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Abstract
In linear regression, the coefficients are simple to estimate using the least squares method with a known 
design matrix for the observed measurements. However, real-world applications may encounter 
complications such as an unknown design matrix and complex-valued parameters. The design matrix can 
be estimated from prior information but can potentially cause an inverse problem when multiplying by the 
transpose as it is generally ill-conditioned. This can be combat by adding regularizers to the model but 
does not always mitigate the issues. Here, we propose our Bayesian approach to a complex-valued latent 
variable linear model with an application to functional magnetic resonance imaging (fMRI) image 
reconstruction. The complex-valued linear model and our Bayesian model are evaluated through extensive 
simulations and applied to experimental fMRI data.
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1 Introduction
1.1 Background
Linear regression is a common tool used for prediction analysis of one variable based on the value 
of another variable. The equation for linear regression is that of a line of best-fit with measurement 
error as expressed in equation (1.1)

y j = β0 + β1x j1 + β2x j2 + · · · + β px jp + ε j, j = 1, . . . , n, (1.1) 

where p is the number of regression coefficients and n is the number of observations. Some 
applications, such as in functional magnetic resonance imaging (fMRI) image reconstruction, 
do not have a y-intercept in the model which would remove the β0 from the model. For this 
article, we will focus on the regression model with no y-intercept which can be compactly 
written as

y = Xβ + ε, (1.2) 

where y ∈ Rn×1 is the observed dependent variable, X ∈ Rn×p is the design matrix, β ∈ Rp×1 is 
the vector of regression coefficients, and ε ∈ Rn×1 is the measurement error or residuals. With 
regression models, our goal is to solve for the coefficients β. If the variables of this model are 
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real-valued and the design matrix X is known, we can simply apply a least squares method to 
solve for β by using equation (1.3)

β = (X′X)−1X′y. (1.3) 

This linear model can encounter complex values instead of real-valued variables which changes 
y to yc ∈ Cn×1, X to Xc ∈ Cn×p, β to βc ∈ Cp×1, and ε to εc ∈ Cn×1. With complex-valued param-
eters, we can write the linear model using a real-valued isomorphic representation to essentially 
remove the nuisance of complex values. This isomorphic representation is shown as

yR
yI

 

= XR −XI

XI XR

 
βR
βI

 

+ εR

εI

 

, (εR, εI)
′ ∼ N(0, σ2I2n), (1.4) 

where yR ∈ Rn×1 and yI ∈ Rn×1 are the observed real and imaginary components, respectively, of y, 
XR ∈ Rn×p and XI ∈ Rn×p are the unobserved real and imaginary components of X, βR ∈ Rp×1 and 
βI ∈ Rp×1 are the unobserved real and imaginary components of β, and εR ∈ Rn×1 while εI ∈ Rn×1 

are the real and imaginary components of ε. This isomorphic representation can be compactly writ-
ten to be y = Xβ + ε, where y ∈ R2n×1, X ∈ R2n×2p, β ∈ R2p×1, and ε ∈ R2n×1.

1.2 Unknown design matrix
In real-world applications, we may not always have a known design matrix X. An example of this 
can be found in the blind source separation problem which has been studied by researchers in sig-
nal processing (Cardoso & Laheld, 1996; Comon, 1994; Yellin & Weinstein, 1996), identification 
of MA processing (Swami et al., 1994), and neural networks (Bell & Sejnowski, 1995; Cichocki 
et al., 1994; Roth & Baram, 1996). In source separation, measured signals are modelled using lin-
ear combinations of an operator matrix (design matrix) and the original source signals (regression 
coefficients). In this model, both the operator matrix and the source signals are unknown with the 
operator matrix not necessarily being full rank. The research performed in this field focuses on the-
oretical identification of the linear combinations through filtering or unsupervised learning algo-
rithms to formally estimate the source signals (Cao & Liu, 1996; Choi et al., 2005; Lee et al., 
1997). Despite this being a major area that consists of having an unknown design matrix in its lin-
ear model, even a small amount of a priori information is required to gain insight on the filtering 
processes to estimate the original source signals (Choi et al., 2005).

Aliased image reconstruction in functional magnetic resonance imaging (fMRI) is similar to a 
source separation problem. In this field, the design matrix is unknown but enough a priori infor-
mation is obtained to estimate the design matrix and is treated as ‘known’. This ‘known’ design 
matrix can then be used for ordinary least squares to estimate the regression coefficients. 
However, estimating the design matrix from prior information results in the matrix being gener-
ally ill-conditioned leading to an inverse problem. To address this issue, a common solution is to 
add regularizers such as ridge (Hoerl & Kennard, 1970) or lasso regression (Tibshirani, 1996) to 
the model. These regularizers, however, may not always mitigate the issues as they can introduce a 
bias-variance problem, be computational expensive, or produce subjective parameter estimates. 
This partially motivates our Bayesian approach to this latent variable linear regression problem.

1.3 Complex-valued applications
Also in real-world applications where a linear regression is modelled, the observed data can be 
complex-valued instead of real-valued. An example of a complex-valued, latent variable real- 
world application can be seen in speech enhancement. For speech enhancement, the goal is to im-
prove the quality of noisy signals (Loizou, 2013). Most models in speech enhancement ignore 
the phase information yielding real-valued signals (Williamson et al., 2013, 2014) that can be 
modelled using linear regression. Chen et al. (2018a) incorporate the phase information in the re-
construction of the complex-valued short-time Fourier transformation using a nonlinear complex- 
valued Gaussian process model. This work is further improved by adding in locality-preserving 
and discriminative constraints (Chen et al., 2018b). Despite the use of non-linear models for the 
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complex-valued speech signal data, linear regression can be used on the complex-valued signals 
(Schreier & Schraf, 2010). With available prior information (Williamson et al., 2013, 2014) and 
a complex-valued linear model, our Bayesian approach can be applied to speech signal data. 
Also, Nguyen et al. (2017) address the possibility of under-determined systems in the complex- 
valued linear regression, in signals such as speech, by using a generalization of sparse filtering and 
K-hyperlines clustering. Even with under-determined systems, our Bayesian approach can still be ap-
plied without any alterations creating a fully automated process.

Similar to signal processing, the data in fMRI are also complex-valued and can be linearly mod-
elled with an unknown design matrix. For this article, we introduce a Bayesian approach to a 
complex-valued latent variable linear model where the design matrix X along with the regression 
coefficients β and the noise variance σ2 are treated as unknown parameters. Prior distributions are 
then placed on the unknown variables and combined with the likelihood to obtain the joint pos-
terior distribution. This model can be applied to any complex-valued data that can be modelled 
using linear regression with (or without) an unknown design matrix. To demonstrate the utiliza-
tion of our proposed isomorphic Bayesian complex-valued latent variable model, we applied the 
model to simulated and experimental fMRI data for image reconstruction.

1.4 Overview
The second section of this article will explain the model of the Bayesian complex-valued latent 
variable model. Section 3 of the article describes the fMRI application with Section 4 analysing 
the results of image reconstruction application. We will conclude in Section 5 with an overview 
of the important results of the article and a discussion of future work with this Bayesian model 
and its application to fMRI data.

2 Bayesian complex-valued model
For our Bayesian model, we use the isomorphic representation of the complex linear model as ex-
pressed in equation (1.4). In this work, two different representations of the design matrix will be 
used. The first representation is X ∈ R2n×2p as shown in equation (1.4) which is necessary for the 
proper skew symmetric design matrix for complex-valued multiplication. The second is 
G = [XR, XI], used in the prior distribution and ultimately for parameter estimation, since XR 

and XI uniquely determine X and do not need to be duplicated.

2.1 Data likelihood, prior, and posterior distributions
We assume that the residual error is normal and independent and identically distributed in the real 
and imaginary components (Macovski, 1996). The likelihood for the observed measurements for 
the n observations becomes

P(y |X, β, σ2) ∝ (σ2)−2n
2 exp −

1
2σ2 (y − Xβ)′(y − Xβ)

 

. (2.1) 

We can quantify available prior information about the regression coefficients β, the unobserved 
parameters of the design matrix X, and the residual variance σ2 in the likelihood with assessed hy-
perparameters of prior distributions. The regression coefficients β are specified to have a normal 
prior distribution, expressed in equation (2.2). The design matrix, represented as G, is also speci-
fied to have a normal prior distribution (equation (2.3)) and the noise variance σ2 is specified to 
have an inverse gamma prior distribution (equation (2.4)),

P(β |nβ, β0, σ2) ∝ (σ2)−2p
2 exp −

nβ

2σ2 (β − β0)′(β − β0)
 

, (2.2) 

P(G |nX, G0, σ2) ∝ (σ2)−2np
2 exp −

nX

2σ2 tr(G − G0)′(G − G0)
 

, (2.3) 

P(σ2 | α, δ) ∝ (σ2)−(α+1)exp −
δ
σ2

 

, (2.4) 
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where tr is the trace of the (G − G0)′(G − G0) matrix. The hyperparameters nX, G0, nβ, β0, α, and 
δ are assessed from available prior information, as discussed in the next subsection, but can also be 
determined using a fully subjective approach. The joint posterior distribution of the regression co-
efficients β, the design matrix X, and the noise variance σ2 is

P(G, β, σ2 | a) ∝ P(y |X, β, σ2)P(β | nβ, β0, σ2) · P(G |nX, G0, σ2)P(σ2 | α, δ), (2.5) 

with the distributions specified from equations (2.1), (2.2), (2.3), and (2.4).

2.2 Hyperparameter determination
As mentioned in Section 1.2, in linear regression with an unknown design, prior information can be 
utilized to estimate the design matrix, treating it as a ‘known’ parameter. That same available data, 
y0c ∈ Cn×n0 , can be utilized to assess the hyperparameters (β0, nβ, G0, nX, α, and δ) for the prior dis-
tributions of the unknown parameters for our Bayesian model. We utilize a logical straightforward 
objective process for hyperparameter assessment. For this, we average the n0 prior data points 
(second dimension) for each y0c resulting in y0avg ∈ Cn×1 which can be utilized for hyperparameter 
assessment. Since our data are complex-valued, we can estimate an initial magnitude of our regression 
coefficients β0M by computing the Euclidean norm of y0avg. Then, the y0avg values can be pointwise 
divided by β0M resulting in initial real and imaginary values for G0. From this, we calculate the mag-

nitude value by ρG =
���������
R2 + I2


and the phase value by θG = arctan(I/R)/2 for G0, where R and I are 

the initial real and imaginary components of G0. By dividing the arctan(I/R) by 2, both the real and 
imaginary components of the design matrix are incorporated into the estimation of the regression co-
efficients. Without dividing by 2, the least squares estimation zeroes out the imaginary component of 
the regression coefficients which directly removes the phase information from the complex-valued co-
efficients. The magnitude and phase estimates are then utilized to calculate the complex-valued prior 
means for G0 using the equation G0 = ρGexp(iθG). These G0 prior means, along with y0avg, are used 
to estimate complex-valued prior means for the regression coefficients β0 via least squares estimation.

The hyperparameters nβ and nX, which are the scalar weights of the prior means for β and X respect-
ively, are assessed to be the number of prior data points n0. The average residual variance over the se-
cond dimension of our prior data points y0c is calculated to obtain a prior for the noise variance noted 
as σ2

0. The hyperparameters α (shape parameter of the inverse gamma) and δ (scale parameter of the 
inverse gamma) are assessed to be α = n0 − 1 and δ = (n0 − 1)σ2

0. This prior information is incorpo-
rated in estimating the p regression coefficients β for every jth data point of the observed measurements.

2.3 Posterior estimation
Using the posterior distribution in equation (2.5), two approaches are used to estimate the regres-
sion coefficients β, design matrix X, and residual variance σ2. Maximum a posteriori (MAP) esti-
mation using the Iterated Conditional Modes (ICM) optimization algorithm (Lindley & Smith, 
1972; O’Hagan, 1994) to find the joint posterior mode, and marginal posterior mean (MPM) es-
timation via Markov chain Monte Carlo (MCMC) Gibbs sampling (Gelfand & Smith, 1990; 
Geman & Geman, 1984). It should be noted that with the current specifications with the likeli-
hood and priors, the posterior conditional distributions are unimodal hence the joint posterior dis-
tribution is unimodal. Beginning with initial estimates of each parameter, ICM iterates over the 
parameters, calculating its posterior conditional mode until convergence at the joint posterior 
mode. The posterior conditional modes are

β̂ = (X′X + nβI2p)−1(X′y + nββ0), (2.6) 

Ĝ = (B′B + nXI2p)−1(BY′ + nXG0), (2.7) 

σ̂2 =
Θ

2(2n + 2p + α + 2np + 1)
, (2.8) 
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where Θ = (y − Xβ)′(y − Xβ) + nβ(β − β0)′(β − β0) + αδ + nXtr[(X − X0)(X − X0)′], Y = [yR, yI] 
and B ∈ R2p×2 is a skew symmetric matrix representation of the regression coefficients β as ex-
pressed by

B = βR βI
−βI βR

 

. (2.9) 

The full conditional distributions are given by

β |X, σ2, y ∼ N{β̂, σ2(X′X + nβI p)}, (2.10) 

G | β, σ2, y ∼ MN{Ĝ, σ2(B′B + nXI2p)}, (2.11) 

σ2 | β, X, y ∼ IG α∗, δ∗
( 

, (2.12) 

where α∗ = np + n + p + α and δ∗ = [(y − Xβ)′(y − Xβ) + nβ(β − β0)′(β − β0) + nXtr((G − G0) 
(G − G0)′) + 2δ]/2. This process is completely objective providing a fully automated method without 
having to calculate a subjective penalty. Our Bayesian approach, however, is flexible enough to include 
subjective priors if desired. Because we are using available prior information, we expect the subsequent 
estimators to have smaller variance. Since we expect the expected mean of the of our regression coef-
ficients to be equal to true mean, i.e. E(β̂) = β, we can appropriately use the mean square error (MSE) 
estimate to quantify bias. This measure is also used to determine how accurate the regression coeffi-
cients are to the true values. To illustrate our Bayesian approach compared to the non-Bayesian ap-
proach, extensive realistic simulations are performed in Section 4.

3 fMRI application
3.1 fMRI background
Magnetic resonance imaging (MRI) is a type of medical imaging that creates images using magnetic 
fields. fMRI was developed in the early 1990’s as a technique to noninvasively observe the human 
brain in action without exogenous contrast agents (Bandettini et al., 1993). This procedure examines 
brain activity by detecting changes in the brain using the blood-oxygen-level dependent (BOLD) con-
trast (Ogawa et al., 1990). When a neuron fires, the BOLD contrast increases in the proximity of the 
neuron and is a correlate for neuronal firing. The firing of neurons is a proxy for brain activity and is 
of interest when examining the brain in action in fMRI analysis. Measurements for images are arrays 
of complex-valued spatial frequencies in so called k-space (Kumar et al., 1975). These k-space arrays 
are then reconstructed into images using an inverse Fourier transform (IFT) producing brain images. 
The reconstructed brain images are made up of complex-valued voxels which contain the signal in-
tensity for each pixel in the image. The magnitude and phase of the complex-valued reconstructed 
images can be utilized for analysis (Rowe, 2005; Rowe & Logan, 2004), but generally only the mag-
nitude is used (Bandettini et al., 1993).

In fMRI, obtaining hundreds of volume images is necessary to detect activation in the brain. 
This series of observations are of the same underlying volume image taken over time. 
Measuring full arrays of data for all slices required to form volume images takes a considerable 
amount of time due to the size a dataset is from a single fMRI experiment. For example, the ex-
perimental data used in this article contain nine slices of 96×96 images with 510 time points yield-
ing 41,472,000 complex-valued data points. Acquiring fully sampled k-space arrays where every 
value in the array is measured limits the temporal resolution of the reconstructed images which can 
diminish effectively capturing brain activity.

Historically, a single channel receiver coil has been utilized in fMRI to measure fully sampled 
k-space. The drawbacks of acquiring fully sampled k-space arrays directed fMRI research to in-
crease the number of images acquired per unit of time. More recently, the focus of research has 
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been to acquire more images per unit of time by measuring less data without losing the ability to 
form a full image. To accomplish this, multiple receiver coils are utilized in parallel to each meas-
ure spatial frequencies. This would require the multiple coil images, after using the IFT, to be com-
bined into a single, composite brain image. In 1999, Pruessmann et al. introduced a parallel 
imaging technique called SENSitivity Encoding (SENSE) which operates on the images after IFT.

The SENSE method uses the linear regression, as expressed in equation (1.2), with complex- 
valued parameters and a fixed design matrix. A complex-valued least squares solution (equation 
(1.3)) is used to estimate the unknown parameter, which would be the voxel values of the single, 
full brain image. This approach for parameter estimation can be difficult because the complex- 
valued design matrix, generally, is ill-conditioned. This can cause aliasing artefacts, low image 
quality, and signal-to-noise ratio (SNR) degradation in the final reconstructed image, which has 
led to variations of the traditional technique (King & Angelos, 2001; Liang et al., 2002; Lin 
et al., 2004; Liu et al., 2009; Ying et al., 2004). These modified regularization models have de-
ficiencies that hardly mitigate the limitations of the traditional maximum likelihood SENSE pro-
cedure. These variations cause trade-off between SNR and aliasing artefacts (King & Angelos, 
2001) or can lead to a significant increase in computational expense (Lin et al., 2004; Liu et al., 
2009; Ying et al., 2004) due to selection of the regularizer which can render these techniques 
ineffective in practice. We can apply a Bayesian approach to this complex-valued linear model 
with an unknown design matrix called Bayesian SENSE (BSENSE). Our Bayesian model will in-
corporate prior information, which is assessed with complete automation and minimal compu-
tation time (<1 s) and does not use a single a priori fixed complex-valued sensitivity matrix. 
Through the extensive simulation study and application to experimental data, the results yield 
increased SNR, no aliasing artefacts, and increased image quality with improved task detection 
results.

For the fMRI application, the notation for the observed measurements (y), the design matrix 
(X), and the regression coefficients (β) in the linear model become a, S, and v, respectively. 
Also, nC, the number of coils, will replace n and nA, the acceleration factor, will replace p when 
discussing the dimensions of the parameters.

3.2 Research problem
As mentioned in the previous subsection, fMRI historically utilized a single channel receiver coil as 
illustrated in Figure 1. With a single channel coil, the height of the receiver is taller than the size of 
the subject’s head, shown in the three-dimensional depiction in Figure 1a. Both parts a and b of 
Figure 1 show the single coil receiver wraps completely around the subject’s head starting from 
posterior to anterior and connects back at the posterior.

Figure 1. a) Illustration of a three-dimensional single coil channel along with b) the top-down view of the coil 
receiver.
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From the single channel coil, the k-space arrays are acquired along a trajectory as shown in 
Figure 2 (top left) where the machine starts in the bottom left corner and moves across the 
row measuring complex-valued spatial frequencies along the Cartesian grid. At the end of 
each row, you move up one line and the process is repeated in the opposite direction. This acqui-
sition of complex-valued spatial frequencies is continued until all the rows of the k-space array is 
obtained, yielding fully sampled k-space depicted in Figure 2 (top right). These complex-valued 
spatial frequency arrays are then reconstructed into full field-of-view (FOV) magnitude and 
phase brain images using the IFT (bottom of Figure 2). The reconstructed phase image is not 
shown.

To acquire more images per unit of time, nC > 1 receiver coils are utilized instead of a single 
channel coil. The number of coils nC > 1 would be the n observations as described in Section 
1.1. An example of a four-channel coil arrangement is illustrated in Figure 3. The three- 
dimensional depiction of the multi-coil arrays in Figure 3a show the height of the receiver coils 
being taller than the head of the subject. In Figure 3b, starting with coil 1 at the anterior of the 
subject, the coils increment clockwise with coil 2 on the right lateral, coil 3 on the posterior, 
and coil 4 on the left lateral of the subject’s head. Each of the four coils can measure full sampled 
k-space arrays, as exhibited in Figure 2, in parallel which does not increase the acquisition time 
compared to the single channel coil array.

Figure 2. Fully sampled k-space zig-zag coverage (top left) with the finalized full k-space array after omitting the 
turn-around points (top right) and the reconstructed brain image using the IFT (bottom).
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Each channel receiver coil possesses a depth sensitivity profile which depends on its size and lo-
cation. This means that each coil can only ‘see’ parts of the object with a particular depth sensitiv-
ity that decreases as we move farther from the coil. The same four-channel coil configuration in 
Figure 3b is displayed in Figure 4 (centre image with four coils on each side) showing how the coils 
would look around a single slice brain image. Figure 4 gives an illustrative example of image slices 
with nC = 4 coils (top, bottom, left, right) and their respective depth sensitivity to the true image 
slice (the four corners of the figure). The images for Figure 4 are magnitude images used to visualize 
the how the linear model is designed. In Figure 4, the top right corner image displays the true image 
point-wise multiplied by the depth sensitivity profile of coil 1 which is located at the front of brain. 
The resulting image shows that the signal intensity of the image decreases as you move farther 
from the coil location towards the back of the brain (bottom of the top right image). When exam-
ining a single complex-valued voxel in the weighted brain image for coil 1, the complex-valued 
voxel from the true image (centre) is multiplied by the complex-valued weighted sensitivity, S1c, 
to get a1c = S1cvc. The other three coils follow this same operation creating the system of equations 
ac = Scvc where ac = [a1c, a2c, a3c, a4c]

′ and Sc = [S1c, S2c, S3c, S4c]
′. With this system of equations, 

ac is the complex-valued coil measurements (the observed measurements y from equation (1.2)), 
Sc is the coil sensitivities (the design matrix X from equation (1.2)), and vc is the unaliased, and coil 
combined, voxel values (the regression coefficients β from equation (1.2)). With this system of 
equations, ac (the corner images in Figure 4) is the observed measurements, after applying the 
IFT, from the machine that need to be combined into a single, composite brain image. Since voxels 
are spatially discrete, this process is repeated for the rest of the voxels in the coil measurements.

As previously noted, the primary goal of parallel imaging is to increase the number of images 
acquired per unit of time which can be attained by measuring less data. This can be accom-
plished by skipping lines in the k-space array, i.e. subsampling, as displayed in Figure 5. 
Skipping lines in k-space introduces what is called an acceleration factor, nA. The acceleration 
factor indicates the fraction of lines of data in k-space that are measured and how much sam-
pling time is reduced for a volume image. For example, with an acceleration factor of nA = 2, 
every other line horizontally in k-space is measured as exhibited on the left side of Figure 5. 
This would result in each slice of the volume k-space arrays to be 48×96 (top right of 
Figure 5) instead of the full 96×96. If it took 1 s to obtain a full volume k-space array, with 
nA = 2, the subsampled volume image would take half a second, doubling the rate at which 
we can observe brain dynamics. If an acceleration factor of nA = 3 is used, a third of the points 
along the horizontal lines of k-space are measured yielding each slice of the volume image to be 
32×96 which means three subsampled volume images would be observed in the time it would 
take to observe one full sampled volume image.

Figure 3. a) Illustration of a three-dimensional multi-coil channel with four receivers along with b) the top-down view 
of the multiple coils.
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However, skipping lines in k-space causes reconstructed coil-weighted brain images to appear 
folded over itself, or aliased, because the IFT cannot uniquely map the downsampled signals. 
We can see an example of this in Figure 5 where the IFT of the subsampled k-space (top right), 
with nA = 2, causes the brain image to be aliased (bottom right). The depiction in Figure 5 only 
shows the aliasing for one of the coils, and since multiple coils are utilized in parallel imaging, a 
weighted aliased image transpires for each coil. It also only shows the magnitude images as the 
associated phase images are not shown.

Figure 6 shows a similar depiction of the full coil-weighted magnitude brain images to Figure 4, 
but introduces an acceleration factor of nA = 3. The sequential subsampling pattern follows one 
similar to that shown in Figure 5 (left), but measuring every third line of k-space instead of every 
other line, resulting in aliased coil-weighted brain images. In Figure 6 (top right), the true aliased 
image is the point-wise multiplication of the given voxel by the sensitivity profile for coil 1 summed 
for the three strips, a1c = S11cv1c + S12cv2c + S13cv3c. This process is repeated for a2c in coil 2 
(bottom right), a3c in coil 3 (bottom left), and a4c in coil 4 (top left). This depiction of four ob-
served, complex-valued aliased images, ac, along with the unobserved, complex-valued coil sensi-
tivities, Sc, the unobserved, complex-valued unaliased voxel values, vc, and the complex-valued 
measurement error, εc, create a linear system of complex-valued equations, shown in equation 

Figure 4. True slice image (centre) along with coil sensitivity profiles (top, bottom, left, right) and sensitivity 
weighted true images (the four corners). The coil sensitivity profiles are typically masked outside the brain but left 
here to show how the sensitivity decreases with voxels that are further from the coil.
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(3.1). Since the unaliased voxel values, vc, are the parameter of interest, SENSE estimates the coil 
sensitivities, Sc, treats it as a known parameter, and models the process as a complex-valued regres-
sion model,

a1c

a2c

a3c

a4c

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦ =

S11c S12c S13c
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S31c S32c S33c

S41c S42c S43c

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

v1c

v2c

v3c

⎡

⎣

⎤

⎦ +

ε1c

ε2c

ε3c

ε4c

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦. (3.1) 

BSENSE uses the isomorphic representation of equation (3.1), similar to equation (1.4) (Bruce 
et al., 2012). The likelihood, prior distributions, and posterior along with the parameter estima-
tion are outlined in Section 2.

3.3 Prior assessment
The assessment for the hyperparameters is outlined in Section 2.2 and its application to the fMRI 
data is detailed in this subsection. The full pre-scan coil calibration images, which would be y0c 
from Section 2.2, can be utilized to fully assess appropriate hyperparameters for the prior distri-
butions in an automated way. For example, the ncal (n0) coil calibration images (top left of 
Figure 7) can be averaged together to give us full complex-valued coil images. An initial magnitude 
v0M (β0M) of the prior mean can be estimated for each voxel in the unaliased image by computing 
the Euclidean norm shown in the top right of Figure 7.

The nC averaged coil calibration images can then be pointwise divided by v0M to obtain a prior 
mean for the real and imaginary coil sensitivities, as displayed in the bottom of Figure 7. The phase 
of the coil sensitivities is estimated by arctan(I/R)/2, where R and I are the real and imaginary 
components of the coil sensitivities, respectively. This phase is utilized to estimate complex-valued 
prior means for the coil sensitivities, H0 (G0). These coil sensitivity estimates, H0, along with the 
full averaged calibration coil images are used to estimate complex-valued prior means for the voxel 
values, v0 (β0).

The hyperparameters nS and nv, which are the scalar weights of the prior means, are assessed 
to be the number of calibration images ncal. The average residual variance over the voxels of 
the calibration images is calculated to obtain a prior for the noise variance noted as σ2

0. The hyper-
parameters α (shape parameter of the inverse gamma) and β (scale parameter of the inverse 

Figure 5. Subsampled k-space zig-zag coverage with na = 2 acceleration factor (left), the finalized subsampled 
k-space array after omitting the turn-around points (top right) and the aliased brain image after reconstruction using 
the IFT (bottom right).
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gamma) are assessed to be α = ncal − 1 and β = (ncal − 1)σ2
0. This prior information is incorporated 

to reconstruct each voxel measurement in the aliased coil image into the unaliased voxel values at 
every time in the fMRI series.

The software used for this research was MATLAB run on a 12th Gen Intel(R) Core(TM) 
i7-1255U laptop computer with 16 GB RAM, operating on Windows 11.

4 Simulation and experimental studies
4.1 Non-task data
A noiseless non-task image was used to create two series of 510 simulated full FOV coil images for 
one slice to mimic the experimental data shown in Section 4.6. The last ncal time points of the first 
time series of non-task images served as calibration images that were utilized for hyperparameter 
assessment, and the second time series was used for a simulated non-task experiment. A complex- 
valued image was multiplied by a designed sensitivity map with nC = 8 coils, similar to the four- 
channel coil shown in Figure 3 but with four additional coils in each corner as well, and then the 
series of images were Fourier transformed into full coil k-space arrays. In real-world MRI experi-
ments, the first few images of the time series have increased signal as the magnetization reaches a 

Figure 6. True slice image (centre) along with coil sensitivity profiles (top, bottom, left, right) and sensitivity 
weighted true aliased images (the four corners). The coil sensitivity profiles are typically masked outside the brain 
but left here to show how the sensitivity decreases with voxels that are further from the coil.

110                                                                                                                                                 Sakitis et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/74/1/100/7759366 by C
lem

son U
niversity user on 13 January 2025



steady state. The first three images in both the simulated series of non-task images are appropri-
ately scaled, based on the experimental data, replicating the increased signal. These series were si-
mulated by adding separate N(0, 0.0036nxny) noise to both time series, where ny and nx are the 
number of rows and columns, respectively, in the full k-space array, to the real and imaginary parts 
of full coil k-space, corresponding to the noise in the fMRI experimental data used in Section 4. 
This data generation is following a general linear model with normally distributed noise and no 
spatial or temporal dependencies.

The arrays were then inverse Fourier transformed back into full coil images. To mimic the fMRI 
experiment shown in Section 4.6, the first 20 time points were discarded leaving 490 time points of 
non-task images for the single slice, though they could be used to estimate T1 and magnetic field 
maps as described in Section 1.3 of the online supplementary material. The remaining 490 images 
in the time series were Fourier transformed and aliased by censoring lines in k-space according to 
the different acceleration factors used for the simulation, then back transforming the down-
sampled data.

4.2 Reconstruction results
To analyse the reconstruction performance of BSENSE vs. SENSE, we first reconstructed aliased 
coil measurements at one time point, giving us a single unaliased image for both methods. For this, 
we used the first time point of the 490 simulated non-task time series with an acceleration factor of 
nA = 3, shown in Figure 8.

The last ncal = 30 time points, corresponding to 30 s, from the first 510 non-task full FOV cali-
bration time series were utilized to assess the hyperparameters. The prior means from the calibra-
tion images for the unaliased voxels v0 and the sensitivity coils S0 were used as initial values for H 

Figure 7. The ncal calibration coil images (top left) are averaged through time and the Euclidean norm is taken 
yielding a prior mean for the magnitude unaliased voxel values v0M (top right). The average of the coil calibration 
images are then pointwise divided by v0M resulting in prior means for the real and imaginary parts of the coil 
sensitivities H0R and H0I , respectively.
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and v. These initial values were used to generate a σ2 value from the posterior conditional from 
equation (2.8), initializing the ICM algorithm and the Gibbs sampler. The simulated aliased 
coil images were reconstructed into a single, full brain images using the BSENSE MAP estimate 
from the ICM algorithm, the BSENSE MPM via MCMC, and traditional SENSE estimate. For 
the ICM algorithm, only three iterations were needed for estimating the parameters (computation 
time about 0.10 s per time point), and for the Gibbs sampling, 10,000 total iterations were run 
(computation time about 90 s per time point) with a burn of 2,500 leaving 7,500 iterations for 
estimation. For comparison, the computation time for SENSE is about 0.04 s per time points. 
Plots of the 10,000 iterations for a gray matter voxel at one single time point is displayed in 
Figure 9. The plot on the left of Figure 9 is the real part of the complex-valued voxel and the 
plot on the right is for the imaginary part. The red line in the plots show where the burn-in iter-
ations end. Figure 9 shows that the Gibbs sampler converges relatively quickly.

Figure 10 displays the true simulated image (first column) along with the BSENSE MAP un-
aliased image (second column), the BSENSE posterior marginal mean unaliased image (third col-
umn), and the SENSE unaliased image (fourth column). We can see that the joint MAP estimate 
and the marginal posterior mean from BSENSE both produce magnitude and phase images that 
closely resemble the true non-aliased image in Figure 10 (left column). SENSE, on the other 
hand, produced an image with a higher noise level in the magnitude image resulting in less clear 
distinction between the different brain tissue when compared to our BSENSE approach and the 
true unaliased image. This is also evident by examining the noise level outside of the brain which 
is markedly higher in the SENSE reconstructed image. Typically, in fMRI studies, the voxels out-
side the brain are masked out, but here we leave them in to further show the spatial noise level of 
the reconstructed images for both techniques. Unlike the BSENSE and true phase images, SENSE 
also produced an unusable phase image with no anatomical structure. Activation using both mag-
nitude and phase images has been shown to yield increased power of detection (Rowe, 2005; Rowe 
& Logan, 2004) and additional biological information (Petridou et al., 2006).

Figure 8. Simulated observed noisy aliased coil images for first time point in the non-task time series.
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To quantify the differences between the true and reconstructed magnitude images, we use the 
MSE to indicate the accuracy of a single reconstructed image compared to the true simulated image 
with lower MSE indicating a more accurate reconstructed image. The MSE is calculated by 
MSE = 1

K

K
j=1 (v j − v j)

2, where K is the number of voxels (either inside or outside the brain) in 
the full reconstructed image, v j is the reconstructed magnitude value of the jth voxel, and v j is 
the true magnitude value of the jth voxel. The MSE for both BSENSE MAP and BSENSE MPM 
are <0.001 inside the brain and 0.001 outside the brain, respectively. For SENSE, the MSE was 
calculated to be 0.035 inside the brain and 0.03 outside the brain. This means that SENSE has 
a 26, 670% larger MSE inside the brain compared to BSENSE MAP and BSENSE MPM, and 
2,940% and larger MSE outside the brain, respectively. The process illustrated here for recon-
structing aliased coil images at a single time point can be replicated to reconstruct the rest of 
the series.

For the remaining results discussed in this article, only the BSENSE MAP estimate was used to 
reconstruct the time series of aliased coil. For the study covered in this article, we are only inter-
ested in a single estimate for each of the reconstructed images. From the Gibbs sampler, that is the 
posterior mean for each unaliased voxel, v. Since the v follows a normal distribution, the estimated 

Figure 9. Time series of the 10,000 iterations from the Gibbs sampler with the real (left) and imaginary (right) 
components of a grey matter voxel. The line for both plots indicates the point where the burn-in iterations end.

Figure 10. True non-task unaliased images (first column), BSENSE MAP unaliased non-task images (second 
column) using ICM, posterior mean BSENSE unaliased non-task images (third column) using Gibbs sampling, and 
SENSE non-task images (fourth column) with magnitude images in the first row and phase images in the second 
row.
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posterior mean and mode would be equivalent. This allows us to only need the MAP estimate for 
image reconstruction for this study, saving computation time.

Next, we reconstructed the 490 simulated time points with an acceleration factor of nA = 3 us-
ing both BSENSE MAP and SENSE. Before evaluating the full reconstructed brain image results, 
we first analysed three reconstructed voxels that were previously aliased. The three previously 
aliased voxels are of different voxel types: cerebrospinal fluid (CSF), gray matter (GM), and out-
side the brain (Space). The location of these voxels are shown in Figure 11.

Table 1 shows the true magnitude of each voxel (row 1), the temporal magnitude means for 
BSENSE (row 2) and SENSE (row 3), and the MSE of the magnitude values for BSENSE (row 
4) and SENSE (row 5). Phase analysis is also shown in Table 1 with the true phase value in row 
6, the temporal mean phase values for BSENSE (row 7) and SENSE (row 8), and the MSE of 
the phase values for BSENSE (row 9) and SENSE (row 10). Along with being more accurate, 
the smaller the MSE the less bias the reconstructed voxel values are. With the MSE estimates rela-
tively close to zero, this indicates that both methods have little to no bias. Note that the MSE es-
timates for BSENSE for both magnitude and phase is noticeably smaller than the MSE estimates 
for SENSE. This indicates that BSENSE more accurately reconstructs the unaliased voxel value 
compared to SENSE while having no bias from the true simulated magnitude and phases.

Figure 12 displays for the full time series for the three voxels analysed in Table 1 with the top 
plot showing the CSF voxel, the middle plot showing the gray matter voxel, and the bottom plot 
showing the voxel outside the brain. In each of the plots, the red time series is the SENSE recon-
structed series, magenta is the temporal mean of the SENSE series, the black lines show the 95% 
confidence interval for the SENSE time series, The blue time series is the BSENSE reconstructed 
series, the purple line (not visible) is the temporal mean of the BSENSE series, the green lines 
show the 95% confidence interval for the BSENSE time series, and the light blue line with black 
dots shows the true value. The values in the plots in Figure 12 are the magnitude values. The 
plots for each of the voxels further illustrates how the BSENSE magnitude estimates are re-
markably closer to the true simulated magnitude than SENSE is. This is exhibited by how close 
the true values (light blue line with black dots) are to the BSENSE values (blue time series) 
showing that there is no bias when using the Bayesian approach to the complex-valued latent 
variable model.

Figure 11. The dots indicate the three previously aliased voxels that are analysed in Table 1 and Figure 12. The top 
point is a grey matter voxel, the middle point is a cerebrospinal fluid voxel, and the bottom point is in space.
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Then, we evaluated how the number of calibration images, ncal, affected the reconstructed im-
ages. For the calibration image analysis, we fixed the acceleration factor to be nA = 3 for the aliased 
coil measurements of the simulated non-task time series with nTR = 490 time points and set the 
number of calibration images to be ncal = 5, 10, 15, 20, 25, 30 for separate hyperparameter as-
sessments. After assessing the hyperparameters using the different numbers of calibration images, 
the simulated non-task time series with the aliased coil measurements were reconstructed using 
BSENSE MAP and SENSE.

The results, displayed in Figure 13, indicate that increasing the number of calibration images 
decreases the noise level outside of the brain for BSENSE but has little effect inside the brain. 
Even the BSENSE MAP reconstruction with ncal = 5 still produces an image with less noise than 
SENSE. The MSE of inside and outside the brain for both BSENSE and SENSE and the entropy 
for BSENSE and SENSE for the different number of calibration images were also calculated to 
quantify this result. Entropy analyses uncertainty and smoothness across a single image with lower 
entropy meaning less uncertainty throughout the image. The equation for entropy is given by 
E = −

N
j=1 [ v j

vmax
ln( v j

vmax
)], where ln is the natural log, N is the number of voxels in the full recon-

structed image, v j is the reconstructed magnitude value of the jth voxel, and vmax is the voxel in-

tensity if all the image intensities were in one pixel given by vmax =
�����������N

j=1 v j
2



(Atkinson et al., 

1997).
Shown in Figure 14a, the MSE for inside and outside the brain for the BSENSE MAP recon-

structed magnitude images was immensely smaller than the SENSE reconstructed magnitude im-
ages. BSENSE also had much smaller entropy compared to SENSE, displayed in Figure 14b, as it 
decreased from 193.6 to 181.4 with the entropy for SENSE remaining around 218.5 as the number 
of calibration images increased. Lower MSE for BSENSE indicates a more precise reconstructed 
image while smaller entropy means less uncertainty with image reconstruction. Increasing the 
number of calibration images also decreases the temporal variance for BSENSE yielding increased 
SNR. For SENSE, the number of calibration images does not meaningfully affect the temporal 
variance, resulting in similar SNR for each ncal. In all cases, the temporal variance for BSENSE 
is substantially lower than for SENSE. This demonstrates that BSENSE mitigates noise in the re-
constructed image.

Along with analysis of the number of calibration images, we evaluated how different acceler-
ation factors, nA, affected the reconstructed images. Here, we fixed the number of calibration 
images to be ncal = 30 for hyperparameter assessment and set the acceleration factors of the non- 
task time series to be nA = 2, 3, 4, 6, 8, 12. For SENSE, the maximum acceleration factor was 
nA = 8 since it cannot exceed the number of coils used as it yields a severely under-determined 
system of equations. These aliased coil measurements with separate acceleration factors were 

Table 1. Analysis of three previously aliased voxels comparing the true values to the reconstructed values from 
BSENSE and SENSE

CSF voxel GM voxel Space voxel

True Mag. 5.6475 2.2704 0.0000

Mean BSENSE Mag. 5.6395 2.2601 0.0428

Mean SENSE Mag. 5.6149 2.2966 0.0332

BSENSE MSE Mag. 6.5e−05 0.0001 0.0018

SENSE MSE Mag. 0.0439 0.0470 0.0280

True Phase 0.7854 0.5236 0.0000

Mean BSENSE Phase 0.7847 0.5196 −0.8412

Mean SENSE Phase −0.0045 0.0230 −0.7491

BSENSE MSE Phase 5.2e−07 1.6e−05 0.7088

SENSE MSE Phase 0.6253 0.2580 2.7581

Note. The aliased voxel contained a cerebrospinal fluid (CSF) voxel (column 1), a gray matter (GM) voxel (column 2), 
and a voxel outside the brain or out in space (column 3).
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Figure 12. Time series of the magnitude of the same three previously aliased voxels from Table 1. For SENSitivity 
Encoding, the reconstruction over time is the highly varied series with the mean being at the centre of the time 
series and the lines 95% confidence interval being near the top and bottom of the plots. For Bayesian SENSE, the 
reconstruction over time series, the mean of the time series, and the 95% confidence interval are all close together 
the true magnitude (dotted line).
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reconstructed into full images using the BSENSE MAP estimate and SENSE, again comparing 
the results for both methods.

The results, exhibited in Figure 15, showed that the reconstructed magnitude images from 
BSENSE are negligibly affected by increasing the acceleration factor with SENSE being severely af-
fected. The reconstructed phase images for BSENSE applying the different acceleration factors also 
closely resemble the true phase image while the reconstructed phase images for SENSE show zero 
phase inside the brain, rendering unusable phase information for anatomical and task analysis. 
These phase results are shown in Section 1.1 of the online supplementary material. The BSENSE 
temporal variance stays relatively the same (first row of Figure 16) with the increased acceleration 
factors, still producing high SNR (third row of Figure 16). SENSE was heavily influenced by the 
acceleration factor, as the reconstructed images with acceleration factors greater than nA = 3 fail 
to produce usable images with distinct matter types throughout the brain as shown in Figure 15. 
The increased acceleration factor also markedly increases the temporal variance (second row of 
Figure 16) which substantially degrades the SNR of SENSE (fourth row of Figure 16).

Figure 14. (a) Mean square error for inside and outside the brain for Bayesian SENSE (BSENSE) and SENSitivity 
Encoding (SENSE) comparing both method's reconstructed images to the true simulated magnitude image for each 
number of calibration images. (b) Entropy plot for BSENSE and SENSE for each number of calibration images.

Figure 13. Reconstructed magnitude images for different number of calibration images using BSENSE MAP 
estimate (top row) and SENSE (second row).
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Figure 15. Reconstructed magnitude images for different acceleration factors using BSENSE MAP estimate (top 
row) and SENSE (second row).

Figure 16. Temporal variance and SNR images for different acceleration factors using BSENSE MAP estimate (first 
row and third row, respectively) and SENSE (second row and fourth row, respectively).
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We examined the reconstruction time of both methods for the different acceleration factors as 
well. The average time, in seconds, it took to reconstruct each image in the time series for BSENSE 
decreased from 0.1195 s to 0.0744 moving from an acceleration factor of 2 to 8 with a slight in-
crease to 0.0855 with an acceleration factor of 12. SENSE does have a shorter reconstruction time 
with it decreasing from 0.0441 s to 0.0201 moving from an acceleration factor of 2 to 8. Despite 
this, our BSENSE approach still offers the potential for real time image reconstruction while pro-
ducing remarkably better results in image reconstruction.

4.3 Task activation
In task-based fMRI, the non-task reconstructed images create a baseline value for each voxel giv-
ing us an intercept only simple linear regression y = β0 + ε, where y is the unaliased voxel value. By 
adding in task activation to select images in the series of images, we have a simple linear regression 
y = β0 + xβ1 + ε for the unaliased voxel values. In this regression, β0 is the baseline voxel value 
from the non-task reconstructed images determining the SNR = β0/σ, and β1 is the estimated 
task related increase from β0 determining the contrast-to-noise ratio CNR = β1/σ. The vector 
x ∈ {0, 1}nIMG , where nIMG is the number of reconstructed images in the series, is a vector such 
that the zeros correspond to the images in the series without task activation and ones correspond-
ing to the images with task activation. We can write this regression as y = XB + ε, where 
X = [1, x] ∈ RnIMG×2 and B = [β0, β1]′.

Since the CNR is typically much lower than the SNR, the task is not usually visible on the re-
constructed images. Instead, a right-tailed t-test is carried out with β1 ≤ 0 as the null hypothesis 
and β1 > 0 as the alternative. The reason for the one-sided hypothesis test is because we anticipate 
an increased signal from the task activation. To simulate added task, a β1 = 0.045 magnitude-only 
signal increase is added to the true noiseless non-task image with ε ∼ N(0, 0.0036) noise yielding a 
CNR of 0.75. A simulated phase task of π/120 was also added and analysed in Section 1.3 of the 
online supplementary material. This added task activation is located in the left motor cortex to 
resemble the region of interest (ROI) of brain activity from the fMRI unilateral right-hand finger- 
tapping experiment (Karaman et al., 2014). Ranges of tissue pixel intensities are 1.00−1.75 for 
white matter, 1.75−3.00 for grey matter, and 4.00−6.00 for the cerebral spinal fluid (CSF) in 
the simulation to mimic the experimental data discussed in Section 4.6.

4.4 fMRI time series data generation
A true noiseless task image along with a true noiseless non-task image were used to simulate a ser-
ies of 510 full FOV coil images for one slice. The true images were multiplied by the same nC = 8 
coil sensitivity maps used for the non-task simulated time series, and then the series of images were 
Fourier transformed in full coil k-space arrays. This series was also generated by adding separate 
N(0, 0.0036nxny) noise to the real and imaginary parts of the full coil k-space arrays and were then 
inverse Fourier transformed back into full coil images. To simulate the real-world fMRI experi-
mental process, the series was generated by starting with 20 non-task time points. The scaling 
for the first few images in the fMRI simulated data was the same as the signal increases outlined 
in Section 4.1 for each of the tissue types. The initial 20 non-task time points are followed by 16 
epochs alternating between 15 non-task and 15 task time points. An epoch is a stimulation period 
with time points of the subject at rest (non-task) and the subject performing an action or task. The 
series culminated with 10 non-task time points producing the simulated fMRI series of 510 im-
ages. To mimic the forthcoming fMRI experiment, the first 20 time points were discarded leaving 
490 time points in the series. The last ncal time points in the non-task time series from Section 4.1
were utilized as full FOV coil calibration images to assess the hyperparameters. For this simula-
tion, we evaluate both BSENSE and SENSE using nC = 5, 10, 15, 20, 25, 30 calibration images. 
The transformation and aliasing are the same as in Section 4.1. The different acceleration factors 
tested in this simulated fMRI experiment are nA = 2, 3, 4.

4.5 fMRI time series reconstruction results
The hypothesis test described in Section 4.3 was utilized to determine voxels with a statistically 
significant signal increase. The statistically significant voxels for each number of calibration im-
ages were analysed for the BSENSE MAP reconstructed time series and the SENSE reconstructed 
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time series using the 5% false discovery rate (FDR) threshold procedure (Benjamini & Hochberg, 
1995; Genovese et al., 2002; Logan & Rowe, 2004). The ROI here consists of 28 voxels located in 
the left motor cortex. Increasing the number of calibration images did not notably affect the de-
tection of task for either BSENSE or SENSE, shown in Section 1.3 of the online supplementary 
material. The number of identified voxels with task activation and the mean value of the t-statistics 
was greater with BSENSE while having a smaller standard deviation compared to SENSE. These 
results indicate our BSENSE approach performs better with task detection compared to traditional 
SENSE, regardless of the number of calibration images that are utilized for hyperparameter 
assessment.

Figure 17 shows the statistically significant magnitude-only voxels from the BSENSE MAP re-
constructed time series (first row) and the SENSE reconstructed time series (second row) for the 
different acceleration factors. Figure 17 also summarizes the t-statistics in the ROI for each accel-
eration factor. BSENSE identified more statistically significant voxels in the ROI for each acceler-
ation factor while SENSE does not detect a single voxel when the acceleration factor was nA = 4. 
The mean value for the t-statistics was again much higher for BSENSE with a lower standard de-
viation for the different acceleration factors compared to SENSE, demonstrating that BSENSE 
performs better when detecting task activation. Increasing the acceleration factor decreases the 
number of voxels identified and the mean of the t-statistics for both BSENSE and SENSE. The false 
positive rate for BSENSE for each of the acceleration factors were 0.033%, 0.033%, and 0.098%, 
respectively, while SENSE had 0.022%, 0%, and 0%, respectively.

4.6 Experimental data description
A 3.0 T General Electric Signa LX magnetic resonance imager was used to conduct an fMRI ex-
periment on a single subject. The last ncal = 30 full k-space arrays of a non-task series of 510 time 
points performed on the subject was inverse Fourier transformed into full coil brain images and 
used for hyperparameter assessment. A bilateral finger-tapping task was performed in a block de-
sign with an initial 20 s rest followed by 16 epochs with 15 s off and 15 s on. The experiment was 
concluded with 10 s of rest giving us a series of nIMG = 510 repetitions with each repetition being 
1 s, a flip angle of 90◦ and an acquisition bandwidth of 125 kHz. The data set consists of nine 
2.5 mm thick axial slices with nC = 8 receiver coils that have a 96×96 dimension for a 24 cm 
full FOV, with a posterior to anterior phase encoding direction. For this article, the time series 

Figure 17. Statistically significant voxels in the region of interest (ROI) using false discovery rate (FDR) for Bayesian 
SENSE reconstructed images (first row), significant voxels in the ROI using FDR for SENSitivity Encoding (second 
row), and analysis of the t-statistics in the boxes on the right.
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for all nine slices was used to analyse the effects of applying acceleration factors of nA = 2, 3, 4 for 
both BSENSE and SENSE, but only the time series of the second slice is shown. Like the simulation 
study, the aliased coil images came from artificially skipping lines in the full coil k-space arrays, 
mimicking the effect of actually subsampling the coil k-space arrays. The first 20 images were dis-
carded due to varying echo times and magnetization stability, leaving 490 time points for the fMRI 
experiment. The first 10 images not used for fMRI activation can be used to estimate a T1 map 
(Karaman et al., 2014) as shown in Section 2.2 of the online supplementary material while the se-
cond 10 images could be used for static magnetic field mapping (Hahn et al., 2012), also discussed 
in the online supplementary material.

Before artificially aliasing the time series by omitting lines of k-space, a reference image (left im-
age in Figure 18) was produced by taking the square norm between the nC = 8 full FOV coil images 
at the first time point. This provides a magnitude image with which to compare to SENSE and our 
BSENSE. Rows of k-space in the fMRI experiment were omitted in each coil in accordance to the 
specified acceleration factors.

4.7 Experimental results
Similar to the process for the simulated data described in Section 4, each image in the entire time 
series of aliased coil measurements were simultaneously unaliased and combined using BSENSE 
and SENSE separately. Figure 18 displays the BSENSE MAP reconstructed images (top row) 
and the SENSE reconstructed images (bottom row) of the first time point of the 490 images using 
acceleration factors 2, 3, and 4. Just as the simulated results in Figure 15 demonstrated, the 
BSENSE reconstruction in Figure 18 produced clearer, less noisy images compared to SENSE re-
construction. It is noticeable inside of the brain where the signal is higher, but the distinction is 
strongest outside the brain.

MSE was again utilized to quantify the differences between the reference image and recon-
structed images. The MSE for inside the brain for the BSENSE MAP was approximately 0.016 
for each acceleration factor. For SENSE, the MSEs inside the brain were 0.030, 0.038, and 
0.170 for acceleration factors 2, 3, 4, respectively. The MSE for outside the brain for BSENSE 
was 0.034, 0.033, and 0.033 for each of the acceleration factors while the MSE for SENSE was 
0.061, 0.085, and 0.157. This means SENSE had an 88%, 140%, and 968% larger MSE inside 
the brain and an 81%, 160%, and 379% larger MSE outside the brain, respectively, for each ac-
celeration factor. These results reflect the decreased noise from BSENSE vs. SENSE. The entropy 

Figure 18. BSENSE MAP unaliased non-task magnitude images for each acceleration factor (first row) using the 
ICM algorithm, and SENSE unaliased non-task magnitude images for each acceleration factor (second row) with the 
magnitude reference image (left).
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for BSENSE (191.0, 190.2, and 190.2, respectively) was also lower than the entropy for SENSE 
(214.9, 226.6, 243.3) indicating less uncertainty for each reconstructed image.

For the detection of task activation, the hypothesis test outlined in Section 4.3 was carried out. 
Figure 19 shows the statistically significant voxels under BSENSE (top row) and SENSE (bottom 
row) reconstruction. The images for the statistically significant voxels in Figure 19 for both meth-
ods use the 5% FDR threshold. Voxels outside the brain are usually masked out meaning the stat-
istically significant voxels shown outside the brain in Figure 19 would typically not be there. 
Figure 19 also summarizes the t-statistics with BSENSE (red) and SENSE (blue). BSENSE correctly 
detected more voxels than SENSE as task activation in the ROI for all three acceleration factors. 
Our BSENSE approach also had a much higher mean t-statistic and lower standard deviation for 
all the acceleration factors. The false positive rate for BSENSE for each of the acceleration factors 
were 0.697%, 0.664%, and 0.642%, respectively, while SENSE had 0.283%, 0.163%, and 
0.109%, respectively. We also evaluated BSENSE and SENSE task detection performance on 
the other eight slices which is outlined in Section 2.2 of the online supplementary material.

5 Discussion
In linear regression, having an unknown design matrix and complex-valued parameters can make 
parameter estimation of the regression coefficients more difficult. Here, we implement a Bayesian 
complex-valued latent variable linear model and applied it, along with the non-Bayesian model, to 
image reconstruction in fMRI. The results of the simulated and experimental studies showed that 
the Bayesian complex-valued latent variable model (BSENSE) outperformed the complex-valued 
non-Bayesian model (SENSE).

The BSENSE unaliased images were shown to more accurately reconstruct the truth compared 
to SENSE. The number of calibration images had minimal effect on the SENSE reconstructed im-
ages and its performance against BSENSE reconstructed images. Increasing the number of calibra-
tion images, however, did reduce the noise level in the BSENSE reconstructed images, leading to 
increased SNR. The results also indicated that the different acceleration factors had less influence 
on BSENSE than SENSE. BSENSE was able to successfully reconstruct images with an acceleration 
factor of up to 12, which was greater than the nC = 8 coils used, without any aliasing artefacts or 
increasing the spatial variance but diminished activation. The SENSE reconstructed images 

Figure 19. Statistically significant voxels in the region of interest (ROI) using false discovery rate (FDR) for Bayesian 
SENSE reconstructed images (first row) for three different acceleration factors, significant voxels in the ROI using 
FDR for SENSitivity Encoding (second row) for three different acceleration factors, and analysis of the t-statistics to 
the right of the images.
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beyond acceleration factors of nA = 3 were essentially unusable. Our BSENSE approach also had 
better performance when detecting the signal increase in the voxels that experienced task activa-
tion, as shown with both simulated and experimental data. The number of coils did not have a 
notable effect on our BSENSE approach which indicates that it works for any coil configuration 
as demonstrated in Section 1.1 of the online supplementary material. There was a noticeable effect 
on the SENSE image reconstruction. With four coils, the noise for the SENSE reconstructed images 
was higher compared to the 8, 12, and 16 simulated coil arrays as shown in Section 1.1 of the 
online supplementary material. This suggests that SENSE requires a deeper coil sensitivity map 
coverage to properly reconstruct images.

This article used the full posterior distribution for reconstructing images, meaning available pri-
or information was quantified on all three parameters (v, S, and σ2) and utilized for parameter es-
timation. We have also analytically integrated out σ2 yielding a marginal posterior where v and S 
are the only two unknowns to be estimated. Integrating out σ2 produces a joint Student-t posterior 
for S and v from which we have obtained Gibbs sampling marginal estimates consistent with the 
three-parameter model.

For the task detection in this article, only the MAP estimate using the ICM algorithm was used 
to reconstruct the time series of non-task and task aliased images for capturing activation for both 
the simulated and experimental data. This is due to the Gibbs sampler being more computationally 
expensive when running a long series of images so it may not be as practical to use compared to 
evaluating the MAP estimate. This does not mean there is no value in running a Gibbs sampler, as 
it has the additional benefit of quantifying uncertainty. For instance, it could be utilized on a short-
er series of images, provide us more statistical information about any voxel, or for hypothesis test-
ing between two images. It is also possible to hybridize the ICM and Gibbs sampler with a couple 
of ICM steps followed by a short or no-burn Gibbs sampler. Our Bayesian approach allows for 
more options of how to run an fMRI experiment based on the objective of the scan compared 
to SENSE.

In this article, a magnitude-only activation model was utilized to detect task activation. In 
Section 1.3, phase-only activation for BSENSE is analysed with the results showing strong task de-
tection power. Since the reconstructed images are complex-valued, our model is expected to be ap-
plicable for complex activation models for task detection (Rowe, 2005; Rowe & Logan, 2004). 
Further, an extension of our model would be to incorporate both covariance between the obser-
vations and covariance between the regression coefficients.
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