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A BAYESIAN APPROACH TO GRAPPA PARALLEL FMRI IMAGE

RECONSTRUCTION INCREASES SNR AND POWER OF TASK DETECTION

BY CHASE J. SAKITIS
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b

Mathematical and Statistical Sciences, Marquette University, achase.sakitis@marquette.edu, bdaniel.rowe@marquette.edu

In fMRI, capturing brain activation during a task is dependent on how

quickly k-space arrays are obtained. Acquiring full k-space arrays, which

are reconstructed into images using the inverse Fourier transform (IFT), that

make up volume images can take a considerable amount of scan time. Un-

dersampling k-space reduces the acquisition time but results in aliased, or

“folded,” images. GeneRalized Autocalibrating Partial Parallel Acquisition

(GRAPPA) is a parallel imaging technique that yields full images from sub-

sampled arrays of k-space. GRAPPA uses localized interpolation weights,

which are estimated prescan and fixed over time, to fill in the missing spatial

frequencies of the subsampled k-space. Here we propose a Bayesian approach

to GRAPPA (BGRAPPA) where prior distributions for the unacquired spatial

frequencies, localized interpolation weights, and k-space measurement un-

certainty are assessed from the a priori calibration k-space arrays. The prior

information is utilized to estimate the missing spatial frequency values from

the posterior distribution and reconstruct into full field-of-view images. Our

BGRAPPA technique successfully reconstructed both a simulated and exper-

imental time series resulting in reduced noise leading to an increased signal-

to-noise ratio (SNR) and stronger power of task detection.

1. Introduction.

1.1. Background. Functional magnetic resonance imaging (fMRI) is a type of medical

imaging developed in the early 1990s as a technique to noninvasively observe human brain

activity without exogenous contrast agents (Bandettini et al. (1993)). This procedure exam-

ines the brain in action by detecting changes in the brain using the blood-oxygen-level de-

pendent (BOLD) contrast (Ogawa et al. (1990)). The increase in the BOLD contrast in the

area of a neuron is a correlate for neuronal firing. Measurements from the machine are arrays

of complex-valued spatial frequencies called k-space (Kumar, Welti and Ernst (1975)). These

complex-valued k-space arrays are then reconstructed into images using a 2D discrete inverse

Fourier transform (IFT) producing complex-valued brain images. The magnitude and phase

of the complex-valued reconstructed images can be utilized for activation analysis (Rowe

and Logan (2004), Rowe (2005)), but generally, only the magnitude is used (Bandettini et al.

(1993)).

In fMRI, measuring full arrays of data for all the slices that form each volume image

typically takes about one to two seconds, limiting the temporal resolution of the obtained

images and potentially diminishing brain activity detection. Shortening the time it takes to

acquire the data required for volume images would improve capturing brain activity. A great

deal of work has been dedicated to reducing the acquisition time of the MRI process by

accelerating the number of images obtained per unit of time. Hyde et al. (1986), Pruessmann

et al. (1999), and Griswold et al. (2002) explored parallel imaging techniques, while Li (2008)

subsampled three dimensional k-space data and filtered to expand into the full volume k-

space. The purpose of each of these techniques was to reduce the acquisition time in MRI.
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FIG. 1. Full k­space array (top left), sequence of the subsampled k­space array with nA = 2 (top right), the

acquired subsampled k­space array (bottom right), and aliased brain image after IFT of the subsampled k­space

array (bottom left).

1.2. Previous approach. Historically, a single channel coil receiver has been utilized in

fMRI to measure full-sampled k-space data arrays. Reducing time between successive vol-

ume images is the primary goal of parallel imaging, which can also reduce total scan time.

More recently, the technological development focus has been to reduce acquisition time by

measuring less data without losing the ability to form a full image. This can be achieved by

skipping the acquisition of lines in the k-space array, that is, subsampling. To accomplish

this, multiple receiver coils are utilized in parallel to obtain spatial frequency arrays, which

are reconstructed into coil-specific brain images.

Skipping lines in k-space introduces what is called an acceleration factor. The acceleration

factor indicates which lines of k-space data are measured. For example, with an acceleration

factor of nA = 2, every other line horizontally in k-space is measured. Figure 1 shows the

sequential pattern for a fully sampled k-space array (top left) compared to a subsampled k-

space array with an acceleration factor of nA = 2 (top right). This acceleration factor will

cause the reconstructed coil images to appear as if they are folded over, because the Fourier

transform cannot uniquely map the downsampled signals. We can see an example of this in

the bottom left of Figure 1 where the IFT of the subsampled k-space causes the brain image

to be aliased.

To obtain a full field-of-view (FOV) image, the unacquired spatial frequencies need to be

estimated to have full coil k-space arrays. The full k-space arrays (acquired plus estimation)

for each coil are averaged to yield a single, full spatial frequency array. Then the averaged,

full k-space array is inverse Fourier transformed into a full brain image. A common method

that estimates the unacquired coil spatial frequencies is GeneRalized Autocalibrating Par-

tial Parallel Acquisition (GRAPPA) and was introduced by Griswold et al. (2002). GRAPPA

operates in the spatial frequency domain before the IFT, utilizing localized weights to inter-

polate the missing values in each coil k-space array. GRAPPA has its deficiencies, such as

low image quality, a low SNR, and diminished task detection power with higher acceleration

factors. Bayesian methodologies have been utilized in k-space to improve spatial resolution
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FIG. 2. Subsampled k­space coil arrays (top left) that are spread out to show a full k­space array where the

black dots are the acquired spatial frequencies and the white dots are the unacquired spatial frequencies (top

middle). The missing spatial frequencies are then estimated (green dots in the top right) yielding full coil k­space

arrays (bottom right). The full coil k­space arrays are averaged together to produce a full spatial frequency array

(bottom middle), which is then transformed into a full brain image (bottom left) using the IFT.

and image quality (Kornak et al. (2010)), but here we aim to use it for reconstructing sub-

sampled k-space data to produce full brain images. Similar to BSENSE (Sakitis, Brown and

Rowe (2025)), here we propose a Bayesian approach to GRAPPA that will incorporate prior

information, yielding increased SNR and image quality with improved task detection power.

1.3. Overview. The second section of this paper will explain the model of GRAPPA im-

age reconstruction and formulate the complex-valued problem as a real-valued isomorphic

representation. This will lead into our proposed Bayesian approach presented in Section 3.

Section 4 will show results from comparing traditional GRAPPA and our new BGRAPPA

approach to simulated nontask and task fMRI data. Section 5 presents a similar comparison

with experimental task fMRI data. We will conclude in Section 6 with an overview of the

important results of the paper and a discussion of future work.

2. GRAPPA technique.

2.1. Reconstruction process. As mentioned in Section 1.1, to measure less k-space data

and still produce a full brain image, nC > 1 receiver coils must be utilized. The process for

GRAPPA is exhibited in Figure 2 with an illustrative example of using nC = 4 coils. The

machine acquires subsampled spatial frequency arrays for each of the four coils shown in

the top left of Figure 2. The top middle of Figure 2 displays the subsampled k-space arrays

as full arrays with the black dots indicating the acquired spatial frequencies and the white

dots indicating the unacquired spatial frequencies (the points skipped from the subsampling

process). The unacquired spatial frequencies are estimated using GRAPPA image reconstruc-

tion, displayed as the green dots in the top right of Figure 2. The GRAPPA technique utilizes

localized kernel weights to interpolate these unacquired points, which is further explained in

Section 2.2. This yields full coil k-space arrays, as shown in the bottom right of Figure 2. To
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FIG. 3. The k­space coil arrays in the top left are fully sampled where the darker dots are treated as the acquired

spatial frequencies and the calibration points (fcalib) are utilized to calculate the weights for those coil spatial

frequencies. The boxes (in the k­space array in the top right) shows a 2×1 kernel indicating which points are

utilized to estimate the weights. From this we get an acquired point above and below each coil calibration point.

The points above the calibration points are then stacked by coil (1 through 4), which is then placed above the

stacked dots below the calibration points (displayed as fl ), setting up the system of linear operations. The weights,

Wc , for those “unacquired” coil spatial frequencies are then estimated using least squares. Once the weights have

been estimated, the calibration points move to the next unacquired points to estimate the set of weights for the

next unacquired spatial frequencies.

get a single full spatial frequency array (bottom middle), the full coil spatial frequency arrays

are averaged together. The full spatial frequency is then IFT reconstructed into a single, full

FOV brain image (bottom left of Figure 2).

2.2. Model. In GRAPPA the complex-valued localized interpolation weights are esti-

mated using prescan coil calibration spatial frequency arrays. These coil calibration k-space

arrays are fully sampled coil spatial frequency arrays that are collected prior to the actual

fMRI experiment. Kernels of varying sizes can be used to estimate the weights, creating a

system of linear equations. Figure 3 illustrates how a 2x1 kernel is utilized to estimate the

weights from the full coil calibration spatial frequencies with a four-channel coil array. In

Figure 3 all the complex-valued data points are acquired but are treated differently, depend-

ing on the location of the data point. The black data points, fl , are utilized as the “acquired”

complex-valued spatial frequency values, the red points, fcalib, are the complex-valued cali-

bration spatial frequency points, and the white points are ignored for the calculation of those

weights associated with the current fcalib points. The white dots represent the spatial frequen-

cies that would be unacquired during the fMRI experiment but are used as calibrations points

to estimate the complex-valued weights for those spatial frequencies.

The calibration points fcalib and the “acquired” spatial frequencies fl along with the unac-

quired complex-valued weights, Wc, create a system of linear equations, as displayed in Fig. 3
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(bottom). From the linear equations, we can estimate the weights wc using equation (2.1),

(2.1) Wc
(ν) = fcalib

(ν)fl
(ν)H (︁

fl
(ν)fl

(ν)H )︁−1
, ν = 1, . . . ,K,

where Wc ∈ C
nC×p represents complex-valued weights, fcalib ∈ C

nC×1 represents complex-

valued calibration spatial frequencies, fl ∈ C
p×1 represents “acquired” complex-valued spa-

tial frequencies, p = nckrowskcols, krows represents number of rows in the kernel, kcols repre-

sents number of columns in the kernel, H represents Hermitian or conjugate transpose, and

K represents total number of unacquired spatial frequencies in the subsampled k-space ar-

ray. The process is repeated for each spatial frequency point that would be unacquired during

the actual fMRI experiment (the white dots in Figure 3), yielding different weights for each

unacquired spatial frequency.

Once the weights for each of the unacquired coil spatial frequencies are estimated from

the calibration k-space arrays, those weights are then utilized to interpolate the unacquired

spatial frequencies in the actual fMRI experiment. The GRAPPA model with the estimated

weights becomes

(2.2) fec
(ν) = Wc

(ν)fkc
(ν) + ηc

(ν), ν = 1, . . . ,K,

where fec ∈ C
nC×1 is the complex-valued interpolated k-space values, fkc ∈ C

p×1 is the

complex-valued acquired k-space values, and ηc ∈ C
nC×1 is the additive complex-valued

noise with ηc ∼ N(0, τ 2(1 + i)). The interpolated coil k-space values, fec, are inserted in the

respective locations of each coil yielding full coil k-space arrays (top right of Figure 2).

With GRAPPA image reconstruction, however, the resulting reconstructed brain images

can have diminished SNR, which is a consequence of either a decreased signal intensity, in-

creased temporal noise variance, or a combination of the two. With an increase in the temporal

noise variance, this can lead to reduced power in task detection as well. These deficiencies

motivate our Bayesian approach, which will allow for a more automated method for image

reconstruction without having to potentially store and use large matrices. Unlike GRAPPA,

our Bayesian approach will utilize all available prior information from the calibration spa-

tial frequency arrays and provide full distributions for the unacquired spatial frequencies, the

weights, and the residual k-space variance.

3. Bayesian approach to GRAPPA. For our proposed Bayesian approach, we use the

same linear model as GRAPPA as expressed equation (2.2), except the acquired spatial fre-

quencies will be the fec variable instead of the fkc variable. This creates a model where the

design matrix and the coefficients can both be treated as unknown parameters, allowing us to

take a Bayesian approach to the linear regression. Then the weights, Wc, and the unacquired

spatial frequencies, fkc, along with the residual k-space variance, τ 2, are treated as unknowns

with prior distributions placed on them. We also use an isomorphic real-valued representation

of the linear GRAPPA model in equation (2.2) and is given by

(3.1)

[︃

feR

feI

]︃

=

[︃

WR −WI

WI WR

]︃[︃

fkR

fkI

]︃

+

[︃

ηR

ηI

]︃

,

where feR ∈ R
nC×1 and feI ∈ R

nC×1 are the real and imaginary components, respectively,

of fec, WR ∈ R
nC×p and WI ∈ R

nC×p are the real and imaginary components of Wc, fkR ∈

R
p×1 and fkI ∈ R

p×1 are the real and imaginary components of fkc, and ηR ∈ R
nC×1 and

ηI ∈R
nC×1 are the real and imaginary components of ηc with (ηR, ηI )

′ ∼ N(0, τ 2I2nC
). This

equation is a latent variable model with complex values and can be more compactly written

as fe = Wfk + η where fe ∈ R
2nC×1, W ∈ R

2nC×2p , fk ∈ R
2p×1, and η ∈ R

2nC×1 are the

real-valued isomorphic representations of fec, Wc, fkc, and ηc, respectively.
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In this method, two different representations of the weights will be used. The first repre-

sentation is the proper skew-symmetric design matrix W , as shown in equation (3.1). The

second representation is D = [WR, WI ], which is used in the prior distribution and for pa-

rameter estimation of the weights. This is to ensure WR and WI are uniquely estimated for

W and do not need to be duplicated.

3.1. Data likelihood, prior, and posterior distributions. Like GRAPPA, we assume that

the residual spatial frequency error is normally distributed in the real and imaginary compo-

nents, since the real and imaginary components of fMRI data are commonly assumed to be

normally distributed (Lindquist (2008)). The data likelihood for the acquired spatial frequen-

cies for the nc coils is

(3.2) P
(︁

fe|W,fk, τ
2)︁ ∝

(︁

τ 2)︁−
2nC

2 exp

[︃

−
1

2τ 2
(fe − Wfk)

′(fe − Wfk)

]︃

.

We can quantify available prior information about the unacquired spatial frequencies fk , the

weights W , and the residual k-space variance τ 2 with assessed hyperparameters of prior

distributions. The unacquired spatial frequencies fk are specified to have a normal prior dis-

tribution, expressed in equation (3.3). The weights D are also specified to have a normal prior

distribution (equation (3.4)), and the k-space noise variance τ 2 is specified to have an inverse

gamma prior distribution (equation (3.5)),

P
(︁

fk|nk, fk0, τ
2)︁

∝
(︁

τ 2)︁

−2p
2 exp

[︃

−
nk

2τ 2
(fk − fk0)

′(fk − fk0)

]︃

,(3.3)

P
(︁

D|nw,D0, σ
2)︁

∝
(︁

τ 2)︁

−2nCp

2 exp

[︃

−
nw

2τ 2
tr(D − D0)(D − D0)

′

]︃

,(3.4)

P
(︁

τ 2|αk, δ
)︁

∝
(︁

τ 2)︁−(αk+1)
exp

[︃

−
δ

τ 2

]︃

,(3.5)

where tr is the trace of the (D − D0)(D − D0)
′ matrix and the hyperparameters nk , fk0,

nw , D0, αk , and δ are assessed from the prescan calibration spatial frequencies, as outlined

in Section 3.2. The joint posterior distribution of the unacquired spatial frequencies fk , the

weights W , and the residual k-space variance τ 2 is

(3.6) P
(︁

fk,D, τ 2|fe

)︁

∝ P
(︁

fe|W,fk, τ
2)︁

P
(︁

fk|nk, fk0, τ
2)︁

P
(︁

D|nw,D0, τ
2)︁

P
(︁

τ 2|αk, δ
)︁

,

with the distributions specified from equations (3.2), (3.3), (3.4), and (3.5).

A technique that can be utilized for parameter estimation is using Markov chain Monte

Carlo (MCMC) Gibbs sampling. The Gibbs sampler uses the posterior conditionals to gen-

erate the entire distribution for each parameter at each time point yielding more information

that can be used for statistical analysis. However, the computation time is longer compared

to using an iterative maximum a posteriori (MAP) method. For this paper we only use the

MAP estimate since we would only be interested in the mean of the distributions for each

parameter, which is theoretically equal to the mode for the unacquired spatial frequencies

fk0 and the weights W .

3.2. Hyperparameter determination. The hyperparameters can be appropriately assessed

in an automated way using the full prescan coil calibration spatial frequencies. For the

BGRAPPA hyperparameter assessment, the same full calibration spatial frequencies and

fcalib = Wfl model are used like in GRAPPA reconstruction, but each spatial frequency point

is treated differently than GRAPPA. As shown in Fig. 4, the calibration spatial frequencies

fcalib for BGRAPPA are in the location of the data points where the acquired spatial frequen-

cies are in the actual fMRI experiment. For GRAPPA these data points are assigned to the fl
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FIG. 4. Full calibration k­space arrays that indicate which data points are used as fcalib points and the fl

points for GRAPPA (left) and BGRAPPA (right).

variable in the fcalib = Wcfl model shown at the bottom of Figure 4. Using equation (2.1),

this will result in the prior for the weights in BGRAPPA, D0, to be different than the esti-

mated weights utilized in GRAPPA image reconstruction. The fl points used for estimating

the prior mean for the weights are averaged to obtain the prior mean of the unacquired spatial

frequencies, fk0.

The hyperparameters nk and nw , which are the prior scalars of the prior means, are as-

sessed to be the number of calibration time points ncal. The average residual k-space variance

over the coil spatial frequency arrays is calculated to obtain a prior mean for the residual

k-space variance τ 2
0 . The hyperparameters αk (shape parameter of the inverse gamma) and δ

(scale parameter of the inverse gamma) are assessed to be αk = ncal − 1 and δ = (ncal − 1)τ 2
0 .

This prior information is incorporated to estimate the unacquired spatial frequencies in the

subsampled k-space arrays.

3.3. Posterior estimation. Using the posterior distribution in equation (3.6), the full pos-

terior conditional distributions for the the unacquired spatial frequencies fk , the weights D,

and the residual k-space variance τ 2 are given by

fk|W,τ 2, fe ∼ N
{︁

f̂k, τ
2(︁

W ′W + nkI2p

)︁−1}︁

,(3.7)

D|fk, τ
2, fe ∼ N

{︁

D̂, τ 2(︁

F ′
kFk + nwI2p

)︁−1}︁

,(3.8)

τ 2|fk,W,fe ∼ IG{αk∗, δ∗},(3.9)

where αk∗ = nCp + nC + p + αk and δ∗ = [(fe − Wfk)
′(fe − Wfk) + nk(fk − fk0)

′(fk −

fk0) + nW tr((D − D0)(D − D0)
′) + 2δ]/2. MAP estimates for fk , D, and τ 2 are estimated

via the iterated conditional modes (ICM) optimization algorithm (Lindley and Smith (1972),

O’Hagan (1994)). Beginning with the prior means for each parameter as initial estimates, the

ICM algorithm iterates over the parameters, calculating its posterior conditional mode until

convergence at the joint posterior mode. The posterior conditional modes are

f̂k =
(︁

W ′W + nkI2p

)︁−1(︁

W ′fe + nkfk0

)︁

,(3.10)

D̂ =
(︁

FeF
′
k + nwD0

)︁(︁

FkF
′
k + nwI2p

)︁−1
,(3.11)

τ̂ 2 =
Θ

2(2nC + 2p + 2nCp + 1)
,(3.12)

where Θ = (fe − Wfk)
′(fe − Wfk) + nk(fk − fk0)

′(fk − fk0) + αkδ + nw tr[(D − D0)(D −

D0)
′], Fe = [feR, feI ], and Fk ∈ R

2p×2 is a skew symmetric matrix representation of the
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unaliased voxel values fk , as expressed by

(3.13) Fk =

[︃

fkR fkI

−fkI fkR

]︃

.

4. Simulation study.

4.1. Nontask spatial frequency data. A noiseless nontask image was used to create two

separate series of nTR = 510 simulated full coil images for one slice to mimic real-world

MRI experimental data. The last ncal time points of the first time series served as the calibra-

tion information utilized for hyperparameter assessment. The second time series was used for

simulating a subsampled nontask experiment. The complex-valued nontask image was multi-

plied by a complex-valued designed sensitivity map with nC = 8 coils. Figure 5 illustrates the

real and imaginary parts of the full simulated brain image (first and second columns) being

voxelwise multiplied by the real and imaginary components of the sensitivities for each of the

nC = 8 coils (third and fourth columns). This results in the real and imaginary components

of the complex-valued full coil-weighted images (fifth and sixth columns).

In real-world MRI experiments, the first few images in an fMRI time series have increased

signal as the magnetization reaches a stable state (Steinhoff et al. (2001)). To mimic this,

the first three of both nontask time series of nTR = 510 time points of the simulated nontask

time series were scaled with the signal slightly decreasing from the first to the third time

point before reaching a stable signal in the fourth time point. The scaling was determined by

dividing the first three images of the experimental data by the twenty-first image, separately.

After dividing the three images, the signal increase for each tissue type (white matter, grey

matter, and CSF) was averaged together for each of the three divided images, calculating

the average signal increase for each matter type. For example, the average signal increase

in the first image for the white matter was 40%, 55% for the grey matter, and 75% for the

CSF giving multiplication factors of 1.40, 1.55, and 1.75 for the matter types, respectively.

This process was repeated for the second and third image in the series with the multiplication

factors decreasing from the first to the third image.

The series of images for both the ncal calibration images and the full simulated images

were then Fourier transformed into noiseless full coil k-space arrays. The time series of coil

k-space arrays were simulated by adding separate N(0,0.0036nynx) noise, where ny and nx

are the number of rows and columns, respectively, in the full k-space array, to the real and

imaginary parts of full coil k-space arrays, corresponding to the noise in the real-world fMRI

experimental data. To mimic the fMRI experiment, the first 20 time points of the second

time series were omitted, leaving 490 time points of spatial frequency arrays for the single

slice. However, the first 10 time points of an fMRI experiment can be used to estimate a T1

map which efficiently segments the different tissue types. The next 10 time points can be

utilized to estimate a static magnetic field map to adjust for geometric distortions (Karaman,

Bruce and Rowe (2015)). The remaining 490 time points in the time series were subsampled

by censoring lines in k-space according to an acceleration factor of nA = 3. An example of

the real and imaginary components of subsampled k-space arrays for nC = 8 coils and an

acceleration factor of nA = 3 at one time point is exhibited in Figure 6.

4.2. Nontask reconstruction results. To analyze the reconstruction performance of

BGRAPPA vs. GRAPPA, we first reconstructed subsampled k-space arrays at one time point,

yielding a single unaliased image for both methods. For calibration analysis the last ncal = 30

time points from the first nontask time series were utilized for hyperparameter assessment.

The first time point of the 490 subsampled, simulated nontask time series with an accelera-

tion factor of nA = 3, shown in Figure 6. The results of reconstructing the first time point in
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FIG. 5. Real and imaginary components of the true complex­valued simulated image (first and second columns)

voxelwise multiplied by the real and imaginary parts of the complex­valued coil sensitivities for each of the nC = 8

coils (third and fourth columns) yielding the real and imaginary components of the complex­valued coil­weighted

images (fifth and sixth columns).

the subsampled time series using both BGRAPPA and GRAPPA are shown in Figures 7, 8,

9, and 10.

The prior means from the calibration information for the unacquired spatial frequency ar-

rays fk0 and the localized weights D0 were used as initial values for fk and D. These initial

values were used to generate a τ 2 value from the posterior conditional mode from equation

(3.12), initializing the ICM optimization algorithm. The simulated subsampled coil k-space

arrays were reconstructed into a single, full brain image using the BGRAPPA MAP estimate

from the ICM algorithm, and traditional GRAPPA estimate. For the ICM algorithm, only

three iterations were needed for estimating the parameters with a computation time of ap-
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FIG. 6. Simulated acquired noisy subsampled coil spatial frequency arrays for the first time point in the nontask

time series with an acceleration factor of nA = 3.

proximately half a second per time point. Figure 7 shows the reference magnitude and phase

images (first column) that the reconstructed images will be compared to. These reference

images were determined by simply averaging the full, noisy coil k-space arrays in the time

series yielding a single spatial frequency array and then applying the IFT resulting in a full

brain image. This provides us what image reconstruction would look like without applying

an acceleration factor. This process is used for all of the reference images provided in the

figures displaying simulated results for the remainder of the paper. Figure 7 also shows the

BGRAPPA MAP unaliased image (second column) and the GRAPPA unaliased image (third

FIG. 7. True nontask unaliased images (first column), reference nontask reconstructed images (second column),

and BGRAPPA MAP unaliased nontask images (third column) using ICM and GRAPPA nontask images (fourth

column) with magnitude images in the first row and phase images in the second row. Due to the circular nature of

phase angles, the color bar for the phase images have wraparound.
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FIG. 8. Reconstructed magnitude images for different number of calibration images using BGRAPPA MAP es­

timate (top row of the right three columns) and GRAPPA (second row of the right three columns) with the true

simulated magnitude image (top left), and the reference magnitude image (bottom left).

column) for the first time point in the simulated nontask series. We can see that the joint MAP

estimate from BGRAPPA and the GRAPPA estimate both produce magnitude and phase im-

ages that closely resemble the true nonaliased, reference images in Figure 7. Visually the

BGRAPPA image is slightly more accurate and less noisy than the GRAPPA image, which is

further analyzed in Section 1 of the Supplementary Material (Sakitis and Rowe (2025)).

To quantify the differences between the true and reconstructed magnitude and phase im-

ages, we use the mean squared error, MSE = 1
K

∑︁K
j=1(vj − vj )

2, where K is the number

of voxels (either inside or outside the brain) in the full reconstructed image, vj is the re-

constructed magnitude or phase value of the j th voxel, and vj is the true magnitude or

phase value of the j th voxel. This measure will indicate the accuracy of a single recon-

structed image, compared to the true simulated image, with lower MSE indicating a more

accurate reconstructed image. The MSE for BGRAPPA for inside and outside the brain was

lower for the magnitude and phase images compared to GRAPPA. The MSE for the magni-

tude reconstructed image of GRAPPA was 114% and 51% higher for inside and outside the

brain, respectively, compared to BGRAPPA. For the MSE of the phase reconstructed images,

GRAPPA was 12% and 3% higher for inside and outside the brain compared to BGRAPPA.

Next, we evaluated how the number of calibration time points, ncal, affected the recon-

structed images. For the prescan calibration analysis, we fixed the acceleration factor to

be nA = 3 for the subsampled k-space coil arrays of the simulated nontask time series

with nIMG = 490 time points. Then we set the number of calibration time points to be

ncal = 5,10,15,20,25,30 for separate hyperparameter assessments. After assessing the hy-

perparameters using each number of calibration time points, the simulated nontask time series

with the subsampled coil spatial frequency arrays were reconstructed using BGRAPPA MAP

and GRAPPA.

The results, displayed in Figure 8, indicate that increasing the number of calibration

time points does not noticeably affect the noise level inside or outside the brain for either

BGRAPPA or GRAPPA. This means we can have short calibration scans and do not need to

take up valuable scanner time. For each of the number of calibration time points, GRAPPA,

visually, is slightly noisier than BGRAPPA (shown in Section 1 of the Supplementary Mate-

rial (Sakitis and Rowe (2025))). To further analyze the differences between the BGRAPPA

and GRAPPA reconstructed magnitude images, the MSE and entropy for BGRAPPA and
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FIG. 9. (a) MSE for inside and outside the brain for BGRAPPA and GRAPPA comparing both method’s recon­

structed images to the true simulated magnitude image for each number of calibration images. (b) Entropy plot

for BGRAPPA and GRAPPA for each number of calibration images.

GRAPPA for each number of calibration time points were calculated to quantify this re-

sult. Entropy analyzes uncertainty and smoothness across a single image with lower en-

tropy meaning less uncertainty throughout the image. The equation for entropy is given by

E = −
∑︁N

j=1[
vj

vmax
ln(

vj

vmax
)], where ln is the natural log, N is the number of voxels in the full

reconstructed image, vj is the reconstructed magnitude value of the j th voxel, and vmax is the

voxel intensity if all the image intensities were in one pixel (Atkinson et al. (1997)), given by

vmax =
√︂

∑︁N
j=1 vj

2.

Shown in Figure 9a, the MSE for inside and outside the brain for the BGRAPPA MAP re-

constructed magnitude images was markedly smaller than the GRAPPA reconstructed mag-

nitude images for both inside and outside the brain. BGRAPPA also had noticeably smaller

entropy values, compared to the GRAPPA reconstructed magnitude images, displayed in

Figure 9b. Lower MSE for BGRAPPA indicates a more precise reconstructed image while

smaller entropy means less uncertainty with image reconstruction. For both BGRAPPA and

FIG. 10. Reconstructed magnitude images for different acceleration factors using BGRAPPA MAP estimate (top

row of the right three columns) and GRAPPA (second row of the right three columns) with the true simulated

magnitude image (top left), and the reference magnitude image (bottom left).
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FIG. 11. Temporal variance and SNR images for different acceleration factors using BGRAPPA MAP estimate

(first row and third row, respectively, of the right three columns) and GRAPPA (second row and fourth row, re­

spectively, of the right three columns). The first column shows the true variance and SNR (first and third rows,

respectively) and the reference variance and SNR (second and fourth rows, respectively).

GRAPPA, increasing the number of calibration images does not meaningfully affect the tem-

poral variance, resulting in similar SNR for each ncal, which again means we can have a short

calibration scan. In all cases the temporal variance for BGRAPPA is substantially lower than

for GRAPPA, demonstrating that BGRAPPA mitigates noise in the reconstructed image. The

phase of the reconstructed images for the different calibration time points can be found in

Section 1 of the Supplementary Material (Sakitis and Rowe (2025)).

Along with analysis of the number of calibration time points, we evaluated how different

acceleration factors, nA, affected the reconstructed magnitude and phase images. Here we

fixed the number of calibration time points to be ncal = 30 for hyperparameter assessment

and set the acceleration factors of the nontask time series to be nA = 2,3,4,6,8,12. We only

show results for nA = 2,4,8 just to see how increasing the acceleration factor affects the re-

construction results. These subsampled coil k-space arrays with separate acceleration factors

were reconstructed into full images using the BGRAPPA MAP estimate and GRAPPA, again

comparing the results for both methods.

The results, exhibited in Figure 10, showed that inside the brain of the reconstructed mag-

nitude images from BGRAPPA and GRAPPA are negligibly affected by increasing the ac-

celeration factor with BGRAPPA visually slightly more accurate. The noise level outside the

brain for BGRAPPA does decrease as the acceleration factor increases while it only slightly
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decreases for GRAPPA. Again, the GRAPPA magnitude reconstructed images have slightly

more noise than the BGRAPPA magnitude reconstructed images (shown in Section 1 of the

Supplementary Material (Sakitis and Rowe (2025))). The phase of the reconstructed images

for the different acceleration factors can be found in Section 1 of the Supplementary Material

(Sakitis and Rowe (2025)).

In Figure 11 we examine the temporal variance of the reconstructed time series and the

SNR images for BGRAPPA, GRAPPA, the true images, and the reference images when no

acceleration factor is applied. The reference reconstruction is simply averaging the full coil

k-space arrays and applying the IFT to get full brain images for the full time series. The

temporal variance for BGRAPPA decreases and for GRAPPA increases as the acceleration

factor increases (first and second rows of Figure 11 of the right three columns). The temporal

variance, overall, from Figure 11 for BGRAPPA is substantially lower than GRAPPA, the

theoretically true variance (first row, first column), and the reference (second row, first col-

umn), showing that BGRAPPA reduces the noise through of the reconstructed time series.

This also leads to higher SNR for BGRAPPA compared to GRAPPA (third and fourth row of

Figure 11 of the right three columns), the true SNR (first column, third row), and the refer-

ence SNR (first column, fourth row). The average of the BGRAPPA reconstructed time series

was also taken, and the result magnitude image looks similar to the true simulated magnitude

image.

4.3. Task activation model. In task-based fMRI, the nontask reconstructed images create

a baseline value for each voxel. This yields an intercept only simple linear regression model

y = β0 + ε where y is the magnitude of the reconstructed voxel value. By adding in task

activation to select images in the series of images, we have a simple linear regression model

y = β0 + xβ1 + ε for the unaliased voxel values. In this regression, β0 is the baseline voxel

value from the nontask reconstructed images determining the SNR = β0/σ , as demonstrated

in the previous subsection. The β1 value is the estimated task related signal increase from β0

determining the contrast-to-noise ratio CNR = β1/σ . The vector x ∈ {0,1}nIMG , where nIMG

is the number of reconstructed images in the series, is a vector such that the zeros correspond

to the images in the series without task activation and the ones correspond to the images with

task activation. We can write this regression as y = XB + ε, where X = [1, x] ∈ R
nIMG×2

and B = [β0, β1]
′.

The task is not usually visible on the reconstructed images since the CNR is typically

much lower than the SNR. Instead, a right-tailed t-test is carried out with β1 ≤ 0 as the null

hypothesis and β1 > 0 as the alternative. The reason for the one-sided hypothesis test is be-

cause we only anticipate an increased signal from the task activation. To simulate added task,

a β1 = 0.045 magnitude-only signal increase is added to select voxels of the true noiseless

nontask image. This added task activation is located in the left motor cortex to resemble the

region of interest (ROI) of brain activity from the fMRI unilateral right-hand finger tapping

experiment used in the Section 5 (Karaman, Bruce and Rowe (2014)).

Similar to magnitude-only task activation, we can also use the phase images for task de-

tection. A simulated phase task of π/120 was also added to the simulated true simulated task

image. A simple linear regression model, φ = θ0 + θ1x + ϵ, can be used for the phase acti-

vation as well. In this regression, φ is the phase of the reconstructed voxel, θ0 is the baseline

phase voxel value from the nontask reconstructed images, and θ1 is the estimated increase

from θ0. We then use a one-tailed t-test, t = θ̂1/SE(θ̂1), to determine which voxels contain

statistically significant θ1 values indicating which voxels experience phase task activation

(Rowe, Meller and Hoffmann (2007)).
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FIG. 12. Statistically significant voxels in the ROI using FDR for BGRAPPA reconstructed images (first row of

the right three columns), significant voxels in the ROI using FDR for GRAPPA (second row of the right three

columns), and analysis of the t­statistics in the boxes on the right. The true (first row) and the reference (second

row) magnitude­only task activation is shown in the first column with the analysis of t­statistics of the reference

reconstruction shown in the image.

4.4. FMRI spatial frequency data. A noiseless task image was used along with the noise-

less nontask image to create a series of nTR = 510 simulated full coil images for one slice

mimicking real-world fMRI data. The simulated task activation was designed to mimic tap-

ping of the subject’s right fingers leading to activity in the left motor cortex which becomes

our ROI for analyzing task detection in this experiment, as mentioned above. Knowing this,

artificial signal increase was added to the voxels in the ROI (as mentioned in Section 4.3) for

task images.

The true images were multiplied by the same nC = 8 coil sensitivity maps used for the

nontask simulated time series (as illustrated in Figure 5), and then the series of images were

Fourier transformed in full coil k-space arrays. This series was also generated by adding

separate N(0,0.0036nynx) noise to the real and imaginary parts of the full coil k-space arrays

and were then inverse Fourier transformed back into full coil images, yielding a CNR of 0.75.

To simulate our real-world fMRI experimental process, of the first 20 time points in the series,

20 were nontask. The scaling for the first few images in the fMRI simulated data is similar to

that outlined in Section 4.1 for each of the tissue types. The initial 20 nontask time points are

followed by 16 epochs alternating between 15 nontask and 15 task time points. An epoch is a

stimulation period with time points of the subject at rest (nontask) and the subject performing

an action or task. The series culminated with 10 nontask time points producing the simulated

fMRI series of nTR = 510 images. To mimic the fMRI experiment in Section 5, the first 20

time points were omitted, leaving 490 time points in the series. This series is transformed

into the spatial frequency domain and then subsampled according to the acceleration factor

to simulate subsampling of a real fMRI experiment. The last ncal full coil FOV time points in

the second nontask time series from Section 4.1 were utilized as full FOV coil calibration k-

space arrays to assess the hyperparameters. For this simulation, we evaluate both BGRAPPA

and GRAPPA using ncal = 5,10,15,20,25,30 calibration time points. The results for the

different calibration time points were similar to that of Section 4.2 where the different number

of calibration time points had negligible affects on the results. Different acceleration factors

of nA = 2,3,4 were also tested in this simulated fMRI experiment and are shown in the next

subsection.
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FIG. 13. Statistically significant voxels in the ROI using FDR for BGRAPPA phase reconstructed images (first

row of the right three columns), significant voxels in the ROI using FDR for GRAPPA (second row of the right

three columns), and analysis of the t­statistics in the boxes on the right. The true (first row) and the reference

(second row) phase­only task activation is shown in the first column with the analysis of t­statistics of the reference

reconstruction shown below in the image.

4.5. FMRI reconstruction results. The hypothesis test described in Section 4.3 was uti-

lized to determine voxels with a statistically significant magnitude-only signal increase.

The statistically significant voxels for different acceleration factors were analyzed for the

BGRAPPA MAP reconstructed time series and the GRAPPA reconstructed time series us-

ing the 5% false discovery rate (FDR) threshold procedure (Benjamini and Hochberg, 1995;

Genovese, Lazar and Nichols, 2002; Logan and Rowe, 2004). The ROI here consists of 28

voxels located in the left motor cortex.

Figure 12 shows the statistically significant magnitude-only voxels from the BGRAPPA

MAP reconstructed time series (first row of the right three columns) and the GRAPPA recon-

structed time series (second row of the right three columns) for the different acceleration

factors compared true and reference activations in the first column. Figure 12 also sum-

marizes the t-statistics in the ROI for each acceleration factor. BGRAPPA identified more

statistically significant voxels in the ROI for each acceleration factor. For acceleration fac-

tors of 3 and 4, the task activation is virtually undetected using the GRAPPA method. The

mean value for the t-statistics was also substantially higher for BGRAPPA, compared to

GRAPPA, demonstrating that BGRAPPA has a stronger task detection power. Increasing the

acceleration factor decreases number of voxels identified and the mean of the t-statistics for

both BGRAPPA and GRAPPA, but much more activation is captured from BGRAPPA than

GRAPPA.

Using the 5% FDR threshold, Figure 13 shows phase activation for BGRAPPA and

GRAPPA reconstructed time series using acceleration factors of 2, 3, and 4. Like the

BGRAPPA reconstructed magnitude images, we can see that it captures the simulated task

activation in the ROI for each acceleration factor. For GRAPPA the phase task activation is

captured using an acceleration of 2, but noticeably diminishes when applying acceleration

factors of 3 and 4. With higher mean t-statistic values for BGRAPPA, this indicates that

BGRAPPA has more power in phase task detection. Phase activation is a topic of study as

previously described in Section 4.2.
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FIG. 14. BGRAPPA MAP unaliased nontask magnitude images for each acceleration factor (first row of the right

three columns) using the ICM algorithm, and GRAPPA unaliased nontask magnitude images for each acceleration

factor (second row of the right three columns) with the magnitude reference image (left column).

5. Experimental data.

5.1. Data description. A 3.0 T General Electric Signa LX magnetic resonance imager

was used to conduct an fMRI experiment on a single subject. A right-handed finger-tapping

task was performed in a block design with an initial 20 s rest followed by 16 epochs with

15 s off (rest state) and 15 s on (task performed). The experiment was concluded with 10 s

of rest giving us a series of nTR = 510 repetitions with each repetition being 1 s, a flip angle

of 90◦ and an acquisition bandwidth of 125 kHz. The data set consists of nine 2.5 mm thick

axial slices with nC = 8 receiver coils that have a 96×96 dimension for a 24 cm full FOV,

with a posterior to anterior phase encoding direction. For this paper the time series for all

nine slices was used to analyze the effects of applying acceleration factors of nA = 2,3,4 for

both BGRAPPA and GRAPPA, but only the time series of the second slice is shown. Note

that the simulation study in Section 4 directly mimics this experimental data.

Typically, the magnetic fields in an fMRI experiment will induce a drift in the phase over

time, which we correct before reconstruction to give us a stable phase through time. Once the

phase was corrected, the last ncal = 30 full k-space arrays of a nontask series of nTR = 510

time points performed on the subject were used for hyperparameter assessment. The fMRI

experimental series described above was used for fMRI analysis. The first 20 images of each

series were discarded due to varying echo times and magnetization stability. Like the simu-

lation study, the subsampled coil k-space arrays came from artificially skipping lines in the

full coil k-space arrays of the fMRI experimental time series, mimicking the effect of ac-

tually subsampling the coil k-space arrays. Before subsampling the time series, a reference

image (left image in Figure 14) was produced by averaging the nC = 8 full coil spatial fre-

quency arrays at the first time point. This provides a magnitude and phase image with which

to compare to GRAPPA and our proposed BGRAPPA.

5.2. Experimental results. Similar to the process for the simulated data described in Sec-

tion 4, the unacquired spatial frequencies at each time point in the entire time series of sub-

sampled coil k-space arrays were estimated using BGRAPPA and GRAPPA separately. The

estimated full coil k-space arrays were then averaged together and transformed into image
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FIG. 15. Statistically significant voxels in the ROI using FDR for BGRAPPA reconstructed images (first row

of the right three columns) for three different acceleration factors, significant voxels in the ROI using FDR for

GRAPPA (second row of the right three columns) for three different acceleration factors, and analysis of the t­

statistics to the right of the images. The reference magnitude­only task activation is shown on the left column with

the analysis of t­statistics below.

space resulting in a single composite brain image. Figure 14 displays the BGRAPPA MAP

reconstructed images (top row) and the GRAPPA reconstructed images (bottom row) of the

first time point of the 490 images using acceleration factors 2, 3, and 4. Just as the simu-

lated results in Figure 10 demonstrated, the BGRAPPA reconstruction method in Figure 14

produced visually similar magnitude reconstructed images, compared to GRAPPA recon-

struction, but with slightly less noise.

MSE was again utilized to quantify the differences between the reference image and re-

constructed images. The MSE for inside the brain for GRAPPA was approximately 12%,

10%, and 3% higher for each acceleration factor, respectively, compared to BGRAPPA.

GRAPPA having a larger MSE inside the brain for each acceleration factor, respectively, re-

flects decreased noise from BGRAPPA vs. GRAPPA. The entropy for BGRAPPA (214.1026,

207.5331, and 204.1746, respectively) was also lower than the entropy for GRAPPA

(216.0362, 212.3556, and 210.3667, respectively), indicating that the BGRAPPA recon-

structed images are more smooth. The phase of the experimental reconstructed images for

the different acceleration factors can be found in Section 2 of the Supplementary Material

(Sakitis and Rowe (2025)).

For the detection of magnitude task activation, the hypothesis test outlined in Section 4.3

was carried out. Figure 15 shows the statistically significant voxels under BGRAPPA (top

row) and GRAPPA (bottom row) reconstruction. The images for the statistically signifi-

cant voxels in Figure 15 for both methods use the 5% FDR threshold. Voxels outside the

brain are usually masked out, meaning the statistically significant voxels shown outside the

brain in Figure 15 would typically be discarded. Figure 15 also summarizes the t-statistics

with BGRAPPA (red) and GRAPPA (blue). BGRAPPA correctly detected more voxels than

GRAPPA as task activation in the ROI for all three acceleration factors. Our BGRAPPA ap-

proach also had a much higher mean t-statistic and a lower standard deviation for all the

acceleration factors.

6. Discussion. Parallel imaging techniques such as GRAPPA (Griswold et al. (2002))

have utilized subsampling of k-space to reduced the acquisition time for MR imaging. This

allows practitioners to reconstruct higher resolution images, decrease the time between each
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image, increase the number of images or slices in an fMRI experiment, or a combination

of both in the same time as fully sampled k-space, depending on the acceleration factor. The

acceleration factor in an fMRI experiment is determined by how important time is in complet-

ing a scan. The number of coils used in an experiment is dependent on the coil configurations

that facility possesses.

Applying an acceleration factor in an fMRI experiment can significantly reduce the ac-

quisition time of spatial frequency arrays and volume images, but taking the IFT of the sub-

sampled k-space yields aliased images. GRAPPA parallel image reconstruction estimates

the unacquired spatial frequencies that are skipped during the acquistion of the subsampled

k-space arrays yielding full FOV coil spatial frequency arrays. However, GRAPPA has its

drawbacks, which include low image quality, low SNR, and weakened task detection power

at higher acceleration factors. Hence, we introduce a Bayesian approach to estimate the un-

acquired spatial frequencies. Using more available information from the calibration spatial

frequencies to assess the hyperparameters, our proposed approach successfully reconstructed

a series of simulated nontask images without any aliasing artifacts. The BGRAPPA recon-

structed images were shown to more accurately reconstruct the truth compared to GRAPPA.

The number of calibration time points had minimal effect on the GRAPPA reconstructed im-

ages and its performance against BGRAPPA reconstructed images. The results also indicated

that the different acceleration factors had little effect on the reconstruction of the images but

did have lesser task detection power for both methods. Our BGRAPPA approach had better

performance when detecting the signal increase in the voxels that experienced task activation,

which is demonstrated from both the simulated and experimental data.

For this paper, only the MAP estimate using the ICM algorithm was used to reconstruct

the time series both the simulated and experimental data. Since we have posterior condi-

tionals for each of the parameters, this allows us to use other estimation techniques such as

the MCMC Gibbs sampling method. We chose not to present this method due to the Gibbs

sampler being more computationally expensive when running a long series of images so it

is not be as practical to use compared to evaluating the MAP estimate. This does not mean

there is no value in running a Gibbs sampler, as it has the additional benefit of quantifying

uncertainty. For instance, it can be utilized on a shorter series of images, provide us more sta-

tistical information about any voxel, hypothesis testing between two reconstructed images, or

identifying which voxels are outside the brain for masking. We could also hybridize the ICM

and Gibbs sampler where we start with a few iterations of the ICM algorithm followed by a

short, no-burn Gibbs sampler. Our Bayesian approach allows for more options of how to run

an fMRI experiment based on the objective of the scan compared to GRAPPA.

In this paper a magnitude-only and phase-only activation model was utilized to detect task

activation. Due to the high noise in the experimental data set, there were no phase active

voxels as there were in the idealized simulation. Since the reconstructed images are complex-

valued, our proposed model is expected to be applicable for complex activation models for

task detection (Rowe and Logan (2004), Rowe (2005, 2009)) as well as magnetic field map-

ping. Further, our proposed procedure can also be repeated for vertical aliasing, as opposed

to the horizontal aliasing used here.
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian approach to GRAPPA parallel image reconstruction in-

creases SNR and power of task detection” (DOI: 10.1214/24-AOAS1962SUPP; .zip). The

supplement to this paper provides additional results for magnitude and phase reconstructed

images, subsampling the calibration time points for separate hyperparameter assessment, and

details about the experimental data.
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