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Abstract

In the realm of neuroimaging research, the demand for efficient and accurate simu-
lation tools for functional magnetic resonance imaging (fMRI) data is ever increasing.
We present SHAKER, a comprehensive MATLAB package for simulating complex-
valued fMRI time series data that will advance understanding and implementation
of the MR signal equation and related physics principles to fMRI simulation. The
core objective of the package is to provide researchers with a user-friendly MATLAB
graphical user interface (GUI) tool capable of generating complex-valued fMRI time
series data. This tool will allow researchers to input various parameters related to
the MRI scan and receive simulated k -space data with ease, facilitating a deeper
understanding of the intricacies of the generation and interpretation of fMRI data.
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1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique that

allows trained physicians and scientists to observe functionality of organs, in particular- the

human brain. This is done by exciting protons in the various molecules that make up the

different tissues of the organ, then determining a net change in magnetization as determined

by an induced current in a loop of wire surrounding the patient. This net magnetization

in different voxels of the region of interest (ROI) is associated with complex-valued spatial

frequencies that fill k-space; a high order approximation of the Fourier transform of the

voxel image of the organ. The k-space is then inverse discrete Fourier transformed (IDFT)

to reconstruct an image. Figure 1a shows a simple MRI machine and the major axes,

Figure 1b depicts an example of the magnitude of a measured complex-valued k-space

array, and Figure 1c shows the magnitude of the complex-valued image reconstructed from

complex-valued k-space, the magnitude of which is in Figure 1b.

To perform experiments in the machine is both financially and temporally costly; de-

manding machine time and obtaining Institutional Review Board (IRB) approvals can slow

a. b. c.

Figure 1: The process of obtaining an image from the machine. a) MRI machine with main

axes indicated; the z-direction is referred to as longitudinal, the xy-plane is referred to as

the transverse plane. b) Acquired k-space array of spatial frequencies. c) Inverse discrete

Fourier transform of k-space; a reconstructed image.
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down the process of investigating new statistical techniques to extract information from

fMRI data. Consequently, researchers will test developing methods on simulated data as

a cost-effective way of measuring potential. Currently, simulated fMRI data are largely

developed in-house for each researcher using a variety of methods. There has been work

to develop a more standardized method to simulate fMRI time series data using various

languages such as Python and R. However, many such methods disregard the complex-

valued nature along with the true statistical and physical properties of the data output by

the machine, in addition to returning magnitude-only images from simulations (Welvaert

et al., 2011). Some of these methods may also demand some form of in-line coding or

require external files to support simulation (Comby et al., 2024). It will be beneficial to

provide a complete software tool to researchers that allows the simulation of complex-valued

fMRI time series data with the ability to tune various parameters relating to the scan to

match future experimental data, that will allow for proper testing of developing models.

We present the current work on such an fMRI simulation software tool entitled Simulation

and Harmonic Analysis of k-Space Readout (SHAKER). SHAKER, a GUI-based simulator,

is built on the physics-based principles of the MRI machine and is designed so that both

new and well-versed researchers in the field can simulate data with ease. The sections that

follow will give a brief overview of the physics being applied in the simulator, followed by

an in-depth description of each of the parts of the simulator. This will be examined in an

example simulation study at the end.

1.1 Nuclear magnetic resonance

A primary aim of SHAKER is to provide a realistic simulation of fMRI. It is important

to understand the physical principles and phenomena that determine the measured signal

which is later reconstructed into an image. The MR machine creates a very strong magnetic

field B0 along the direction of the scanner as indicated in Figure 1a (1.5, 3, and 7 Tesla
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are common). This field aligns the spins of hydrogen nuclei within the body to become

parallel with the direction of the scanner. The alignment of the hydrogen nuclei results in

a net magnetization, denoted M0. These hydrogen nuclei precess (resonate) at the Larmor

frequency which is proportional to the external magnetic field they are exposed to,

f0 = γB0, (1)

where γ is the gyromagnetic ratio, a constant unique to each nucleus (Larmor, 1897). In

the case of hydrogen, we have γ = 42.58MHz/T . To excite these nuclei, a radio frequency

(RF) burst of energy is sent into the system at this resonant frequency. The nuclei enter

a higher energy state where their spins tip against the main magnetic field B0 at some

flip angle α determined by the length of the RF pulse. An α = 90◦ flip angle is common

for fMRI. In the time that follows the RF pulse, these nuclei emit energy through two

relaxation processes- T1 and T2. The longitudinal or spin-lattice relaxation time, T1, is the

recovery time for the parallel component of M0, MZ , back to equilibrium. The transverse

or spin-spin relaxation time, T2, is the decay of MXY , the transverse component of M0. In

practice, T ∗
2 is what is actually measured. The relationship between T2 and T ∗

2 is defined

by

1/T ∗
2 = 1/T2 + 1/T ′

2, (2)

where 1/T ′
2 = γ∆B is the dephasing of the hydrogen nuclei as a result from hydrogen

nuclei precessing at slightly different frequencies due to inhomogeneities in the magnetic

field, ∆B. The two effects, T1 and T ∗
2 are visualized in Figure 2b-c. Figure 2a shows the

net magnetization change, a vector sum of the T1 and T ∗
2 relaxivities. These relaxivities

result in a changing magnetic field within the tissue that is measured through current

via Faraday’s law of induction in one or more coils of wire that surround the bore of the

machine. This measured signal is then later transformed into complex-valued images via

the inverse discrete Fourier transform.

In fMRI, the blood-oxygen-level-dependent (BOLD) signal is interrogated to determine
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regions of activation (Ogawa et al., 1990). The BOLD signal is a measure of localized brain

blood level and oxygenation changes which are correlates for neuronal activity. These

changes occur as a result of certain stimuli or tasks, e.g., right-hand finger tapping, that

activate known regions of the brain. The BOLD signal presents itself as a T ∗
2 effect since the

change in magnetic properties of oxygenated and deoxygenated hemoglobin in blood causes

a perturbance in the local magnetic field, ∆B. Hence, fMRI time series are T ∗
2 -weighted

images, highlighting regions of the brain with significant T ∗
2 effects.

Every image from an MRI machine comes from a predetermined “pulse sequence” of

RF bursts and changing of magnetic gradients within the machine. In fMRI, images are

most often collected via single shot echo planar imaging (EPI); “single shot” meaning only

one RF excitation is applied per k-space array. The most commonly used pulse sequence

used in EPI is gradient echo (GRE) (Kumar et al., 1975; Bernstein et al., 2004). In general,

a given signal equation gives complex signal s received at a given point (kx, ky) in k -space.

The GRE signal equation is given by

s(kx, ky) =

∞∫
−∞

∞∫
−∞

M0 sin(α)

(1− cos(α)e−TR/T1)

(
1− e−TR/T1

)
e−t/T ∗

2 eiγ∆Bte−i2π(kxx+kyy) dx dy, (3)

where M0(x, y), T1(x, y), T
∗
2 (x, y), and ∆B(x, y) are functions of voxels (x, y) within the

physical object (or phantom) and t(kx, ky) is the time at which the point (kx, ky) in k-space

a. b. c.

Figure 2: Depicted in (a) is the net magnetization and precession of the magnetic moment

about the central axis. Representations of the T1 (b) and T ∗
2 (c) relaxivities. T1 is relaxation

back into the longitudinal direction, T2 is relaxation in the transverse direction.
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is scanned. The simplification of replacing t(kx, ky) with TE, echo time, is often used and

is equivalent to assuming that all data are acquire at the TE (SHAKER does not require

this assumption). The repetition time, TR, is the time between successive RF pulses of the

same slice, or equivalently, the time between successive measured k-space arrays of the same

slice. The flip angle α is commonly set to 90◦, which simplifies the first term in Equation

3 to just M0. While GRE is most commonly used because of the high signal it provides,

some higher strength scanners (7 T+) may opt to use the spin echo (SE) pulse sequence to

detect BOLD signal (Chen and Glover, 2015; nen, 2005). The SE signal equation is given

by

s(kx, ky) =

∞∫
−∞

∞∫
−∞

M0

(
1− e−TR/T1

)
e−t/T2eiγ∆Bte−i2π(kxx+kyy) dx dy, (4)

noting the use of T2 instead of T ∗
2 . It has been shown that SE pulse sequences correct for

the large scale dephasing caused by larger veins, which may not be as closely related to

activation as capillaries (Kida et al., 2000). Closely related to the SE pulse sequence, but

not generally used for fMRI experiments, is the inversion recovery (IR) pulse sequence.

The signal equation for IR is given by

s(kx, ky) =

∞∫
−∞

∞∫
−∞

M0

(
1− 2e−TI/T1 + e−TR/T1

)
eiγ∆Bte−i2π(kxx+kyy) dx dy, (5)

where TI is the inversion time. The IR pulse sequence is more commonly used for T1-

weighted images, as compared to the T ∗
2 -weighted image that is standard in fMRI, but is

still included in SHAKER. Both the SE and IR signal equations assume a 90◦ flip angle

from the initial RF pulse. Other pulse sequences such as diffusion weighted imaging (DWI-

fMRI), and saturation recovery (SR) may be included in the future plans for SHAKER

development.
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1.2 k-Space and the Fourier transform

The signal equations from Section 1.1 are measured in the spatial-frequency domain called

k-space (magnitude images of k-space are presented in Figure 3). Each of Equations 3-5

could be condensed to

s(kx, ky) =

∞∫
−∞

∞∫
−∞

ρ0(x, y)e
−i2π(kxx+kyy) dx dy. (6)

In this form, we can see that the signal equation is the Fourier transform of ρ0, the net

magnetization after having been weighted by the relevant relaxivities. In practice, however,

k-space is only measured at a finite set of discrete points. So, we can discretize Equation

6 into

s(kx, ky) =
1

NxNy

Nx−1∑
m=0

Ny−1∑
n=0

ρ0(x, y)e
−i2π

(
kx
Nx

xm+
ky
Ny

yn
)
, (7)

where Nx and Ny are the number of points in image-space in the x and y directions,

respectively. In fMRI, it is common that Nx = Ny = 64, 96, 128. Thus, we arrive at

k-space equating to the discrete Fourier transform of image-space.

The objects and phantoms being imaged are composed of real-valued voxels only. So,

ideally, the Fourier transform of these objects would result in a k-space that maintains

Hermitian symmetry. However due to the terms involving T ∗
2 and ∆B, the expected Her-

mitian symmetry of k-space is broken. In fact, when looking at Equations 3-5, the inclusion

Figure 3: Three examples of k-space trajectory. a) Standard Cartesian encoding. b) Radial

encoding. c) Spiral encoding.
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of the these terms necessarily implies that k-space is only a very close approximation to

the Fourier transform of image-space, since the terms are time-dependent. This leads to

possible distortions and artifacts when reconstructing k-space into images using the inverse

discrete Fourier transform

ρ0(x, y) =
1

NkxNky

Nkx−1∑
m=0

Nky−1∑
n=0

s(kx, ky)e
−i2π

(
x

Nkx
kxm+ y

Nky
kyn

)
, (8)

however it is still the most common method of image reconstruction in MRI. The incorpo-

ration of prior knowledge regarding the relaxivities as well as magnetic field inhomogeneity

has been implemented to enhance image reconstruction (Karaman et al., 2015).

As a result of physical limitations, k-space must be scanned, or traversed, in one contin-

uous path. The most conventional method is to scan horizontal rows, often referred to as

the frequency-encoding direction, in alternating directions working up (or down) k-space

in the phase-encoding direction as shown in Figure 3a. This involves a set of “turnaround

points” at the end of each row that are often discarded or not measured, resulting in dead

scan time that decreases the rate of useful data acquisition. This has proven to be a con-

venient way to scan k-space as it results in a Cartesian encoding of the spatial frequencies

which allows for the simple inverse discrete Fourier transform to reconstruct k-space back

into an image. Other k-space trajectories, including non-Cartesian methods such as PRO-

PELLER, radial as in Figure 3b (equivalent to PROPELLER with blade width 1), and

spiral as in Figure 3c have been implemented for various reasons such as reducing scan

time and increasing robustness to artifacts due to motion (Pipe, 1999; Block et al., 2014).

2 Design

SHAKER is an all-inclusive fMRI simulation software package built with the user in mind.

SHAKER is built using the MATLAB programming language and presents as a GUI (Figure

4), with no scripting or external data required (The MathWorks Inc., 2024). In the top

8
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left pane of Figure 4, users can view the pre-loaded digital phantom. The bottom left pane

involved customization of MRI parameters and fMRI experimental design options. The

top right pane presents a view of the simulated time series data. The bottom right pane is

where statistical maps and measurements from the time series data can be observed. This

is also where any models in development may be tested on the simulated data. All code

and data used to operate SHAKER are publicly available on GitHub to encourage a better

understanding and allow customizations to be made. The contents of this section explain

in detail the functionality of SHAKER in each of these panes.

Figure 4: A screenshot of the working SHAKER GUI. In the top left pane, users can view

the raw phantom data that will be input to the signal equation. In the bottom left pane are

the adjustable MRI parameters and the fMRI experimental setup. The right pane displays

two views: the top presents unaltered data from the simulated time series, and the bottom

reflects an example of a statistical data set created from the time series data (in this case:

a histogram of one voxel’s magnitude time series).
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2.1 Digital phantom

SHAKER comes pre-loaded with a full volume digital phantom that was simulated with

realistic M0, T1, and T ∗
2 values based on a 3 T machine (Karaman, 2014). The tissues

included in the phantom are gray matter (GM), white matter (WM), and cerebrospinal

fluid (CSF). The ∆B map was considered as a gradient along each of the dimensions of

the scanner, combined with some biological detail from the T ∗
2 map. This included digital

phantom is stored as a MATLAB structure array: Phantom: M0, T1, T2, deltaB, and

users may also load in their own maps.

An axial slice of the phantom is shown in Figure 5. In some cases, a higher or lower

sampling density requirement is needed in k-space. To support this, the digital phantom

can be rescaled to 64× 64× 64 or 128× 128× 128 by changing the Phantom Size option.

Should one want to implement their own digital phantom, it will be necessary to create a

structure with the same naming convention, having four maps whose dimensions all agree.

This custom phantom can then be imported as a .mat file from the toolbar located at

the top of the GUI. Additionally, there is an activation map included with SHAKER that

carries the same dimension as the phantom. The activation map is a binary array, with ones

only at the intended location(s) of simulated activation. It is designed such that it roughly

Figure 5: Maps taken from an axial slice of the digital phantom. a) Net Magnetization,

M0 (dimensionless). b) Longitudinal relaxation, T1 (seconds). c) Transverse relaxation, T
∗
2

(seconds). d) Field inhomogeneity, ∆B (Tesla).
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resembles the left primary motor cortex region of the brain- the area that is expected to

be active during right-hand finger tapping. Custom activation maps can also be imported

as .mat files with type double and name ActMap and should share dimensions with the

phantom being used for simulation.

At present, SHAKER is equipped to handle single-slice excitations in any of the three

major planes: axial, sagittal, or coronal. Support for echo-volume imaging could be sup-

ported in future versions. Slice selection and orientation are both chosen and viewed in the

top left pane of the GUI, titled Data Viewer as in Figure 6. The size of the phantom is also

adjusted from this pane. Two other options that have no effect on the simulation: viewing

each of the maps and visualizing where the activation is expected, are available from this

panel as well. Making use of the recently developed volshow() function in MATLAB, users

can get a 3-D view of the four maps that make up the phantom, sliced at the indicated

location and orientation.

Figure 6: Data Viewer : the top left pane of SHAKER. Here the phantom size can be

selected, each of the four maps can be viewed, and slice orientation/location can be selected.

2.2 MRI parameters

Found in the bottom left pane of the GUI are tabs for MRI Parameters and Task Design as

shown in Figures 7 and 9. MRI Parameters is the part of SHAKER where users will make

11
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selections similar to that of an MRI technician. Task Design will be discussed in Section

2.3. All settings in this pane should be set before initializing any simulations. From the

top toolbar of SHAKER, the MRI structure being used for simulation can be saved into a

.mat file which contains a MATLAB structure array named MRI. This file may be imported

to future instances of SHAKER for ease of reproducibility of results.

The first two options for MRI parameters are Signal Equations and Trajectory. These

refer to a choice of signal equation as described in Section 1.1 and a k-space trajectory

from Section 1.2. The k-space trajectory functions are designed to receive the MRI ob-

ject inherent to SHAKER that contains all pertinent information regarding the scanner

properties. The trajectory functions then return three arrays: one each for the kx and ky

locations at which k-space is sampled as well as an array noting the time at which the

points are sampled t(kx, ky). These arrays are stored in an object within SHAKER for

later reference. Following this, the user can select their choice of signal equation function,

Figure 7: MRI Parameters : the first tab of the bottom left pane of SHAKER. Here

relevant MRI parameters can be set. A single k-space can be simulated and observed to

check that settings are correct before simulating an entire time series.
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which receives input data about the phantom, k-space sampling, and the MRI object, then

return a simulated array of k-space measurements. Both the signal equation and k-space

trajectory are two files that users can create their own version of, using the templates pro-

vided by SHAKER, to sample k-space in their own preferred way. Further details regarding

inputs/outputs can be found in the appendix.

The next option is Acceleration Factor. This can mean different things depending on

the context of the k-space sampling method. For example, in Cartesian trajectories of

k-space an acceleration factor of na is often implemented as a measurement of every na

lines in the frequency-encode direction. In the single-spoke radial trajectory of k-space,

this is commonly the measurement of every na spokes. There is no restriction on how

this might be implemented in one’s own k-space trajectory file. Since SHAKER currently

supports single-slice imaging, this acceleration factor should be interpreted as an in-plane

acceleration (IPA). Following this is the choice to change the simulated magnetic field

strength. The values found in the table located at the top right of Figure 7 can be altered

to produce an effect on other k-space features at the will of the user. The four options that

follow, TE, TR, Flip Angle, and EESP are direct inputs to the signal equation as described

in Section 1.1.

Parallel imaging in fMRI has received a lot of attention recently due to it’s ability to

accelerate the rate at which images are acquired in fMRI experiments (Pruessmann et al.,

1999; Griswold et al., 2002). In practice, each coil measures a sensitivity-weighted image

of the brain, or phantom, at no additional temporal cost. SHAKER supports the use of

a single, uniform coil, or multiple coils aligned with the bore of the machine. Users may

specify any number of coils to simulate their data by changing the value for the Number

of Coils option. The nc coils have sensitivity matrices that match the dimensions of the

phantom. In SHAKER, each of the nc coil sensitivities is constructed by placing a point

at a each coil location, all of which are equidistant from the center of image-space and

13
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Figure 8: Coil sensitivities (top, right, bottom, left) and sensitivity weighted images

(corners) for the case of nc = 4. The center image is the true, unweighted slice image. The

red outlines indicate the location of the slice as seen by each of the coil sensitivities.

angularly equidistant from each other. The sensitivity of each coil array then decreases

proportional to the inverse of the distance from this point. An example of the simulated

coils, coil sensitivity weighted images, and averaged image is shown in Figure 8.

The last option is the choice of Reconstruction Algorithm. While SHAKER is a k-space

simulation tool, the reconstruction of images is supported for the more common k-space

trajectories. Similar to the k-space trajectory and signal equation, the choice of reconstruc-

tion algorithm can be user-created based on an included template. These templates can be

found in the subdirectories for each of the respective steps in the simulation process. More

detail on this can be found in the Appendix.

2.3 FMRI experimental design and noise

Task-based fMRI generally starts with an initial set of rest images that allow the tissue to

reach a steady state in the magnetic field (Elster et al., 2001). Following this, many epochs

of rest / task images are taken. For example, an experiment may include: 16 initial rest

images followed by 19 epochs of 16 task images followed by 16 rest images for a total of
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Figure 9: Task Design: the second tab of the bottom left pane of SHAKER. This is where

users may adjust the experimental design of the time series, as well as specify SNR and

CNR.

624 images. It is often the case that some or all of the initial rest images are discarded

for fMRI analysis due to the fact that they yield a higher signal than the steady state

images. This can be circumvented by increasing the flip angle for the first few images so

that the amount of transverse magnetization excited in each image is approximately the

same (Haase et al., 1986). For this example, discarding the first 16 from analysis would

give nIMG = 608 images in the fMRI time series. It has been shown, however, that the

first few images can be used to aid in analysis of the measured fMRI data, e.g., T1 map

estimation. In SHAKER, users may choose a set number of initial rest images, the number

of epochs, and number of rest/task images per epoch. This is then stored as a design vector

that can be used for later analysis of the simulated time series. This is all done from the

second tab of the bottom left pane of SHAKER, as in Figure 9.

Complex-valued voxel measurements kc in fMRI are composed of both a real and imag-

inary part, kc = kR + ikI where i =
√
−1. The measured magnitude rk and phase ϕk of

the voxels come from the transformation kR = rk cos(ϕk) and kI = rk sin(ϕk). To better
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model the process of the machine, SHAKER adds noise to k-space directly rather than

to reconstructed images as is often done. Since the analog-to-digital converters (ADCs)

collect k-space measurements independently, it is understood that the real and imaginary

parts of k-space measurements are independent and identically distributed (iid) normally

for each spatial frequency. Thus, the joint distribution is given as

f(kR, kI) =
1

(2πσ2
k)

1/2
exp

[
−(kR − µk,R)

2

2σ2
k

]
1

(2πσ2
k)

1/2
exp

[
−(kI − µk,I)

2

2σ2
k

]
, (9)

where µk,R and µk,I are the true real and imaginary components of the spatial frequency

(Henkelman, 1985; Lindquist, 2008). The inverse Fourier transform of the real and imag-

inary components of the noise from k-space into image space will also be normally dis-

tributed with a scaled variance. This relationship is given by

σ2 =
σ2
k

nxny

, (10)

where σ2 is the variance of the normally distributed real/imaginary noise in image space, σ2
k

is the variance of the normally distributed real/imaginary noise in k-space, and nx, ny are

the dimensions of reconstructed image space (Rowe, 2016). This fact reveals that the joint

distribution of a voxels real and imaginary parts in image-space can be written similarly

to Equation 9 as

f(yR, yI) =
1

(2πσ2)1/2
exp

[
−(yR − µR)

2

2σ2

]
1

(2πσ2)1/2
exp

[
−(yI − µI)

2

2σ2

]
. (11)

The true real and imaginary components, µr and µI , can be expressed in terms of the true

magnitude and phase, ρ and θ, by the transformation µR = ρ cos(θ) and µI = ρ sin(θ).

Since the magnitude of voxels is preferred over the real/imaginary values when looking

at an image, we can transform the measured random variables (yR, yI) to (r, ϕ) where

yR = r cos(ϕ) and yI = r sin(ϕ) (Rowe, 2023). Calculating the Jacobian to be J = r, this

gives the joint distribution

f(r, ϕ) =
r

2πσ2
exp

(
− 1

2σ2

[
r2 + ρ2 − 2rρ cos(ϕ− θ)

])
. (12)
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By integrating out ϕ from Equation 12, we get a Ricean marginal distribution for the

voxel’s magnitude r (Rice, 1944; Gudbjartsson and Patz, 1995; Rowe, 2005; Adrian et al.,

2013),

f(r) =
r

σ2
exp

[
−r2 + ρ2

2σ2

]
I0

(rρ
σ2

)
. (13)

Here I0 is the zeroth order modified Bessel function of the first kind. The mean of the

Ricean distribution is σ
√
π/2L1/2(−ρ2/2σ2) where L1/2 is a Laguerre polynomial. The

variance of the Ricean distribution, denoted as σ2
r , has the following relationship with the

variance of the real and imaginary components of voxels in image space, σ2,

σ2
r = 2σ2 + ρ2 − πσ2

2
L2
1/2(−ρ2/2σ2). (14)

The subscript r is used to indicated the observed magnitude. In regions of empty space

where the true signal ρ is small, ρ ≈ 0, this is reduced to the Rayleigh distribution with

mean σ
√

π
2
and variance 4−π

2
σ2 (Rayleigh, 1880). In regions of space with high true signal

ρ, this becomes the normal distribution with mean ρ and variance σ2. Integrating out

the magnitude r from the joint distribution in Equation 12 gives the unnamed non-normal

distribution marginal distribution for the phase ϕ,

f(ϕ) =
1

2π
exp

[
− ρ2

2σ2

] [
1 +

ρ

σ

√
2π cos(ϕ− θ) exp

[
ρ2 cos2(ϕ− θ)

2σ2

]
Φ

(
ρ cos(ϕ− θ)

σ

)]
,

(15)

where Φ(x) is the cumulative distribution function of the standard normal distribution.

When the signal ρ is near zero, the phase will be uniformly distributed on [−π, π] with

mean 0 and variance π2

3
. When the signal ρ becomes large, the distribution of the phase

becomes normal with mean θ and variance σ2

ρ2
.

Task-based fMRI for an individual voxel’s magnitude time series rt can be expressed as

the linear equation

rt = β0 + β1xt + εr. (16)

As previously recognized, the additive noise is Ricean distributed with variance σ2
r from

Equation 14. Here, β0 ∈ R is the baseline signal which determines the signal-to-noise ratio
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SNR = β0/σr, and β1 ∈ R is the task-related signal increase which determines the contrast-

to-noise ratio CNR = β1/σr. The design vector xt ∈ {0, 1}nt has length equal to the

number of reconstructed images in the time series, nt. In x, indices corresponding to a non-

task image have an element of 0, while indices corresponding to a task-active image have an

element of 1; this is equivalent to a block design hemodynamic response function (HRF). At

present, SHAKER supports block design HRFs only. Future development considerations

include the option to convolve user-defined functions with the block design to create custom

HRFs.

When multiple coils are introduced to support parallel imaging, the statistical properties

of the data are altered. Considering C receiver coils, the composite magnitude signal is

given by MC =
√

ΣC
j=1

[
M2

jR +M2
jI

]
where MjR = ρjC cos(θjC) and MjI = ρjC sin(θjC)

denote the real and imaginary signals reconstructed from the jth receiver coil. It has been

shown that the probability density of this composite magnitude is the non-central Chi

distribution, which can be written as:

f(MC) =
ρC
σ2

(
MC

ρC

)C

exp

(
−(ρ2C +M2

C)

2σ2

)
IC−1

(
McρC
σ2

)
(17)

where ρC is the true signal magnitude (Koay and Basser, 2006).

When designing an fMRI experiment in SHAKER, users may specify an SNR and CNR

which will be used to calculate the baseline signal β0 and magnitude signal increase β1,

respectively1. In addition to specifying SNR and CNR, users may choose to specify some

amount of task-related-phase-change (TRPC) in degrees. It has been shown that there is

biological information contained in the phase of an image, and as such it may be desirable

to consider it in statistical models (Rowe, 2005). In SHAKER, magnitude activation is

determined through the CNR, and an additional phase angle in the activated areas can

1While not previously mentioned, now is a good time to acknowledge that SHAKER should not be used

for quantitative MRI, as the final values have been through at least one layer of scaling and may not bear

any quantitative meaning.
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be specified. Once all MRI parameters and fMRI options are set, users may select the

Generate Time Series button found in the Task Design tab to initialize the simulation.

2.4 Time series data analysis

The top right panel of SHAKER as in Figure 10, labeled as Time Series, allows for vi-

sualization and examination of the simulated time series data. Users may look through

individual images in the time series, in either k-space or image-space (if reconstructed),

viewing the real, imaginary, magnitude, or phase parts of an image. There is also the

option to monitor the time series of individual voxels which can be helpful to determine

regions of activation and activation structure (magnitude/phase).

Below this, in the bottom right panel of SHAKER as in Figure 11, labeled Statistical

Analysis, is where statistical maps and models of the simulated time series may be assessed.

True to the MRI machine, SHAKER supports analysis of complex-valued data. Users may

closely examine the real and imaginary part of an image, or magnitude and phase part of

image. This can be done in both k-space and reconstructed image-space. SHAKER comes

preloaded with two simple statistical measures: a voxel-wise t test for activation detection

and an SNR calculation to evaluate image fidelity (Ardekani and Kanno, 1998). The t test

Figure 10: Time Series : the top right pane of SHAKER. Here the simulated time series

can be observed and checked for expected results.
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compares the task-active images in a simulated time series to the mean rest image in order

to determine some change in magnitude or phase over some ROI. This is what is expected

with the BOLD signal due to the increased T ∗
2 effect. The SNR calculation estimates the

SNR of each voxel throughout the time series. This helps determine the quality of k-

space trajectory and reconstruction method by highlighting any regions of leakage or other

artifacts. Statistical maps can be superimposed onto an anatomical image of the excited

slice for better viewing of the activated regions or other ROIs. Additionally, there is the

option to look at the histogram of any voxel’s magnitude/phase/real/imaginary component

throughout the time series with theoretical probability density functions (PDF) overlain.

This may be used to confirm expected distributions of voxel’s time series as described in

Section 2.3. As described in the Appendix, SHAKER supports the use of custom statistical

methods and models to analyze the simulated data. At present it is recommended that for

advanced models the data be exported and examined in a more controlled environment.

Figure 11: Statistical Analysis : the bottom right pane of SHAKER. This is where users

may analyze statistical properties from the data, such as: t statistic for activation, SNR

maps, voxel histograms, etc.
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3 Example fMRI experiment

This section will carry out an example simulated fMRI experiment, detailing all steps

taken in SHAKER. Suppose that a right-hand finger tapping experiment was performed

on a subject. The 3T machine is set to scan an axial slice in the center of the brain. The

data matrix size is 96 × 96, with TE = 60.4ms, EESP = 0.832ms, TR = 1s, and no

acceleration factor (na = 1). The experimental timing starts with an initial 16s of rest

followed by 19 epochs of 16s of task alternating with 16s of rest for a total of nIMG = 624

images.

Firstly, the phantom size and slice orientation and number would be set. This is done

in the top left pane of SHAKER by setting the options Phantom Size: 96, View: Axial,

and Slice: 48. Following this, the MRI parameters should be set. Without further knowl-

edge of the experiment, it may be safe to assume that a GRE pulse sequence is used

and measured along the standard Cartesian trajectory. So the options Signal Equation:

GradientEcho SigEq.m and Trajectory: Cartesian kspace.m should be selected. Fol-

lowing this, the acceleration factor, field strength, TE, TR, and EESP can be input directly

from the experimental setup data. It can be assumed that the flip angle is α = 90◦ (this

is not always the case experimentally, but, unless other information is known, is a rea-

sonable assumption). For simplicity it can also be assumed that the machine is using a

single, uniform coil. Since the k-space trajectory is the standard Cartesian path, images

can be reconstructed by setting Reconstruction: CartesianIFFT.m. To better represent

the machine, the box for B0 inhomogeneity may be checked to include the ∆B effect into

the simulation.

In the Task Design tab next to MRI Parameters, the options for the fMRI experi-

mental design can be set. The HRF can be set to block and the four values that follow:

initial rest images, epochs, and task/rest images per epoch, can be filled in directly from

the experimental setup. The Plot Design button can be pressed to visualize and ensure
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Figure 12: Screenshot of the input to SHAKER for the example simulation described in

Section 3. Not pictured: the fMRI time series and SNR/CNR options set in the second

tab of the bottom left panel.

the experimental timing is setup correctly. To be consistent with empirical data it is rec-

ommended that the SNR is set somewhere in the range of [1, 10] and the CNR is set

somewhere between [0.1, 2]. For this example, the two are set to be SNR: 5 and CNR: 0.5.

There will be no phase activation added in this example, so Phase: 0. Once all inputs are

confirmed to be correct, the time series is simulated by pressing the Generate Time Series

Data button.

Once the simulation is complete, a summary of simulation will be displayed and the

Time Series panel will be populated with data. From here, the images can be observed

and sorted through to check for any errors in simulation. A time series of a voxel in an

active region may be generated to observe any noticeable patterns. The data may then be

analyzed using custom or built-in tools. This can be done for task detection, noise analysis,
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etc. The results for this example are shown in Figure 12. The summary of simulation for

this example reads:

The following fMRI time series data was simulated on 11-Nov-2024 at 17:07:23.

The simulated time series is of slice 48 from a size 96 phantom in the Axial

plane. The MRI parameters were set to be the following: Acceleration Factor

= 1, Field Strength = 3T, TE = 60.4ms, TR = 1000ms, Flip Angle = 90deg,

EESP = 0.832ms, and Number of Coils = 1. The data was simulated with

the GradientEcho SigEq.m signal equation using the Cartesian kspace.m k-space

trajectory. The experimental design involved an initial 16 rest images followed

by 19 epochs, each consisting of 16 task images followed by 16 rest images for a

total of 624 images. The SNR was set to 5 and the CNR was set to 0.5. There

were 0 degrees of phase added to the activation. Images were reconstructed using

the CartesianIFFT.m algorithm.

4 Discussion and future work

SHAKER is a one-stop shop for fMRI simulation. The GUI-based approach to the simulator

allows for specially simulated data to get quickly into the hands of researchers as compared

to long wait times for experimental data. The physics-based approach entrusts that the

simulated data is representative of what a proper MRI machine might output. The most

recent version of SHAKER can be found on GitHub at the following URL: https://

github.com/bodensjc/SHAKER. Due to the public availability of SHAKER, it can remain

in a constant state of development as users contribute ideas and needs for the simulation

tool. All thoughts and considerations for future development are asked to be sent to the

corresponding author.

Future consideration for this work involve the addition of more MRI features and param-

eters as well as additional fMRI experimental design components. Control of Field-of-View
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(FOV) and bandwidth could be helpful for generating zoomed images. More control of the

noise generation through temporal variation as well as spatial. The inclusion of intra- and

inter-imaging motion for fMRI experiments would help test registration and motion correc-

tion algorithms. Standard reconstruction methods such as SENSE and GRAPPA can be

implemented to facilitate accelerated parallel imaging (Pruessmann et al., 1999; Griswold

et al., 2002). Proprietary non-uniform inverse Fourier transforms may also be implemented

to facilitate the reconstruction of non-Cartesian based k-space trajectories. Simultaneous

multi-slice (SMS) techniques such as CAIPIRINHA (Breuer et al., 2005) could be sup-

ported in the future as well as other full- or partial-volume imaging methods. Additional

support for the processing of archival data will be added, including techniques such as:

Nyquist ghost correction, zero-filling, apodization, motion correction, static B0 correction,

etc.

SUPPLEMENTARY MATERIAL

SHAKER MATLAB Application: The most recent version of SHAKER can be found

on GitHub at the following URL: https://github.com/bodensjc/SHAKER. Any

questions regarding the installation and operation of the software can be directed

to the corresponding author.
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