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Abstract
Electroanatomical mapping is a technique used in cardiology to create a detailed 3D
map of the electrical activity in the heart. It is useful for diagnosis, treatment planning
and real time guidance in cardiac ablation procedures to treat arrhythmias like atrial
fibrillation. A probabilistic machine learning model trained on a library of CT/MRI
scans of the heart can be used during electroanatomical mapping to generate a patient-
specific 3D model of the chamber being mapped. The use of probabilistic machine
learning models under a Bayesian framework provides a way to quantify uncertainty
in results and provide a natural framework of interpretability of the model. Here we
introduce a Bayesian approach to surface reconstruction of cardiac chamber models
from a sparse 3D point cloud data acquired during electroanatomical mapping. We
show how probabilistic graphical models trained on segmented CT/MRI data can be
used to generate cardiac chambermodels from fewacquired locations thereby reducing
procedure time and x-ray exposure. We show how they provide insight into what the
neural network learns from the segmented CT/MRI images used to train the network,
which provides explainability to the resulting cardiac chamber models generated by
the model.
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1 Introduction

Electroanatomic mapping (EAM) is part of Electrophysiology studies (EPS) which
are minimally invasive procedures that are useful for diagnosis, treatment planning
and real time guidance in cardiac ablation procedures to treat arrhythmias like atrial
fibrillationwhich affectsmillions of people in theUnitedStates. It is estimated that over
12 million people in the United States will be affected by atrial fibrillation by 2030
[2]. It is characterized by rapid and irregular beating of the atria (upper chambers
of the heart) which can lead to blood clots, stroke, heart failure and other heart-
related complications. Cardiac ablation is a procedure used to treat atrial fibrillation by
eliminating the heart tissue that causes the abnormal heart rhythm. EAM is performed
by an electrophysiologist prior to ablation to create a 3D map of the heart’s electrical
activity to identify the location of the abnormal heart tissue. The electrophysiologist
uses this map to guide the catheter to the location of the abnormal heart tissue and
eliminate it using radiofrequency (RF) energy or cryogenic energy.

During an RF ablation procedure, the electrode at the tip of the catheter is placed in
contact with the tissue causing the arrhythmia, and high-frequency electrical energy
is delivered to create a localized lesion or scar. The goal of RF ablation is to disrupt
the abnormal electrical pathways in the heart causing the arrhythmia and create a
new pathway that follows the normal electrical conduction system of the heart, thus
restoring normal heart rhythm and reducing or eliminating the need for medication to
control the arrhythmia.

Minimizing the x-ray exposure from the fluoroscope to the patient is one of the
electrophysiologist’s goals while performing electroanatomical mapping. Using a
probabilisticmachine learningmodel in an electroanatomicalmapping systemcan pro-
vide a good approximation of the mapped chamber with a few acquired locations from
the mapping catheter in the chamber of interest. This considerably reduces the time
taken to map the chamber, thus minimizing the x-ray exposure from the fluoroscope.

2 Electroanatomical Mapping Systems

An EAM system is a state-of-the-art medical device that is used for navigation during
cardiac ablation procedures and to create a detailed and accurate map of the electrical
activity in a patient’s heart. The system typically consists of a computer, high-definition
monitors that are strategically positioned in front of the electrophysiologist during the
procedure, a specialized catheterwith electrodes in its distal end that captures electrical
information, and specialized software that is used to analyze signals and create a 3D
electroanatomical map of the chamber of interest.

EAM systems vary based on the technology that is used to capture the location
of the catheter. The commonly used technologies are magnetic location tracking [5],
impedance based location tracking and image processing [17]. EAM systems that are
based on magnetic location tracking places a device under the patient table to generate
a magnetic flux which is used to locate the catheter. EAM systems that use impedance
based tracking utilizes body surface patches to measure the impedance and locate the
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Fig. 1 Generation of 3D cardiac chamber models

catheter. EAMs that use image processing techniques tracks the catheter in fluoroscope
images to converts them to 3D location.

The high accuracy and precision of EAM systems have revolutionized the diagno-
sis and treatment of various cardiac arrhythmias. However the maps produced using
modern electranatomical systems do not produce anatomically accurate chambermod-
els when only few points are acquired. The shape produced is representative of the
points acquired and does not use any prior information pertaining to the shape of
the chamber being mapped and may not produce an accurate anatomical model [12].
They only start resembling the chamber of interest when a large number of points are
acquired covering all areas of the chamber. This is a major drawback of the current
electroanatomical mapping systems. We propose a surface reconstruction method that
uses probabilistic machine learning models to generate a detailed anatomical model
of the chamber of interest from a few points acquired by the mapping catheter. This
will help in reducing the time taken to map the chamber and thus reduce the x-ray
exposure from the fluoroscope.

3 Method

There are four main steps involved in our approach to generate a 3D cardiac chamber
model from 3D location and electrical information acquired by an electroanatomical
mapping system. The block diagram shown in Fig. 1 visualizes the information flow
in the system. The data collected by the 3D mapping system is passed on to the Data
processing step, then to the trained Probabilistic Machine Learning Model, and the
output of the machine learning model is fed into the surface reconstruction module in
the last step to generate a patient specific cardiac model. Each block is explained in
detail in following sections.

3.1 Data Processing

The points acquired during electroanatomical mapping are in the coordinate space
of the mapping system. The 3D location information acquired during mapping is in
a raw unstructured format. The data is preprocessed to transform it into voxel data
[1] that can be fed into the machine learning model. Voxels are the 3D equivalent of
pixels in 2D images. They are the smallest unit of a 3D image. The 3D location data
is transformed into voxel space using the following equation

x = p − pmin

pmax − pmin
∗ n
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where p is the 3D location of the point, pmin and pmax are theminimum andmaximum
3D location values defined by the field-of-view (FOV), n is the number of voxels in
each dimension and x is the voxel location. The number of voxels in each dimension
is chosen based on the number of voxels in each dimension of the training data used
to train the machine learning model. Mapping systems tend to match the FOV of the
fluoroscope to project 3D models onto the 2D fluoroscope image.

The next step is compute the convex hull of all acquired points. A Delaunay 3D
triangulation algorithm with an alpha value which produces a closed surface can be
used to get an alpha shape [3]. The alpha value is the radius of a ball that determines
whether a simplex (vertex, edge, face or tetrahedron) in the Delaunay triangulation is
part of the alpha shape or not. An alpha value of zero results in a convex hull. The
resulting simplices of the Delaunay triangulation can be used to estimate which voxels
are inside versus outside the alpha shape. The voxels inside are set to 1 and the voxels
outside are set to zero. Different values of alpha can be chosen to obtain a concave
hull that might produce different results, but they were not explored as they may cause
the surface to have holes with higher values of alpha. The resulting voxels are then
passed onto the machine learning model to generate inference.

3.2 Probabilistic Machine LearningModel

Probabilistic Machine Learning models are models that use probability theory and
statistics to represent uncertainty and variability in data and the learning processes.
They can be used for tasks such as classification, regression, clustering, anomaly detec-
tion, generative modeling and reinforcement learning. Unlike regular neural networks
they are more interpretable. Here they are used in the context of generative modeling.

Unlike a discriminativemodelwhich attempts to learn a boundary between different
kinds of data points, generative models aim to learn the underlying structure and
distribution of the data, and then generate new data that resembles the original data.
They can capture complex and high-dimensional patterns in the data that are difficult to
model explicitly. The goal here is to learn a representation of the chamber of interest
(left atrium of the heart). We will be using latent variable models for this purpose.
At the core of generative modeling is Bayesian inference, which uses Baye’s rule to
obtain the posterior distribution of the parameters of the data model,

P(θ |D) = P(D|θ).P(θ)

P(D)

where P(D|θ) is the data likelihood with parameters θ of the model, P(θ) is the
prior probability, and P(D) is the evidence which can be computed as sum over all
possible values of θ . This distribution is then utilized to generate inference that can
provide insight into the learning process and the model. When there is a large number
of parameters in the model which is the case in neural networks, the denominator term
in becomes intractable.

This marginal likelihood is calculated using the sum and product rule of probability.
This denominator term known as evidence is a normalizing constant which can be
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omitted to get the relationship,

P(θ | D) ∝ P(D|θ)P(θ).

These formulas above form the core of Bayesian inference. The posterior distribu-
tion is proportional to the product of the prior and the likelihood. The prior distribution
is the distribution of the parameters before seeing the data. The likelihood is the prob-
ability of the data given the parameters. The posterior distribution is the distribution
of the parameters after seeing the data.

In a generative model where latent variables z are a subset of parameters θ . The
following equation represents the generative model, where x̃ is the generated data, f
is a function that maps a latent variable z to the generated data.

x̃ = f(z)

The prior distribution of the latent variable z is represented by the equation below.

z ∼ p(z)

The prior distribution is used to sample from the latent space to generate new data.
A new data point x can be used to update the prior distribution of the latent variable z
using Bayes’ rule. The posterior distribution is given by,

p(z | x) = p(x | z)p(z)
p(x)

where p(x | z) is the likelihood. This posterior distribution is intractable due the high
dimensional integral posed by the large number of parameters in the neural network. To
address this problem we employ approximate Bayesian inference techniques. The two
main techniques of approximate Bayesian inference are Markov chain Monte Carlo
(MCMC)methods and Variational Bayes, also known as Variational Inference (VI). In
the following sections we describe how segmented CT/MRI images can be modeled
using approximate Bayesian inference techniques and how the results compare in the
context of generating patient specific cardiacmodels. First we present the data and then
the two different approximate Bayesian inference techniques that can be employed to
generate patient specific cardiac models.

3.2.1 Training Data

In probabilistic machine learning, training data is essential for building and fine-tuning
models. The quality and quantity of training data directly impact the performance of
the model, including its accuracy, precision, and generalizability. These models use
training data to learn patterns and relationships between the input features and the
output variable.

Training data that is biased, incomplete, or inaccurate can negatively impact the
model’s performance. Therefore, it’s essential to carefully select and preprocess the
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Fig. 2 Segmented Left Atrial data

Fig. 3 Structure of a Restricted Boltzmann machine

training data to ensure its quality and relevance to the problem at hand. Left atrial
anatomy can be highly variable. Its important that every data point in the dataset has
the same amount of pulmonary vein segmented along with the left atrial cavity. The
datasets also needs to be normalized as some scans may have a different field of view
or voxel size. Voxels belonging to both the left atrial cavity and the myocardium need
to be segmented together as one class.

The training data used to train the PML model consists of binary voxels with zeros
for the background and ones for the left atrium and pulmonary veins. The individual
slices stack up to become a nx × ny × nz voxel grid to form one 3D data point.

3.3 Restricted BoltzmannMachineModel for Segmented Left Atrial Data

Restricted BoltzmannMachines (RBM) [4, 6, 16] are energy based stochastic artificial
neural networks that can learn a probability distribution over its inputs. The structure
of an RBM for segmented left atrial data is shown below in Fig. 3.

It consist of binary visible (x) and hidden (z) neurons connected by am×n weight
matrix Wm×n . There are no interconnections between the visible nodes or the hidden
nodes and they form a bipartite graph. There is a vector of bias am associated with
the visible nodes and another vector of bias bm associated with the hidden nodes. The
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energy of a pair of x , z is given by the following,

E(x, z) = −
m∑

i=1

ai xi −
n∑

j=1

b j z j −
m∑

i=1

n∑

j=1

wi j xi z j

E(x, z) = −aT x − bT z − xT Wz.

Here the visible nodes represent the voxels of a segmented CT/MRI data and the
hidden nodes represent features learned from the dataset. There can be three kinds of
parameters introduced into this network. The parameter wi j for strength between a
visible and hidden node, bi for every visible node, a j for every hidden node. The joint
probability distribution of this Markov Random Field (MRF) specifies the probability
the network assigns to a pair of visible and hidden vector and can be written as,

P(x, z) = 1

H
e−E(x, z)

where the partition function H sums over all such pairs of x , z,

H =
∑

X

∑

Z

e−E(x, z)

and is the normalizing constant to make the probability distribution sum to 1. The
probability for an image data or visible vector can be obtained by summing over all
the possible hidden vector configurations

P(x) = 1

H

∑

Z

e−E(x, z).

When there are more than a few hidden units, it becomes difficult to compute the
partition function as it will have exponentially many terms. So Markov chain Monte
Carlo methods such as Gibbs sampling is used to obtain samples from the model
starting from a global configuration. The conditional distributions for the hidden and
visible units are used to construct a Markov chain and run until it reaches its stationary
distribution. The probability of a global configuration at thermal equilibrium is an
exponential function of its energy. Since there are no connection between nodes in a
group they are independent. The conditional probability for visible nodes given hidden
nodes are

P(x |z) =
m∏

i

P(xi |z).

This probability values allow us to know how much of the current configuration of
hidden nodes are represented by the image and conversely the conditional probability
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for hidden nodes given the visible nodes are

P(z|x) =
n∏

j

P(z j |x).

From the above probabilities we can also estimate the probability of one of the visible
or hidden node being activated. Since there is no connection between visible nodes,

P(z j = 1|x) = σ

(
m∑

i=1

wi j xi + b j

)

P(z|x) =
n∏

j=1

σ(x .W: j + b j ) = σ(x .W + b)

where σ denotes the logistic sigmoid. Similarly,

P(xi = 1|z) = σ

⎛

⎝
n∑

j=1

wi j z j + ai

⎞

⎠

P(x |z) =
m∏

i=1

σ(z.WT
i : + ai ) = σ(z.WT + a).

3.3.1 Training the RBMModel

The goal of training a RBM to be a generative model is to maximize the likelihood
of the training dataset of images. This may prove to be difficult but Hinton et al. [6]
showed that there is a less obvious objective function than log likelihood of the data to
optimize called the Contrastive Divergence which is the difference between two KL
divergences. It consists of performing block Gibbs sampling and batch updates to the
weights and biases of the network similar to stochastic gradient descent in a regular
neural network that uses back propagation for training. The weights and biases of the
network are adjusted to lower the energy of the training image and raise the energy
of other images which are low in energy, thereby making a large contribution to the
partition function.

The gradient of the log-likelihood with respect to the weights is given by

∂

∂wi j
log P(x) = 〈zi x j 〉data − 〈zi x j 〉recon

where 〈.〉data and 〈.〉recon denote the expectation over the data and the model distribu-
tions, respectively. The second term in this equation is difficult to compute.

In contrastive divergence learning instead of starting with a randomly initialized
visible vector and running the Gibbs chain for a large number of steps, a data point
from the training set is used as the initial value for the visible vector and k steps of
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Fig. 4 Single training step of the model

Algorithm 1 k-Contrastive Divergence algorithm
Require: x: visible units, W: weights, b: visible bias, c: hidden bias, k: number of Gibbs sampling steps,

α: learning rate
1: while not converged do
2: for i = 1 to nbatches do � For each batch (x) of images
3: z ← σ(WT · x(i) + a) � Positive phase
4: x0 ← x(i)

5: for j = 1 to k do � Negative phase
6: x j ← σ(W · z + b)

7: z ← σ(WT · x j + a)
8: end for
9: W ← W + α · (x0 · zT − xk · zTk )

10: b ← b + α · (x0 − xk )
11: a ← a + α · (z(0) − zk )
12: end for
13: end while

Gibbs sampling is used to get a reconstruction (k = 1 works well) to get the second
term fromwhat is known as the negative phase of contrastive divergence learning. The
difference between the positive and negative phase is used to update the weights and
biases. The algorithm is summarized in Algorithm 1. The update rule seen in step (9)
in the algorithm above can be written as,

�wi j = ε
(〈xi z j 〉data − 〈xi z j 〉recon

)

where ε is the learning rate, wi j is the weight connecting the visible unit i and hidden
unit j , 〈xi z j 〉data is the expected value of the product of the visible unit i and hidden
unit j under the data distribution, and 〈xi z j 〉recon is the expected value of the product
of the visible unit i and hidden unit j under the model distribution. The update rule
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Fig. 5 3D RBM weights before(left) and after(right) pruning

for the biases are given by,

�bi = ε (〈xi 〉data − 〈xi 〉recon)
�a j = ε

(〈z j 〉data − 〈z j 〉recon
)

where 〈xi 〉data is the expected value of the visible unit i under the data distribution,
and 〈xi 〉recon is the expected value of the visible unit i under the model distribution.
The algorithm is run until the weights and biases converge to produce accurate recon-
structions of the segmented data. The weights and biases represent what the model
has learned from the training data and is utilized for inference.

3.3.2 Model Interpretability and Inference

After the training procedure, it is possible to examine each feature and infer what the
model has learned from the training dataset. As each voxel is connected to all nodes
in the feature vector, so we can represent the weights as a 3D voxel grid. Figure5
shows weights of one of the hidden nodes represented as a voxel grid, before and
after pruning low magnitude weights. The voxels in the cavity of the left atrium are of
higher magnitude suggesting that the model has more certainty on classifying them
as being part of the foreground or the left atrium.

Different nodes within the network learn distinct features, and there may be corre-
lations among these features. When there are only few hidden nodes, each node has a
more significant impact on the representation of the volume data. The hidden nodes
are forced to work together and correlate their activity to reconstruct the volume data
effectively. Consequently, the features learned by the RBM tend to have higher inter-
dependence and can exhibit strong correlations. However, as the number of hidden
nodes increases, each hidden node has more freedom to capture different aspects of
the data independently. With more nodes, the hidden layer can distribute the workload
among them, allowing different nodes to specialize in capturing different aspects of
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Table 1 Dice scores and inference time for different number of hidden features(z) for MSD dataset

z P1 P2 P3 P4 P5 Avg. Dice Avg. Time (s)

25 0.93 0.85 0.87 0.82 0.91 0.87 0.176

81 0.93 0.87 0.87 0.84 0.92 0.88 0.190

625 0.93 0.91 0.88 0.85 0.96 0.90 0.254

1000 0.94 0.92 0.90 0.86 0.96 0.91 0.294

the data. This can lead to a reduction in the correlation between features and improve
quality of reconstruction.

Table 1 shows the dice scores and time for different number of hidden nodes(z) for
the five patient test dataset of the MSD dataset and the average dice score obtained by
averaging the dice scores of all the five patient datasets. It is evident that the accuracy
of reconstruction improves as the number of features learned increases. It is also
evident that the time taken increases as the number of features increase. It is essential
to pick the right number of hidden nodes to balance the trade-off between accuracy
and computational complexity especially when the model is deployed in a real-time
setting such as an electroanatomical mapping system.

After training the RBM, we sample hidden configurations from the posterior dis-
tribution p(z|x) given the acquired mapping points (x). We then use these samples to
generate new reconstructions from the posterior predictive distribution p(x̃ |z), which
are averaged to obtain a final reconstruction that accounts for model uncertainty.

The posterior probabilities of hidden nodes given visible nodes, trained weights,
hidden biases are calculated as

p(z j = 1|x,W , c) = σ

(
∑

i

Wi j xi + a j

)

where z j is the j-th hidden unit.
A binary sample from the posterior distribution of hidden nodes are drawn as

zsi j ∼ Bernoulli
(
p(z j = 1|x,W , a)

)

where zsi j is the i-th sample of the j-th hidden unit.
The conditional probabilities of visible nodes given hidden nodes are calculated as

p(xi = 1|zs,W , b) = σ

⎛

⎝
∑

j

Wi j zsi j + bi

⎞

⎠ .
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Fig. 6 True (left) segmented left atrium points. Reconstructed mean(blue), mean+std (green), mean-std
(red) RBM model output

The mean and standard deviation of the posterior predictive distribution are calcu-
lated as

xmean = 1

n

n∑

s=1

p(x̃ |zs,W , b)

xstd = 1

n

√√√√
n∑

s=1

(p(x̃ |zs,W , b) − xmean)
2.

where n is the number of samples drawn from the posterior distribution of the hidden
nodes. The mean and standard deviation of the posterior predictive distribution are
used to reconstruct the volume and quantify the uncertainty in the reconstruction.

Figure6 shows the mean, mean ± standard deviation surfaces reconstructed using
posterior probability distribution of the hidden nodes of an RBM. Empirical tests
were conducted to evaluate the performance of the RBM model in reconstructing the
segmented data for different number of hidden nodes. The Dice score as discussed in
Section 3.4.3 was used to evaluate the accuracy of the reconstruction.

3.4 AVariational Autoencoder (VAE) Model for Volumetric Data

MCMC methods allow for the computation of posterior distributions with high accu-
racy, as they asymptotically converge to the true posterior distribution. They are able
to sample from complex, high dimensional distributions with multiple modes and
non-convex shapes. However, they come with significant computational costs, that is
where Variational Inference (VI) techniques can prove to be useful. Variational Infer-
ence [8, 13] aims at posing the intractable inference problem as one of optimization. It
approximates the posterior distribution of a latent variable model by an easy to sample
distribution such as a Gaussian distribution.
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Fig. 7 3D Variational Autoencoder Model

A Variational Autoencoder (VAE) [9, 14] is a generative model that learns
a compressed latent representation of the data by mapping it to a latent space
defined by a prior probability distribution. It consists of an encoder network that
maps the data to latent variables, and a decoder network that reconstructs the
data from the latent variables. The main difference between a VAE and a stan-
dard autoencoder [7] is that the latent space in a VAE is stochastic. The output
of the encoder is a distribution over the latent vectors, rather than a single vec-
tor. This allows the VAE to generate new data points by sampling from the latent
space.

VAEs are trained tominimize the difference between the input and the reconstructed
output, and the divergence between the learned latent variable and a known prior
distribution. Several methods and architectures have been developed to use a VAE
for 3D data. One of the most popular methods is the 3D Convolutional VAE (3D-
CVAE) [18] used for modeling volumetric objects. The 3D-CVAE is similar to a
traditional VAE, but uses 3D convolutions instead of 2D convolutions to process 3D
data. They are good at capturing local spatial information in the image data. Figure7
shows the block diagram of a VAE that is used to reconstruct segmented CT or MRI
data.

3.4.1 Model Architecture

Here we try to learn a compressed representation of segmented CT or MRI data
x that is optimized to match a multivariate Gaussian distribution with mean μ and
variance σ . This is achieved by introducing a latent variable z that represents the
compressed representation of the volume (eg: left atrium), and training theVAE to learn
a conditional probability distribution pθ (x |z) that maps the compressed representation
z to the input data x . The parameters θ of the conditional probability distribution are
learned during training.

The goal is to learn a compressed representation z that maximizes the joint proba-
bility pθ (x |z)p(z) of the data x given the compressed representation z and the prior
distribution p(z) over the compressed representation. Maximizing this joint probabil-
ity ensures that the learned representations are both good at reconstructing the original
data (pθ (x |z) is high) and align well with our prior belief about what z should be like
(p(z) is high).

However, this joint distribution is intractable, as it involves integrating over all
possible values of z. To overcome this problem, the VAE introduces an approximate
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posterior distribution qφ(z|x) which can be used to approximate the true posterior
distribution p(z|x).

The VAE learns the parameters φ of the approximate posterior distribution qφ(z|x)
by minimizing the KL divergence between the approximate posterior and the true
posterior. The KL divergence is defined as:

K L(qφ(z|x)||p(z|x)) =
∫

qφ(z|x) log qφ(z|x)
p(z|x) dz

Minimizing the KL divergence ensures that the approximate posterior distribution
is as close as possible to the true posterior distribution. The loss function for the
VAE is the sum of two terms: the reconstruction loss and the KL divergence loss.
The reconstruction loss measures the difference between the input data and the data
reconstructed from the compressed representation z using the decoder. It is defined
as:

Lrec(θ, φ; x) = −Eqφ(z|x)[log pθ (x |z)].
The KL divergence loss measures the difference between the approximate posterior

distribution and the prior distribution:

LKL(φ; x) = K L(qφ(z|x)||p(z)).

The total loss function is the sum of the reconstruction loss and the KL divergence
loss:

L(θ, φ; x) = Lrec(θ, φ; x) + LKL(φ; x).
which is equivalent to maximizing the ELBO:

L(θ, φ; x) = Eqφ(z|x)[log pθ (x |z)] − K L(qφ(z|x)||p(z)).

During training, the parameters θ and φ are learned by minimizing the total loss
function with respect to these parameters:

θ, φ = argmin
θ,φ

L(θ, φ; x).

3.4.2 Reparameterization trick

Training via backpropagation is made possible in VAEs using the reparameterization
trick. It involves reparameterizing the latent variables z as a function of a random noise
variable ε that can be sampled from a standard normal distribution. Specifically, we
can express z as

z = μ + σ 	 ε

where μ and σ are the mean and standard deviation of the approximate posterior
distribution qφ(z|x), and 	 denotes element-wise multiplication.

By reparameterizing z in this way, we can sample from the approximate posterior
distribution qφ(z|x) using a simple and differentiable transformation. This allows us
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to backpropagate through the sampling process, which is necessary for training the
VAE using stochastic gradient descent.

3.4.3 Model Interpretability and Inference

This results in a model that can learn meaningful representations of the left atrium
from segmented CT or MRI data, which then can be used to generate patient-specific
models of the left atrium by sampling from the learned latent space when presented
with seed points acquired during mapping.

We can generate a new data point x by first sampling a latent variable z from the
prior distribution p(z), and then passing it through the decoder to get a generated
output x̃

z ∼ p(z), x̃ = pθ (x |z).
Samples from pθ (x |z) can be used to obtain a mean surface as well as a measure

of uncertainty. The mean surface is obtained by taking the mean of the samples, and
the uncertainty is obtained by taking the standard deviation of the samples

x̃ = μz∼p(z)(pθ (x |z)), σz∼p(z)(pθ (x |z)).

Visualizing the Latent Space in 3D

The Fig. 8 shows few representations sampled from the 3D latent space of a VAE
trained on segmented MRI images of the left atrium of the heart wheras Fig. 5 shows
the weights of the RBM. In Fig. 5 weights correspond to specific regions of the left
atrium, with higher magnitude weights indicating areas of greater certainty for the
model. In Fig. 8 each point in the latent space represents a complete encoding of a left
atrial shape, with nearby points representing similar shapes. Figure5 provides insights
into what the model has learned, Fig. 8 shows the ability for VAE to generate plausible
left atrial shapes by sampling from its learned latent space. The latent space of a VAE
is typically high-dimensional, when a latent space is 2D or 3D, it can be visualized
by sampling from a uniform 2D or 3D grid. Similarly when the latent space has a
dimensionality greater than three we can use the following method to visualize the
latent space from a n-dimensional uniform grid.

A standard normal distribution is used to sample k equally spaced elements from
each dimension of the latent space defined by the n-dimensional grid.

di = q(linspace(a, b, k))

where q(·) is the quantile function of the standard normal distribution, a and b are
the lower and upper bounds of each dimension of the latent space, k is the number of
linearly spaced points obtained by the following equation,

linspace(a, b, k) =
{
a, a + (b − a)

k − 1
, a + 2

(b − a)

k − 1
, . . . , b

}
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Fig. 8 3D Latent Space of a VAE trained on segmented left atrial data

Suppose we have an n-dimensional latent space, D1, D2, . . . , Dn , then a Cartesian
product of the n elements from each dimension can be taken to obtain all the possible
ordered combinations of the n elements from each dimension.

Cartesian Product(D1, D2, . . . , Dn) = (d1, d2 . . . , dn) |
d1 ∈ D1, . . . , dn ∈ Dn

From these ordered combinations, a linearly spaced set of points are sampled to
obtain a set of points in the latent space which is then be passed through the decoder
to obtain a visualization of the latent space. The latent space provides insights into the
distribution of the data and the learning process. It can be used to identify outliers and
anomalies in results generated by the model. This can guide the practitioner to either
update the training data or update the model itself.

Surface Reconstruction

The next step in our system is SurfaceReconstruction. The dense point cloud generated
by the ML model is used to generate a 3D surface mesh model of the chamber of
interest. The surface reconstruction algorithm used in our system is the 3D Marching
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Fig. 9 A voxel with vertices (v) and edges (e) with an isosurface facet touching edges e2, e3 and e7

Fig. 10 3D Surface mesh generated using marching cubes on ML output

Cubes algorithm [11], which is a popular method for generating a 3D surface mesh
from volumetric data.

The dense 3D point cloud voxel data is divided into small cubes, each of which is
then examined to determine whether it contains any parts of the left atrial surface. The
algorithm considers each of the eight vertices (x) of the cube to determine whether
it lies inside or outside the surface. The scalar value at each vertex (voxel value) is
compared to a threshold value. If the scalar value is greater than the threshold, the
vertex is considered to be inside the surface, otherwise it is marked to be outside. The
algorithm then uses the results to determine which edges (e) of the cube are intersected
by the surface and connects them to form a triangle as seen in Fig. 9. The algorithm
then repeats this process for each cube in the volume.

The resulting triangles are then connected to form a surface mesh. Figure10 shows
a 3D surface mesh generated usingmarching cubes on the output of the machine learn-
ing model. Here the output is the mean from the posterior distribution of the latent
variable model. Other summary statistics such as variance can be used to visualize the
uncertainty in the model prediction. This can be useful for guiding the electrophysi-
ologist to regions of the chambers where more points need to acquired to get a better
approximation of the chamber.

Post Processing

Post processing is an important step in 3D mesh generation pipeline, as it can signifi-
cantly improve the quality and usability of themesh. Here the 3Dmesh generated from
the 3D marching cubes algorithm is first passed through a filter which removes small,
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isolated mesh components. Then it is passed through a smoothing filter and finally
checked for holes and filled if any is found to get a watertight mesh that represents the
left atrium.

EvaluationMetrics

The evaluation metrics used to compare the accuracy of reconstructions of the data is
the dice score. The dice score measures the similarity between the ground truth and
the generated data. The dice score is calculated as follows:

Dice = 2 × |A ∩ B|
|A| + |B|

where A and B are the ground truth and the generated data, respectively. The dice
score is a value between 0 and 1, where 1 is the best possible score.

4 Left Atrial Dataset

Left atrial anatomy can be highly variable across patients. While size and shape can
vary, the main feature that can be used to categorize them is the number of pulmonary
veins (PV). The most common type of left atrium has 2 left (LPV) and 2 right (RPV),
other variants are 2 LPVs and 3 RPVs, and 1 LPV and 2 RPVs. [10].

The data used in the experiments in the following sections are from Task02_Heart
dataset [15] of the Medical Segmentation Decathlon held as part of the Medical
Image Computing and Computer Aided Interventions (MICCAI) Conference 2018
at Granada, Spain. This dataset was originally released through the Left Atrial Seg-
mentation Challenge (LASC) 2013. The dataset has 20 segmented MRI scans with a
voxel resolution of 1.25 × 1.25 × 2.7mm3 covering the entire heart acquired during
a single cardiac phase (free breathing with respiratory and ECG gating). The MRI
scans were segmented by experts to obtain ground truth segmentation labels. All of
the datasets have four pulmonary veins ( 74% of the population). Out of the total of
20 scans, 15 were employed for training purposes, while the remaining 5 scans were
utilized for testing.

4.1 Experiments

For all experiments, the MSD dataset was cropped and downsampled to be a
20× 20× 20 3D array of voxels. Both the RBM and VAE based models were trained
for 100 epochs with a batch size of 1 to generate inference. Point acquisition by
the electroanatomical mapping system was simulated by randomly sampling points
from the test data. The simulation involved generating the true surface using march-
ing cubes, then sampling n vertices from the resulting surface mesh. The vertices are
then compared to voxel locations that were used to generate the mesh by measur-
ing their Euclidean distance. The closest voxel location is then recorded as a point

123



Journal of Statistical Theory and Practice            (2025) 19:13 Page 19 of 23    13 

Table 2 Comparison of dice
scores for DEL3D, RBM and
VAE based systems

Model 25 points 100 points 250 points

DEL3D 0.70 0.87 0.90

RBM 0.79 0.89 0.92

VAE 0.76 0.83 0.88

acquired during mapping. Algorithm 2 summarizes the steps involved in simulating
electroanatomical mapping.

Algorithm 2 EAM Simulation
Require: 3D data point (voxel data) from the test set
Require: Number of points to be acquired (n)
Ensure: Points acquired during mapping
1: Generate true surface:
2: Generate true surface strue using marching cubes
3: Sample points from true surface strue:
4: xn ← sample n random points from the vertices of strue
5: for each point p in the vertex list xn do
6: for each point pv in the voxel data do
7: Calculate Euclidean distance d between p and pv

8: if d <= threshold then
9: Add pv to points list
10: end if
11: end for
12: end for
13: Return the points list

Three EP studies were simulated, the first where n = 25 points were acquired, the
second where n = 100 points were acquired, and the third where n = 250 points
were acquired. The acquired points were then passed on to the system to generate a
3D surface mesh model of the left atrium using the RBM, VAE based systems along
with a third Delaunay3D based system as a baseline for surface reconstruction without
using a generative model. The 3D surface mesh reconstructions was then compared
to the ground truth data using dice scores to evaluate the accuracy of the systems.

5 Results

The results from the three simulated EP studies are discussed in this section. Table 2
shows the dice scores generated by the three systems for 25, 100, 250 points,

From Table 2, we can observe that the dice score increases as the number of points
acquired increases. We can also observe that the RBM based system performs better
than the VAE based system, and both systems are able to have a dice score similar to
the Delaunay3D based system which generates a convex hull of the acquired points.

Figure11 shows comparison of surface reconstruction results using the for a patient
data from the test set in Roof view. The first row shows the surface reconstructed using
the ground truth data and the points that were sampled from it for the reconstructions in
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Table 3 Task-based assessment of five patient datasets by three expert observers

Patient RBM VAE

data Visual quality Match w true Visual quality Match w true

25 100 250 25 100 250 25 100 250 25 100 250

1 3.0 3.3 4.0 2.3 3.6 4.6 2.3 3.3 3.3 2.0 3.6 5.0

2 3.6 3.6 4.0 3.0 3.3 4.6 2.6 3.3 4.3 3.3 3.0 4.0

3 3.0 3.3 4.6 2.0 3.3 4.0 2.3 3.0 3.3 2.3 3.6 4.3

4 3.0 3.0 5.0 2.6 3.6 3.6 2.0 4.0 3.6 3.0 3.3 3.6

5 2.3 3.6 4.3 2.0 4.0 4.3 1.6 3.0 4.0 2.3 3.0 4.0

Average 3.0 3.4 4.4 2.4 3.6 4.2 2.2 3.3 3.7 2.6 3.3 4.2

the following rows for the three systems. The first column shows reconstructions using
25 points, second column shows reconstructions using 100 points, and the third column
shows reconstructions using 250 points. The RBM based system is able to generate
a more accurate approximation of the chamber compared to the VAE system even
though they don’t differ much in dice scores. This is due to RBM’s being undirected
graphical models that can capture complex distributions whereas VAE’s having certain
assumptions about the latent space (often Gaussian) may not be able to completely
capture the true data distribution. As expected and seen from the dice scores in table 2,
the reconstructions are better with more points acquired. Both RBM and VAE based
systems are able to generate a better approximation of the chamber compared to the
Delaunay3D based system.

The Fig. 12 shows the uncertainty of the RBM, VAEmodel outputs in the Posterior-
Anterior (PA) view. 100 samples were generated to reconstruct the mean, mean ±
standard deviation surfaces. It can be observed that both RBM, VAE models exhibit
more uncertainty in the areas where fewer points were acquired. There is also high
uncertainty in areas where the pulmonary veins are located in the model. This is due
to the high variability of pulmonary veins across patients in the training set. The
uncertainty in the model can be used to guide the electrophysiologist to regions where
more points need to be acquired to get a better approximation of the chamber.

Table 3 shows task-based assessment of the surface reconstructions of the five
patient datasets by three expert observers. Observers individually scored the visual
quality and conformity with the true anatomy of the generated meshes on a scale of
1 to 5, where 1 is the worst possible score and 5 is the best possible score. The table
shows the average score of the three observers for the two systems. The table shows
that both systems are capable of producing useful reconstructions with the RBMbased
system performing slightly better than the VAE based system. The table also shows
that the reconstructions improve with the number of points acquired.

6 Conclusion

Generating anatomical models of the left atrium from a sparse point cloud of acquired
locations is a challenging task, but one that is essential for Electrophysiology stud-
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Fig. 11 RBM, VAE comparison plot with 25 (left), 100 (middle) and 250 (right) points in Roof view

ies. A probabilistic machine learning approach to the problem provides a way to bring
uncertainty quantification and interpretability to a neural network solution to the prob-
lem. A Bayesian approach provides greater insight into the model which incorporates
prior knowledge from CT/MRI data. Such a model can be useful for navigation during
electroanatomical mapping.
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Fig. 12 RBM, VAE uncertainty comparison with 25, 100 and 250 points in PA view

The results of the conducted experiments show that the proposed system is capable
of generating anatomically accuratemodels of the left atrium from a sparse point cloud
of few acquired locations. This can enable creating quick maps during electrophysi-
ology studies and reduce the time taken for mapping during a study, thereby reducing
the patient’s exposure to radiation from the fluoroscope.
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