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Abstract  

In fMRI, as voxel sizes decrease, there is less material in them to produce a signal, leading to a decrease in the 

signal-to-noise ratio and contrast-to-noise ratio in each voxel. There have been many attempts to decrease the noise in 

an image in order to increase activation, but most lead to blurrier images. An alternative is to develop methods in 

spatial frequency space. Reducing noise in spatial frequency space has unique benefits. In this work, a Bayesian 

approach that quantifies available a priori information about spatial frequency coefficients, incorporates that 

information with observed spatial frequency coefficients, and estimates these spatial frequency coefficients a 

posteriori. Inverse Fourier transform reconstructed images from posterior estimated spatial frequency coefficients 

should have reduced noise and increased detection power. 

1. Introduction 

In magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI), increased spatial-

temporal resolution is desired to examine detailed structures or for localization of brain activation. Increased spatial-

temporal resolution is often at the cost of increased image noise. In fMRI, image processing methods such as 

smoothing not only decreases spatial resolution, but induces correlation between voxels (Nencka et al., 2009; Karaman 

et al., 2014; Rowe, 2016).  Recently, approaches operating in spatial frequency k-space have been gaining popularity 

(Kornak et al., 2010a; Kornak and Young, 2010; Kornak et al. 2010b).  

When Bayesian estimation is conducted in image space, pixels or voxels may be spatially correlated, and hence a 

spatial model is appropriate (Penny, 2005; Yu et al., 2023; Wang et al., 2024). However, it is well-known that the 

discrete Fourier transform of correlated pixels or voxels results in uncorrelated spatial frequency coefficients. In spatial 

frequency k-space, with each spatial frequency location being uncorrelated, they can be treated independently of each 

other. In MRI and fMRI, it is the spatial frequency coefficients that are measured independently with analog-to-digital 

converters (ADCs), so they are inherently statistically independent. One consequence of the fMRI spatial frequency 

coefficients being measured is that the array does not possess Hermitian symmetry, leading to complex-valued images 

(Rowe and Logan 2004; Rowe 2005). 

In fMRI, Bayesian estimation of spatial frequency coefficients has been performed in Cartesian coordinates with 

the use of a bivariate normal distribution with phase coupled means (Sakitis et al., 2024). An interesting alternative, 

the Bayesian image analysis in Fourier space (BIFS) performs Bayesian estimation of spatial frequency coefficients 

in polar coordinates (Kornak et al., 2024). The methods herein are similar, but utilize conjugate prior distributions, 

which leads to simpler estimation. 

2. Methods 

2.1 Likelihood 

Spatial frequency coefficient measurements in an array of k-space are complex-valued consisting of real and 

imaginary parts. It is well-known that the real kR and imaginary kI parts of a given spatial frequency coefficient contains 

additive independent and identically distributed normal noise, kR~N(ρcosθ,σ2) and kI~N(ρsinθ,σ2). The bivariate 

distribution of the real and imaginary parts can be expressed as in Equation 1 
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where the means are coupled by the phase. We can express the complex-valued spatial frequency coefficients in terms 

of polar coordinates of magnitude and phase. A transformation from Cartesian random variables (kR,kI) to polar random 

variables (r,ϕ), where kR=rcos(ϕ), kI=rsin(ϕ) and Jacobian is J=r is performed to arrive at a joint distribution 

2 2 2

2 2

1
( , | , , ) exp 2 cos( )

2 2

r
f r r r       

 

  = − + − −   
.                                                               (2) 

From this bivariate distribution of magnitude and phase in Equation 2, the Ricean marginal distribution for the 

magnitude with location ρ and scale σ in Equation 3 
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can be derived, where I0(∙) is the modified Bessel function of the first kind with order zero (Rice, 1944; Gudbjartsson 

and Patz, 1995). Further, the unnamed non-normal marginal distribution in Equation 4 
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for the phase can be found, where Φ(∙) is the cumulative distribution function of the standard normal distribution 

(Gudbjartsson and Patz, 1995; Rowe and Logan, 2004).  The mean and variance of the Rice distribution do not have 

simple forms and involve a Laguerre polynomial. When the true magnitude ρ is zero (i.e. no contribution from the 

spatial frequency) usually at large spatial frequencies, the Ricean distribution becomes the Rayleigh distribution with 

mean σ√(π/2) and variance σ2(4-π)/2. When true magnitude ρ is large (i.e. a large contribution from the spatial 

frequency) usually nearer to the zero frequency, it becomes the normal distribution with mean ρ and variance σ2. 

Generally ρ/σ>3, is considered sufficient for the normal limiting distribution. When the true phase θ is zero (no 

contribution from the spatial frequency), the unnamed non-normal distribution becomes the uniform distribution 

between -π and π and with mean 0 and variance π2/3. When true magnitude ρ is very large (a large contribution from 

the spatial frequency) the phase distribution in Equation 4 becomes the normal distribution with mean θ and variance 

(σ/ρ)2. 

We can express the bivariate magnitude and phase distribution as the product of the marginal distribution for the 

magnitude and the conditional distribution of the phase given the magnitude as 

2 2 2( , | , , ) ( | , ) ( | , , , )f r f r f r         = .                                                                                                   (5) 

It can be shown that the conditional distribution of the phase ϕ given the magnitude r is von Mises (von Mises, 1918; 

Wikipedia 2024a) with location θ and scale rρ/σ2,  
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Using the marginal distribution of the magnitude and conditional distribution of the phase given the magnitude, the 

joint distribution of the magnitude and phase is  
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In summary, the distributions for the data are r ~ R(ρ,σ) and ϕ|r ~ VM(θ,rρ/σ2). 

2.2 Priors 

Utilizing the same family of distributions for the prior distributions, the prior distribution for the magnitude ρ|σ2 is 

Ricean with location ρ0 and scale σ/√γ, 

2 2
2 0 0

0 02 2 2
( | , , ) exp

/ 2 / /
f I

  
   

     

   + 
= −     

    

.                                                                                       (8) 

The Ricean prior distribution becomes the Rayleigh distribution when ρ0=0 and the normal distribution when ρ0>>0, 

generally ρ0/σ >3 is considered sufficient. This Ricean prior distribution becomes vague with a very small γ. 

Additionally, using the same family, the prior distribution for the phase θ given the magnitude ρ and residual variance 

σ2 is is von Mises with location θ0 and scale ρρ0/(σ2/γ), 
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This von Mises prior distribution becomes the uniform distribution on (-π, π) when ρ0=0 and the normal distribution 

for large ρρ0/(σ2/γ). The von Mises prior distribution becomes vague with a very small γ. Further, we can assess a prior 

distribution for the variance σ2 with an inverse gamma distribution   
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The inverse gamma prior distribution becomes a vague prior with very small α and β. In summary, the prior 

distributions are ρ|σ2 ~ R(ρ0,σ/√γ),  θ|ρ,σ2 ~VM(θ0, ρρ0/(σ2/γ)), and σ2 ~ IG(α,β). 

2.3 Posterior 

Upon combining the priors in Equations 8-10 and the likelihood in Equation 7, the posterior distribution becomes  
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Some simplification leads to the joint posterior distribution 
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The posterior conditional distributions can be found by only considering terms that contain our parameter of interest. 

It can be shown that the posterior conditional distribution of ρ given θ and σ2 is a Modified Half Normal (Sun et al., 

2021; Wikipedia, 2024b) 
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where Ψ(A/2,C/√B) denotes the Fox-Wright Psi function (Fox, 1928; Wright, 1935), A=2, B=(γ+1)/(2σ2), and 

C=[ρ0γcos(θ–θ0)+rcos(ϕ–θ)]/σ2. Further, it can be shown that the posterior conditional distribution of θ given ρ and σ2 

is   
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Utilizing some trigonometric identities (Wikipedia, 2024c) as outlined in the Appendix, this becomes the von Mises 

distribution with location λ and scale κ, 
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where κ=cρ/σ2, a=ρ0γcos(θ0)+rcos(ϕ), b=ρ0γsin(θ0)+rsin(ϕ), c=sign(a)√(a2+b2), and λ=arctan(b/a). The posterior 

conditional distribution of σ2 given θ and ρ is an inverse gamma distribution (Wikipedia, 2024d) with parameters 

α*=α+2 and β*={(γ+1)ρ2–2ρ[ρ0γcos(θ–θ0)+rcos(ϕ–θ)]+(γρ0
2+r2+2β)}/2 
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In summary, the posterior conditional distributions are ρ|θ,σ2 ~ MHN(A,B,C),  θ|ρ,σ2 ~ VM(λ,κ), and σ2|ρ,θ ~ 

IG(α*,β*).  

2.4 Estimation 

At each k-space spatial frequency location, we individually estimate the magnitude and phase of the associated 

amplitude coefficient. Since we have the posterior conditional distributions, we can perform a Gibbs sampling to 

obtain the entire distribution (Geman and Geman, 1984; Gelfand and Smith, 1990) and compute the marginal posterior 

mean (MPM), however, when only one value is needed such as the mode, we can use the iterated conditional modes 

(ICM) algorithm (Lindley and Smith, 1972; O’Hagan, 1994) for maximum a posteriori (MAP).  

The modes of the posterior conditional distributions are 

2 8 ( 1)
ˆ

4

C C B A

B


+ + −
=                                                                                                                                        (18) 

where A=2, B=(γ+1)/(2σ2), C=[ρ0γcos(θ–θ0)+rcos(ϕ–θ)]/σ2,   
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where a=ρ0γcos(θ0)+rcos(ϕ), b=ρ0γsin(θ0)+rsin(ϕ), and 
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where α*=α+2 and β*={(γ+1)ρ2–2ρ[ρ0γcos(θ–θ0)+rcos(ϕ–θ)]+(γρ0
2+r2+2β)}/2. 

The ICM algorithm proceeds by starting with initial values for the parameters, then iteratively computing each 

giving the other similar to a Gibbs sampler, until convergence is reached. If there is a unique global maxima, the 

iterative parameter estimates will converge to it. 

3. Experimental Results  

Experimental data is from a block design right-hand finger tapping experiment on a 3.0-Tesla General Electric Signa 

LX MRI scanner. The imaging parameters were nz=7 slices of 2.5 mm thick and 128×128 array size with a field-of-

view  FOV=24.0 cm, echo time TE=60.4 ms, effective echo spacing EESP=0.832 ms, and time-of-repetition TR= 1 s. 

The experiment timing followed an initial 16 s of rest followed by 19 epochs of 16 s of task alternating with 16 s of 

rest resulting in a total of nt=624 total image volumes. Each slice image at each time point, was Nyquist ghost corrected 

(Nencka, et al., 2008). Images were phase drift corrected by calculating the angular phase temporal mean of each 

voxel’s time-series, then subtracting it from each voxel time-series. A local second order polynomial was spatially fit 

to the resultant difference of the phase time-series slice images. Then the fitted polynomial is subtracted from the 

original phase image producing a steady phase over time for each coil (Sakitis and Rowe, 2024).  

Figure 1 presents the real kR and imaginary kI parts of the spatial frequency k-space array for the t=1 time point of 

slice 2 in the third column, pre-multiplied by an IDFT matrix in the second column, post-multiplied by the transpose 

of an IFT matrix reconstructed matrix in the fourth column, reconstructed into a real and imaginary image in the first 

column.  

 
Figure 1: Slice 2 k-space array for first time point IFT reconstructed into a real-imaginary image. 

 

Figure 2 represents the magnitude r and phase ϕ parts of the spatial frequency k-space array for the t=1 time point 

of slice 2 in the third column, pre-multipled by an IDFT matrix in the second column, post-multiplied by the transpose 

of an IFT matrix reconstructed matrix in the fourth column, reconstructed into a magnitude and phase image in the 

first column. 



 
Figure 2: Slice 2 k-space array for first time point IFT reconstructed into a magnitude-phase image. 

 

The first three volume images have decreasing intensity with TR and not homogeneous with the remaining images. 

Figure 3 illustrates this image intensity equilibration phenomenon for times t=1-4 of slice 2. In Figure 3, the magnitude 

is in the top row and the phase is in the bottom row.  

 
Figure 3: First four reconstructed images in columns for slice 2 with magnitude in top row and phase in bottom row. 

 

With the first three volume images have decreasing intensity with TR, we can also see this phenomenon in the center 

of their k-space arrays. Figure 4 illustrates this center of k-space intensity equilibration phenomenon for times t=1-4 

of slice 2 in real and imaginary. In Figure 4, the real is in the top row and the imaginary is in the bottom row. 



 
Figure 4: First four k-space images in columns for slice 2 with real in top row and imaginary in bottom row. 

  

Figure 5 also illustrates this center of k-space intensity equilibration phenomenon for times t=1-4 of slice 2 in 

magnitude and phase. In Figure 5, the magnitude is in the top row and the phase is in the bottom row. Note that the 

intensity of the center of k-space decreases over time. 

 
Figure 5: First four k-space images for slice 2 with magnitude in top row and phase in bottom row. 

 

In fMRI, the standard practice, is to omit the first three volume images when computing activation due to machine 

magnetic field equilibration, which would result in n=621 images (images 4-624). The magnitude of all nz =7 slices 

for time t=4 is presented in Figure 6. The images for times 5-624 are all visually similar to those at time 4. 



 
Figure 6: Magnitude of reconstructed images for nz =7 slices at time t=4. 

 

However, the first three “prior” images, the first three columns in Figures 4-6 are ideal to use to assess 

hyperparameters of prior distributions to combine with each TR volume image. At each k-space location, the first three 

complex-valued (magnitude and phase) k-space arrays as shown in the first three columns of Figure 4 were averaged 

to produce mean real and imaginary volume images, Rk and Ik .  

 

At each k-space location, the magnitude of the averaged complex-valued prior k-space arrays was computed for the 

prior mean ρ0=
2 2
R Ik k+  and presented in Figure 7. 

 
Figure 7: Prior k-space hyperparameter ρ0 for nz =7 slices. 

 

At each k-space location, the four-quadrant arctangent of the averaged complex-valued prior k-space arrays was 

computed for the prior mean θ0= 4arctan ( / )I Rk k as presented in Figure 8 while the prior scaling coefficient γ=n0=3. 



 
Figure 8: Prior k-space hyperparameter θ0 for nz =7 slices. 

 

At each k-space location, the prior distribution quantity 
2 2 2
0 ( ) / 2R Is s = + is computed as the averaged variance 

of the real and imaginary prior k-space arrays as shown in Figure 9. The prior shape and scale parameters are assessed 

to be α=n0-1=2 and β=(n0-1)
2
0 =2

2
0 , is simply a scaled version of the prior variance in Figure 9 and not displayed. 

 
Figure 9: Prior k-space hyperparameter 

2
0  for nz =7 slices. 

 

Maximum a posterior (MAP) estimates were calculated using the ICM algorithm. An initial value for 
2̂ was 

selected and a new modal value for ̂  computed from Equation 19, then given the initial value for 
2̂ and the new 

modal value for ̂ , a new modal value for ̂ is computed from Equation 18, then given the new modal values for ̂  

and ̂ , new modal value for 
2̂ computed from Equation 20. This process proceeds as 

2
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2
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ˆ ˆ ˆ( , , )   ,….,

2
( ) ( ) ( )
ˆ ˆ ˆ( , , )L L L   until convergence where the parenthesed subscript indicates the iteration number. The last 



convergence value is our MAP estimator. In practice it only took L=3 iterations to achieve convergence, but the 

algorithm was run to L=10. 

The Bayesian k-space magnitude phase estimation was applied to all slices in the time 4 volume image in Figure 6. 

In Figure 10 the posterior estimated k-space magnitude is displayed. We can see that the posterior k-space magnitude 

image for slice 2 has increased intensity at the center of k-space as compared to the likelihood image in the first row 

and fourth column of Figure 5. 

 
Figure 10: Posterior MAP estimated k-space magnitude for nz =7 slices at time t=4. 

 

In Figure 11 the posterior estimated k-space phase is displayed. We can see that the posterior k-space phase image 

for slice 2 looks very similar near the center of k-space as compared to the likelihood k-space image in the second row 

and fourth column of Figure 5 with marginally increased structure near the center. 

 
Figure 11: Posterior MAP estimated k-space phase for nz =7 slices at time t=4. 

 

The posterior estimate of the k-space variance was also computed and displayed in Figure 12. The 

variance is much lower than the likelihood variance (not shown) and the prior variances in Figure 9. 



 
Figure 12: Posterior MAP estimated k-space variance for nz =7 slices at time t=4. 

 

The posterior estimated k-space magnitude arrays in Figure 10 were combined with the posterior estimated k-space 

phase arrays Figure 11 and IFT reconstructed into images. The posterior magnitude images are in Figure 13. We can 

compare the Bayesian posterior estimated images in Figure 14 to the likelihood image in Figure 6 and see that the 

posterior images are sharper, brighter, and less noisy. 

 
Figure 13: Posterior MAP estimated image magnitude for nz =7 slices at time t=4. 

 

The posterior phase images are in Figure 14. We can see that the posterior phase image for slice 2 in the first row 

and second column looks similar to the likelihood image in the second row and fourth column of Figure 3 but with 

less noise, albeit with enhanced ghosting signal artifact.  

 

 



 
Figure 14: Posterior MAP estimated image phase for nz =7 slices at time t=4. 

 

4. Conclusions 

A Bayesian approach was presented to utilize the first three discarded images to yield an improved k-space array 

estimate that is IFT reconstructed into an image. The Bayesian procedure used conjugate prior distributions in polar 

coordinates. The MAP estimation from the posterior distribution is straightforward with minimal computation 

necessary. Posterior images are brighter, have greater contrast, and lower noise. Future work involved applying the 

Bayesian k-space estimation to an entire volume image series and calculating activation. It is anticipated that in 

addition to increased intensity, contrast, and reduced noise, that there will be increased activation. 

Appendix 

The bracketed term in the exponent of Equation 15 can be simplified using well-known trigonometric identities 

(Wikipedia, 2024c). First the angle difference identities applied 
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