise outside the brain. When looking at the 

phase images, BMUGS produces a better phase image as the MUGS phase image shows no 

anatomical structure.  

 
Figure 5: Temporal variance (first column) and SNR (second column) for BMUGS (first row) 

and MUGS (second row). 



 Next, we analyzed the entire reconstructed time series instead of just the first time point. Figure 

5 shows the temporal variance of the time series for both techniques along with the signal-to-noise 

ratio (SNR) value of each reconstructed voxel. For both columns, there are two separate scales where 

the top scale is for the BMUGS technique, and the bottom scale is for the MUGS technique. 

Examining the temporal variance column, we see that BMUGS has a remarkably lower temporal 
variance which indicates that BMUGS reconstructed images are more accurate through time. 

Temporal variance also has a direct relationship with SNR which is why BMUGS has prominently 

higher SNR values compared to MUGS as shown in the second column of Figure 5. A larger SNR 

value indicates that the reconstruction technique is less affected by noise further showing the 

accuracy of the BMUGS reconstruction technique compared to MUGS. 

 After evaluating non-task results above, we next examined the task detection results since the 

primary goal of fMRI is to analyze brain activity. The left column of Figure 6 displays the results 

of task detection for BMUGS and MUGS, with the ROI outlined in green, using 5% false discovery 

rate (FDR) threshold procedure [3, 5], which generated a threshold of 3.82, with a closer view in 

the right column of the figure. When evaluating the task detection results in Figure 6, we can see 

that BMUGS captures the majority of the active voxels in our ROI whereas MUGS only captures 

four voxels indicating that BMUGS has a stronger power of task detection. The average t-statistic 
for BMUGS further supports this conclusion as it is markedly higher than the t-statistic for MUGS. 

 
Figure 6: Task detection results (left column) for BMUGS (first row) and MUGS 

(second row) with a zoomed in view of the ROI and t-statistic analysis (right 

column) for both techniques. 

4. Discussion 

 
 In this research, we formulated an image reconstruction technique that merges GRAPPA and 

SENSE (MUGS) for in-plane accelerated subsampled fMRI experiment. We then followed a 

Bayesian approach to MUGS parallel fMRI image reconstruction to incorporate all available 

calibration image information from the spatial frequency domain and image domain into the 

reconstruction process. Our proposed BMUGS method treats the unacquired spatial frequencies, the 

localized weights, the k-space noise variance, unaliased voxel values, coil sensitivities, and the 
image noise variance as unknowns and placed prior distributions on these parameters. Both 

techniques were tested and compared through a simulation study that mimics an experimental fMRI 



study. The simulated results indicated a more accurate reconstructed image, a decreased temporal 

variance, higher SNR, and exceptional stronger power of task detection with BMUGS.  

 For the task activation results, a magnitude-only activation model was utilized which ignores 

the phase component of the complex-valued reconstruction time series. Despite the phase 

information being largely unused in fMRI studies, there is valuable information that can be extracted 
from the phase images [1]. The phase information can be utilized for task detection purposes using 

a phase-only task activation model [16]. Also, since the reconstructed images are complex-valued, 

our Bayesian model is applicable for complex activation models for task detection [16, 17]. 

 The next steps for this work are to test different number of calibration time points used for 

hyperparameter assessment and applying different acceleration factors. More work with the 

simulation study will also include analysis of correlation between voxels and the voxels they were 

previously aliased with. After exhaustive testing using the simulated data sets, BMUGS and MUGS 

will be applied to experimental fMRI data with comparisons. The simulation and experimental 

studies performed for this paper are both in fMRI analysis, but this methodology can also be applied 

to diffusion weighted imaging [13]. 
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