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Abstract  

In fMRI, it is important to observe the functioning brain as fast as possible and at as high of a 

spatial resolution as possible. Increased spatial and temporal speed results in voxels with increased 

noise relative to signal and contrast. There is much evidence to suggest that there is important 

biological information contained within the phase component of the fMRI signal. When the signal-

to-noise ratio within a voxel is low, as when there is ultra-high resolution, the marginal statistical 

distribution of the phase is non-standard and difficult to work with. This non-standard marginal 

phase distribution at high signal-to-noise ratios is normally distributed, but at low signal-to-noise 

ratios needs to be utilized for accurate modeling. 

1. Introduction 

Magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) are 

continuously increasing spatio-temporal resolution in order to observe the brain greater detail and 

more rapidly. Increased spatio-temporal resolution in fMRI comes at the cost of a significantly 

decreased signal-to-noise ratio (SNR) for voxel measurements (Henkelman, 1986; Gudbjartsson and 

Patz, 1995), making statistical analysis more difficult. The normal distribution generally used for 

estimation and inferences in fMRI is only valid when the SNR is large.  

Historically in fMRI, a general linear model with normally distributed errors was used for the 

marginal distribution of the magnitude component of the time series (Bandettini et al., 1993). 

However, the normal assumption is not valid at low SNRs. Recently, efforts have been made to use 

the proper Ricean marginal distribution for the magnitude component in fMRI (Rowe, 2005; Adrian, 

Maitra, and Rowe, 2013).  

It should be noted that there is also a line of research utilizing the full complex-valued time series 

(Lai and Glover, 1997, Nan and Nowak, 1999; Rowe and Logan, 2004). In this line of research, task 

related magnitude, phase, or magnitude and phase activation is computed within the full complex-

valued time series. Ever increasing relaxation of the assumed model parameters was made (Adrian, 

Maitra, and Rowe, 2018; Adrian, Maitra, and Rowe, 2025) as well as Bayesian inference (Yu et al., 

2018; Wang et al., 2024).  

There has been some effort to estimate and perform inferences on the phase component of the 

time series. Historically researchers centered each voxel time series, unwrapped it, and simply fit a 

linear regression model with normally distributed errors. Rowe et al. (Rowe, Meller, and Hoffmann, 

2007) approximated Lathi’s non-normal marginal distribution (Lathi, 1983) with the von Mises 

angular distribution (Von Mises, 1918) and an arctangent link function (Johnson and Wehrly 1978) 

when computing phase-only voxel activation. In this work, phase-only activation will be computed 

directly from Lathi’s mathematically correct non-normal distribution. 

2. Methods 

2.1 Distributions 



It has been well established that that MRI voxel values are complex-valued consisting of real and 

imaginary parts. The real yR and imaginary yI parts of a given voxel value at a specified time contains 

additive independent and identically distributed normal noise, yR~N(ρcosθ,σ2) and yI~N(ρsinθ,σ2). 

The bivariate distribution of the real and imaginary parts can be expressed as in Equation 1 
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where the means are coupled by the phase. We can express the complex-valued voxel value in terms 

of polar coordinates of magnitude and phase. A transformation from Cartesian random variables 

(yR,yI) to polar random variables (r,ϕ), where yR=rcos(ϕ), yI=rsin(ϕ) and Jacobian is J=r is performed 

to arrive at a joint distribution 
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From this bivariate distribution of magnitude and phase in Equation 2, the Ricean marginal 

distribution for the magnitude with location ρ and scale σ in Equation 3 
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can be derived, where I0(∙) is the modified Bessel function of the first kind with order zero (Rice, 

1944; Gudbjartsson and Patz, 1995; Rowe and Logan, 2004). Further, the unnamed non-normal 

marginal distribution in Equation 4  
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for the phase can be found, where Φ(∙) is the cumulative distribution function of the standard normal 

distribution (Lathi, 1983; Gudbjartsson and Patz, 1995; Rowe and Logan, 2004). Another 

formulation of the marginal distribution of the phase is  
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The mean and variance of the Rice distribution do not have simple forms and involve a Laguerre 

polynomial. When the true magnitude ρ is zero, the Ricean distribution becomes the Rayleigh 

distribution with mean E(r)=σ√(π/2) and variance E[(r- E(r)])2=σ2(4-π)/2. When true magnitude ρ 

is large, it becomes the normal distribution with mean E(r)=ρ and variance σ2. Generally, 

SNR=ρ/σ>5, is considered sufficient for the normal limiting distribution. When the true phase θ is 

zero, Lathi’s non-normal marginal distribution becomes the uniform distribution between -π and π 

and with mean E(ϕ)=0 and variance E[(ϕ - E(ϕ)])2=π2/3. When true magnitude ρ is very large, Lathi’s 

marginal non-normal distribution of the phase in Equation 4 becomes the normal distribution with 

mean E(ϕ)=θ and variance E[(ϕ - E(ϕ)])2=(σ/ρ)2. 

To illustrate these polar marginal distributions, n=106 random (yR,yI) observation pairs were 

generated from the bivariate distribution in Equation 1 then transformed to polar random variables 

(r,ϕ) pairs. The true parameter values for the observation pairs are ρ=2, θ=π/6, and σ2=3. The 

histograms of random observations are presented in Figure 1, magnitude r left and phase ϕ right 

along with superimposed theoretical distributions. In Figure 1, red vertical lines are true parameter 

values (and MLEs), the green vertical line is the expectation (E(r) and sample means), and the blue 



vertical line is the true median (fiftieth percentile and sample median). Since the phase distribution 

is circularly symmetric about the center, the true parameter value, median, and mean are the same. 

  
Figure 1: Histograms of random observations are presented in Figure 1, magnitude r left and 

phase ϕ right along with superimposed theoretical distributions in magenta.  

 

2.2 Estimation 

In fMRI, at each voxel location a time series of measurements is taken and an association measure 

between it and the expected response from the designed experiment is computed. This measure is 

generally from a linear regression model and applied to the magnitude-only component time-series 

of the data (Bandettini et al., 1993; Friston et al., 1994). Over the years, the linear model has been 

expanded to include spatio-temporal correlation such as that induced from processing (Nencka, 

Hahn, Rowe 2009; Karaman et al. 2014). 

Without task, the parameters in Equation 3 can be estimated via maximum likelihood estimation. 

The likelihood function is  
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which upon insertion of the Rice distribution becomes 
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Without task, the parameters in Equation 4 can be estimated via maximum likelihood estimation. 

The likelihood function is  
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where θ=θ0 (i.e. θ1=0) in Equation 4 is the baseline non-task signal.  

With task, the parameters in Equation 4 can be estimated via maximum likelihood estimation. The 

likelihood function is 
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where θt=γ0+γ1xt in Equation 4, where γ0 is the baseline non-task signal, γ1 is the additive task signal, 

and xt is the expected response at time t. Here it is assumed that the magnitude is constant or the 

CNR is small. 

Utilizing the distribution in Equation 5 for each of the n observations at time t, the likelihood is 
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When the null hypothesis is true with θt=γ0, the parameters are γ0 and σ2, while when the alternative 

hypothesis is true θt=γ0+γ1xt the parameters are γ0, γ1, and σ2. The likelihood for the null and 

alternative hypotheses can be maximized and the parameters estimated via maximum likelihood. 

The likelihoods can be maximized with a multitude of optimization methods and the parameters 

estimated. Here the likelihoods are estimated with a grid search so the likelihood surface can be 

examined. Since it is well known that the task-related magnitude signal change is extremely small 

compared to the baseline, an aggregated magnitude MLE ̂ is estimated using MATLAB’s “mle” 

function and used when computing the phase MLEs from Equation 11. 
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A likelihood ratio statistic λ can be computed and the Λ=-2ln(λ)~χ2(1) test statistic formed (Wilks, 

1938). Since there is a single degree of freedom, a z-statistic 

 1̂( ) 2 ( )z sign ln = −                                                                                                                             (12) 

can be utilized (Severini, 2001). 

3. Simulation Results  

To examine the non-normal marginal phase distribution in a controlled fMRI setting, a single 

extremely long time series was simulated. The simulated experiment timing was 4096 cycles of 8 s 

of task and 8 s of non-task resulting in a total of nt=65536 time points. For the time series, the 

magnitude and phase varied as ρt=β0+β1xt and where θt=γ0+γ1xt were σ2=3, β0=2, SNR=β0/σ, 

CNR=1/2, β1=CNR·σ, θ0=π/6, and θ1=π/36. Additionally, during task xt=1 and xt=0 during non-task. 

Histograms of the nt observations are presented in Figure 2 along with superimposed mixture 

distributions from Equation 3 and Equation 4 with half of the observations during task (ρt=β0+β1 

and θt =γ0+γ1) and half during non-task (ρt=β0 and θt =γ0). The histograms in Figure 2 match the 

theoretical probability distributions in magenta with a larger sample size. 

Maximum likelihood estimates for the magnitude parameters from Equation 7 are ˆ 2.3971 =

and 
2ˆ 3.1379 = . Maximum likelihood estimates of the parameters were computed from Equation 

11 using a grid search to be 0
ˆ 0.5050 = , 1

ˆ 0.1134 = , 
2ˆ 3.0176 = when the alternative 

hypothesis is true and be 0 0.5678 = , 1 0 = , 
2 3.0176 =  when the null hypothesis is true. 

Images of the (θ0,θ1) likelihood surfaces appeared unimodal for each value of σ2. These parameter 

values resulted in likelihood ratio statistics Λ=-2ln(λ)=82.5570 and z-9.0861.  



  
Figure 2: Histograms of random observations are presented in Figure 1, magnitude r left and 

phase ϕ right along with superimposed theoretical distributions in magenta.  

To investigate the statistical properties of the parameter estimates and test statistics, the previous 

simulation was repeated L=1000 times with 16 cycles of 8 task observations and 8 of non-task 

observations resulting in a total of nt=256 time points, which is a typical fMRI time series length. 

In Figure 3 are voxel-wise estimates of parameters for each voxel that do not use Equation 5. In 

Figure 3, we can see that generally all histograms are unimodal and mound shaped. In Figure 3a are 

the constant maximum likelihood magnitude estimates from Equation 7, In Figure 3b are the 

maximum likelihood variance estimates for Equation 7. In Figure 3c are ˆ ˆ/Rice RiceSNR  =  

estimates from values in Figure 3a divided by their matched values in Figure 3b. In Figure 3d are 

the sample angular mean estimated phase values computed by taking each complex value in a time 

series, dividing it by its magnitude, summing, and computing the resultant’s angle. In Figure 3d we 

can see that the phase value of π/6+π/72=0.5672, baseline phase plus half of the task phase 

coefficient is in the middle of the histogram. In Figure 3e and Figure 3f are crude estimates of the 

base phase and task coefficients from an ordinary least squares simple linear regression model. Note 

that the simple linear regression estimated baseline and task coefficients in Figures 3e and Figure 3f 

appear reasonable because the simulated baseline phase was far away from the [-π,π] boundary. 

 
a) ˆ

Rice , Rice PDF MLE 
 

b) 2ˆ
Rice , Rice PDF MLE 

 
c) ˆ ˆ/Rice RiceSNR  =  

 

d)  , Angular Mean 

 
e) 0 , Ordinary Least Squares 

 
f) 1 , Ordinary Least Squares 

Figure 3: Histograms of simulated data parameter estimates not from phase distribution. 



In Figure 5 are voxel-wise estimates of parameters for each voxel that do use Equation 5. In Figure 

4a are null hypothesis estimates of the baseline phase coefficient γ0 from Equation 11. In Figure 4b 

are null hypothesis estimates of the variance σ2 from Equation 11. In Figure 4d are alternative 

hypothesis estimates of the baseline phase coefficient γ0 from Equation 11. In Figure 4e are 

alternative hypothesis estimates of the variance σ2 from Equation 11. In Figure 4c are alternative 

hypothesis estimates of the task phase coefficient γ1 from Equation 11. In Figure 4f are signed 

likelihood ratio test z statistics from Equation 12 for task activation. 

 
a) 0 , H0 Coefficient 

 

b) 
2 , H0 Variance 

 
c) 1̂ , H1 Coefficient 

 
d) 0̂ , H1 Coefficient 

 

e) 
2̂ , H1 Variance 

 
f) z, Test Statistic 

Figure 4: Histograms of simulated data MLE parameter estimates from phase distribution. 

From these results, we can see that maximum likelihood parameter estimation from the non-

normal phase distribution are accurate at low SNRs. Further, activation statistics are accurate and 

are recommended for use at all SNRs. 

4. Experimental Results  

Experimental data is from a block design right-hand finger tapping experiment on a 3.0-Tesla 

General Electric Signa LX MRI scanner. The imaging parameters were nz=7 slices of 2.5 mm thick 

and 128×128 array size with a field-of-view FOV=24.0 cm, echo time TE=60.4 ms, effective echo 

spacing EESP=0.832 ms, and time-of-repetition TR= 1 s. The experiment timing followed an initial 

16 s of rest followed by 19 epochs of 16 s of task alternating with 16 s of rest resulting in a total of 

nt=624 total image volumes. Each slice image at each time point, was Nyquist ghost corrected 

(Nencka, et al., 2008). Images were phase drift corrected by subtracting each voxel’s angular phase 

temporal mean. A local second order polynomial was spatially fit to the resultant difference of each 

phase image in the time-series. The spatially fitted phase is angularly subtracted from the original 

time series (Sakitis and Rowe, 2025). A simple linear regression model was fit to each voxel’s 

unwrapped phase time series and angularly subtracted off. Then the angular mean was added to each 

voxel’s time series, resulting in a linearly stable phase over time. 

In Figure 5 are voxel-wise estimates of parameters that do not use Equation 5. In Figure 5a are 

the constant maximum likelihood magnitude estimates from Equation 7, In Figure 5b are the 

maximum likelihood variance estimates for Equation 7. In Figure 5c are ˆ ˆ/Rice RiceSNR  =  

estimates from values in Figure 5a divided by their matched values in Figure 5b. In Figure 5d are 

the sample angular mean estimated phase values computed by taking each complex value in a time 

series, dividing it by its magnitude, summing, and computing the resultant’s angle. In Figure 5e and 

Figure 5f are crude estimates of the base phase and task coefficients from a simple linear regression 

model. Note that the simple linear regression estimated baseline phase appears reasonable within 



with some similarity within the brain to the sample angular mean estimates in Figure 5d but 

extremely unreasonable outside the brain. Also note that the ordinary least squares simple linear 

regression estimated task coefficients in Figure 5f appear unreasonable outside the brain and 

extremely unreasonable inside the brain near the [-π,π] boundary where there are phase transitions 

as in all fMRI phase data. 

 
a) ˆ

Rice , Rice PDF MLE, [0,1.5] 
 

b) 2ˆ
Rice , Rice PDF MLE, [0,0.5] 

 
c) ˆ ˆ/Rice RiceSNR  = , [0,7] 

 

d)  , Angular Mean, [-π,π] 

 
e) 0 , OLS, [-π,π] 

 
f) 1 , OLS, [-π/36,π/36] 

Figure 5: Images of experimental data parameter estimates not from phase distribution. 

In Figure 6 are voxel-wise estimates of parameters that do use Equation 5. In Figure 6a are voxel-

wise null hypothesis estimates of the baseline phase coefficient γ0 from Equation 11. In Figure 6b 

are null hypothesis estimates of the variance σ2 from Equation 11. In Figure 6d are alternative 

hypothesis estimates of the baseline phase coefficient γ0 from Equation 11. Note the similarity of 

the alternative hypothesis estimates of the baseline phase in Figure 6d to the null hypothesis 

estimates in Figure 6a and the sample angular mean estimates in Figure 5d but not the simple linear 

regression estimates in Figure 5e. In Figure 6e are alternative hypothesis estimates of the variance 

σ2 from Equation 11. Note the similarity between the alternative hypothesis variance estimates in 

Figure 6e to the null hypothesis estimates in Figure 6b and the Rice distribution maximum likelihood 

estimates in Figure 5b. In Figure 6c are alternative hypothesis estimates of the task phase coefficient 

γ1 from Equation 11. Note the differences between the task-related phase coefficients in Figure 6c 

that uses the mathematically correct phase distribution to those in Figure 5f that use a simple linear 

regression model. In Figure 6f are signed likelihood ratio test z statistics from Equation 12 for task 

activation. Note the exciting task-related phase activations in Figure 6e in the left motor cortex for 

the unilateral finger tapping within the almost always discarded phase time series.  



 
a) 0 , H0 Coefficient, [-π,π] 

 

b) 
2 , H0 Variance,  [0,0.5] 

 
c) 1̂ , H1 coefficient,[-π/36,π/36] 

 
d) 0̂ , H1 Coefficient, [-π,π] 

 

e) 
2̂ , H1 Variance, [0,0.5] 

 
f) z, Test Statistic, [-7,7] 

Figure 6: Images of simulated data MLE parameter estimates from phase distribution. 

 

5. Conclusions 

In fMRI, phase images and time series are rarely retained or analyzed. In rare instances where 

phase time series have been examined, it has been assumed that the marginal distribution of the 

phase was either normally distributed as in the high SNR scenario or approximated with the von 

Mises angular distribution and an arctangent link function. Here, the mathematically correct non-

normal phase distribution was utilized which is valid at all SNRs. It was shown both in simulations 

and experimental fMRI data that the non-normal phase distribution works extremely well at all SNRs 

and has detected exciting task-related phase changes within experimental fMRI data in the left motor 

cortex from unilateral right-handed finger tapping. With this exciting breakthrough, phase 

activations from task related local magnetic field changes due to vascularity and direct neural current 

firing can be investigated.   
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