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1. Introduction

In fMRI, a subject is placed in the MRI machine and data 

for slice-wise volume images of their brain are measured.
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1. Introduction

 Spatial frequencies are measured and images are IDFT reconstructed.
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1. Introduction

 Spatial frequencies are measured and images are IDFT reconstructed.
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1. Introduction

 The problem is that often images have low contrast and are very noisy.
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1. Introduction

 We can use first three discarded images to enhance images four on.
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1. Introduction

 FMRI images are not measured directly, but their k-space is.
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2. Methods - Likelihood

 The ADCs measure independent normally distributed real and imaginary

 parts of a given spatial frequency coefficient as 

 we can convert to polar coordinates as

 

                                                                              .
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2. Methods - Likelihood

 It can be shown that the marginal distribution of the magnitude is 

 Ricean 

 and the conditional distribution of the phase given the magnitude is

 von Mises

 

                                              .
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2. Methods - Priors

 From the form of the likelihood, we can utilize priors to be Ricean for 

 the magnitude as 

                                   ,

  von Mises for the phase conditional on the magnitude as

 and of course inverse gamma for the variance as
 

                                                . 

 Similar to BIFS model which assumes real images and needs MCMC.
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2. Methods - Posterior

 The joint posterior distribution is not easily marginalizable. 

 Fortunately, we can obtain posterior conditionals

                                                 where                  

 for the phase, and 

 for the magnitude, and

 for the variance.
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2. Methods

 Since we have the posterior conditionals, 

  θ|ρ,σ2 ~ VM(λ,κ),  ρ|θ,σ2 ~ MHN(A,B,C), and  σ2|ρ,θ ~ IG(α*,β*)

 we could implement a Gibbs sampler to generate a large sample  

 (                ),….,(                 ) 

 from the posterior distribution and calculate marginal posterior means.

 But this is very computationally expensive, and may involve

 acceptance-rejection sampling for the modified half normal.
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2. Methods

 Alternatively, we can obtain maximum a posteriori estimates of the

 parameters using the ICM algorithm that cycles through the modes

 of the posterior conditionals

 until convergence at MAP. 
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3. Experimental Results

 FMRI data from a block design right-hand finger tapping experiment. 

 nx=ny=128, nz=7, TH=2.5mm, FOV=240mm, TE=60.4ms, EESP=0.832ms, TR=1s 

 The experiment timing was an initial 16s of rest followed by 

 19 epochs of 16s of task alternating with 16s of rest resulting 

 in a total of nt=624 total image volumes. 

 Following standard practice the first n0=3 volume images are omitted

 resulting in n=621 image volumes for analysis.

 However, these first omitted images are perfect for hyperparameter 

 assessment.                      ,        ,                   ,             ,                  ,
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3. Experimental Results

 Prior k-space phase mean.
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3. Experimental Results

 Prior k-space magnitude mean.
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3. Experimental Results

 Prior k-space variance parameter.

18

Marquette University

Rowe Lab

5

2e5

0

( ) 2
0 01n = −

2 2
2
0

2

R Is s


+
=

0 1n = −

2( | , )f   



3. Experimental Results

 Posterior k-space phase.
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3. Experimental Results

 Posterior k-space magnitude.
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3. Experimental Results

 Posterior IDFT image phase.
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3. Experimental Results

 Posterior IDFT image magnitude.
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1. Introduction

 The problem is that often images have low contrast and are very noisy.
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4. Discussion

 Images are noisy.

 

 Use Bayesian Statistics to improve

 

 Posterior images have lower noise and higher signal. 
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 Thank You

Questions?

Daniel.Rowe@Marquette.edu
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