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Functional magnetic resonance imaging (fMRI) data generally consist of
time series image volumes of the magnitude of complex-valued observations
at each voxel. However, incorporating Gaussian-based time series models and
the Rice distribution – a more accurate model for the data – in the time series
have been separated by a distributional “mismatch”. We bridge this gap by in-
cluding pth-order autoregressive (AR) errors into the Gaussian model for the
latent real and imaginary components underlying the Rice-distributed mag-
nitude data. Parameter estimation is then done by augmenting the observed
magnitude data with the missing phase data in an Expectation-Maximization
(EM) algorithm framework, and followed by AR order determination and
computation of test statistics for activation detection. Using simulated and ex-
perimental low-SNR fMRI data, we compare the performance of this Ricean
time series model with a Gaussian AR(p) model for the magnitude data, and
also with a complex Gaussian time series model for the entire complex-valued
data. Our results show improved parameter estimation and activation detec-
tion under the Ricean AR(p) model for the magnitude data than its Gaussian
counterpart. The model using the complex-valued data (which is rarely col-
lected in practice) detects activation better than both magnitude-only models
but only because it has more data. Thus, while our results here provide for
the improved analysis of commonly-collected and archived magnitude-only
fMRI datasets, they also argue strongly against the currently routine practice
of discarding the phase of the complex-valued fMRI time series, advocating
instead for their inclusion in the analysis.

1. Introduction. Functional magnetic resonance imaging (fMRI) is a promi-
nent non-invasive modality for studying human brain function. It is built upon
the principle of the Blood Oxygen Level Dependent (BOLD) contrast (Bandettini
et al., 1993; Belliveau et al., 1991; Kwong et al., 1992; Ogawa et al., 1990), where
firing neurons lead to changes in the blood oxygen levels of neighboring vessels,
and the magnetic resonance (MR) signal fluctuates due to the differing magnetic
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susceptibilities of oxygenated and deoxygenated hemoglobin (Lazar, 2008). Sci-
entists can gain insight on the functional structures of the brain by analyzing time
courses of MR signals acquired while a subject performs a designed series of tasks.

The voxel-wise MR signal at each time point is originally complex-valued, con-
taining real and imaginary (or equivalently, magnitude and phase) components.
This complex-valued attribute is a consequence of how the data are acquired: the
originally measured, complex-valued k-space data (Brown, Kincaid and Ugurbil,
1982; Ljunggren, 1983; Tweig, 1983) consist of the different frequency contribu-
tions to the signal from each voxel resulting from magnetic field gradients (Jez-
zard and Clare, 2001). Then, the application of the inverse Fourier transform (Jain,
1989), a complex-valued operation on the k-space data, separates these frequencies
and localizes each voxel’s measurements. However, despite the fact that the orig-
inal signal is complex-valued, statistical analysis of fMRI data is almost always
necessarily only on the magnitude data, because the concomitant phase measure-
ments are discarded and irretrievable once the (magnitude) data are extracted from
the scanner (where it is overwritten by subsequent scans). We refer to such anal-
yses as “magnitude-only” (MO) statistical analyses, and note that this approach
likely arises as a consequence of the default output of MR scanners that does not
routinely include phase images, even though they can easily be collected by sim-
ply changing a preset variable in an input file (Yu et al., 2018). Consequently, most
fMRI data and analyses are MO, and, at least figuratively, do not use half of the
originally available data.

One of the most common forms of MO analysis fits, at each voxel, a general lin-
ear model (Friston et al., 1995) for the (preprocessed) time series observations in
terms of a waveform representing the expected BOLD contrast. This waveform is
the convolution of the stimulus time course with the hemodynamic response func-
tion (HRF), which gives the BOLD response to an instantaneous neuronal activa-
tion (Friston, Jezzard and Turner, 1994; Glover, 1999). These general linear mod-
els for magnitude fMRI time series also incorporate autoregressive (AR) (Bullmore
et al., 1996; den Dekker et al., 2009; Marchini and Ripley, 2000) or autoregressive
moving average (ARMA) (Locascio et al., 1997) errors, due to several reasons.
For one, the hemodynamic response to a single neural activation takes between 15
and 20 seconds (Lazar, 2008), which is much longer than the sampling intervals of
many fMRI techniques — for instance, of between 100 milliseconds and five sec-
onds for echo-planar imaging (EPI) techniques (Friston, Jezzard and Turner, 1994).
Additional sources of autocorrelation are also provided by the subject’s cardiac
and respiratory cycles (Friston et al., 2000), and by the common pre-processing
step of temporal smoothing. From these model fits, the time series at each voxel is
aggregated to a test statistic that measures the degree of activation in the Statisti-
cal Parametric Mapping (SPM) framework of Friston et al. (1990). Thresholding
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methods are then applied to the SPM to identify activated voxels (Genovese, Lazar
and Nichols, 2002; Logan and Rowe, 2004; Worsley et al., 1996).

The above MO approaches assume that the magnitude measurements follow
a Gaussian distribution, but a more correct model utilizes the Rice distribution
(Gudbjartsson and Patz, 1995; Rice, 1944), as we show in the following. It is well-
known (Henkelman, 1985; Macovski, 1996; Sijbers et al., 1998) that the complex
k-space data are Gaussian distributed, and this distributional assumption is also
preserved, by linearity, upon applying an inverse Fourier transform. Specifically, it
is commonly assumed (Wang and Lei, 1994) that the real and imaginary measure-
ments at a single point in space and time are independent normal random variables
with the same variance and phase-coupled means; it follows that the magnitude
has a Rice distribution. The Gaussian MO model is often justified by the fact that
the Rice distribution approaches the Gaussian distribution for large signal-to-noise
ratios (SNRs).

However, fMRI scans that are more detailed, acquired faster or on portable sys-
tems (Liu et al., 2021), come at the loss of SNR. For magnitude fMRI time se-
ries, the SNR represents the ratio of the mean, that is, the non-activation-related,
baseline signal to the standard deviation (SD) of the noise time series.1, 2 It is
well-known that SNR is proportional to voxel volume and inversely proportional to
image acquisition time (Lazar, 2008). Thus, although scans with increased spatio-
temporal resolution show promise in a clinical setting in pre-surgical mapping and
also in understanding human neuropsychology (Rosen and Savoy, 2012), they also
come at the cost of decreased SNR. SNR is also proportional to magnetic field
strength, so ultra-high-field (UHF) MRI (Balchandani and Naidich, 2015) makes
high-resolution fMRI more feasible, but UHF scanners presently lack wide avail-
ability (Cosottini and Roccatagliata, 2021). There has also lately been the move
to make MRI (and fMRI) more accessible through the use of ultra-low field mag-
nets (Liu et al., 2021), which while providing more accessible, cost-effective, and
environmentally sustainable scanning equipment, however yield images of rela-
tively poor quality, lower SNR and limited spatial resolution (Islam et al., 2023).

Out of the above concern that the Gaussian assumption may not be adequate for
such low-SNR data, Zhu et al. (2009) developed Rice-distributed models that ig-
nored temporal dependence in the voxel-wise time series, with Bayesian method-
ology for this problem also developed in Wegmann, Eklund and Villani (2017).
Also, Solo and Noh (2007) demonstrated that Gaussian-model-based maximum

1There is also the contrast-to-noise ratio, or CNR, that is the ratio of the amplitude of the BOLD
contrast to the noise SD.

2It should be noted that we are speaking of temporal SNR – comparing measurements across time
at a single voxel – and not image SNR, which would compare measurements across voxels at a single
time point; see Murphy, Bodurka and Bandettini (2007).
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likelihood (ML) estimates of parameters for simulated Ricean data are biased for
SNRs under 5, with the bias increasing as the SNR decreases. But, a Ricean model
for the observations that also incorporates temporal dependence has never previ-
ously been developed, and we address this lacuna in this paper.

1.1. Main contributions of this paper. We highlight the main contributions to
the statistics and scientific community that we make through this paper. First, we
provide methodology and analyze the use of autoregressive time series regression
for data that are from the Rice distribution. In doing so, we address the gaps in
Zhu et al. (2009) or in Wegmann, Eklund and Villani (2017) that ignored temporal
structure while developing Rice-based regression models for the fMRI time series.
Adrian, Maitra and Rowe (2018) showed substantial gains in using the complex-
valued data over those using (Gaussian-distribution-assumed) MO-only data, how-
ever, all archived or acquired datasets from fMRI studies are MO, and therefore it
is important to see if the analysis of such datasets can be improved by using more
accurate Rice-distributed AR time series models, especially in low-SNR situations.

Second, we provide a thorough and detailed comparison of the CV-based anal-
ysis (Adrian, Maitra and Rowe, 2018) of fMRI data vis-a-vis that obtained using
the methods developed in this paper. We show that while our Rice-distributed mod-
eling of MO datasets improves parameter estimation and activation detection ac-
curacy, over those done by Gaussian-based MO analysis, with the improvement
very pronounced at low SNRs, both analyses approaches are outperformed by CV-
based analysis. Therefore, we advocate to the fMRI and scientific community for
the storage (and analysis) of CV (both magnitude and phase) fMRI data, especially
because, as mentioned earlier, its acquision is a simple matter of modifying a pre-
set variable in an input file (Yu et al., 2018). At the same time, it is important to
reiterate, as in the previous paragraph, that archived datasets or those gathered un-
der current practice, only have the magnitude values, with the phase having been
discarded and therefore unretrievable, and so need the methods developed in this
paper for their improved MO-based analysis.

Third, as will be discussed in Section 2, we provide to the community not only
a complex-valued fMRI dataset of a finger-tapping experiment, but one that, with
the innovative use of a radio-frequency (RF) coil, provides us with a low-SNR
dataset of a well-studied experiment, and allows for benchmarking of performance
of our more accurate MO-based methods in lower-SNR frameworks. Ultra-low-
field MRI is increasingly gaining popularity, however these systems are mostly
unavailable publicly, and our framework fills this gap, providing a CV dataset with
both magnitude and phase measurements.

Fourth, but also significant, our immediate application in this paper is in the
context of analyzing fMRI time series, but similar problems also arise in the context
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of signal processing and communications (Abdi et al., 2001; Arafa and Messier,
2010; Bar-Shalom, Li and Kirubarajan, 2001; Hajri, Youssef and Patzold, 2009;
Lindsey, 1964) where it may be desirable to understand the characteristics and
behavior of wireless, radar and sonar signals in relation to other factors. Another
context is in meteorology (Baı̈le, Muzy and Poggi; Best, Rayner and Thas, 2010;
, 2024) where first the Rayleigh and then the Rice and the M -Rice distributions
have lately been used to better model the windspeed, and improving regression
modeling of Rice-based time series data are important, for instance for predicting
windspeed and wind energy energy output (Wang et al., 2019).

1.2. Organization of this paper. The remainder of the paper is structured as
follows. Section 2 introduces a series of low-SNR images acquired from a finger-
tapping experiment that is our motivating application. These images have a lower
SNR than typical fMRI data due to their being acquired with the body coil in-
stead of the head coil, and their analysis here is motivated by the divergence of
the Rice and Gaussian distributions at low SNRs. Section 3 illustrates the novel
methodological development of the MO AR(p) Ricean model. Section 4 performs
simulation experiments to study the validity of the methodological results and com-
pares the results using different models, under a known ground truth. We compare
three models: the AR(p) Ricean and Gaussian models for MO voxel time series,
as well as a model that utilizes the entire complex-valued (CV) data. Our primary
focus is on the two models for MO data, as the entire CV data is rarely collected,
but we also present comparisons between the CV versus MO data-based models to
advocate for collecting the complete data. Section 5 presents the statistical analysis
of the low-SNR dataset and its implications. We conclude with a discussion of the
results and the paper. Our paper also has a supplement containing additional details
regarding methodology, the simulation experiments, and the dataset analysis. Sec-
tions, figures, and equations in the supplement are referenced here with the prefix
“S-”.

2. A low-SNR fMRI finger-tapping experiment dataset.

2.1. Data acquisition. We develop our methods in the backdrop of a sequential
finger-tapping experiment, the type of which are applied to noninvasive neurosur-
gical preparation (Lee et al., 1999). Experiments that use finger tapping, sponge
squeezing, or brushing of the palms as stimuli in block design are used to identify
the location of hand function in candidate patients for resective surgical treatment
for tumors and epilepsy (Lee, Jack and Riederer, 1998). While it is well-known that
the central sulcus in the sensorimotor cortex is the location of hand function for
normal healthy adults (Rumeau et al., 1994), fMRI allows the location of specific
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FIG 1. Anatomical image of the second slice identifying the left central sulcus.

functional areas to be verified noninvasively in relation to the proposed surgical
target (Lee et al., 1999).

In our application, MR images were acquired with TR = 1s during a block design
experiment with an initial 16s of rest followed by 19 epochs of 16s of right-hand
finger tapping alternating with 16s of rest. Following standard practice, the first
three images are excluded from our analysis due to machine “warmup” effects,
leaving us with a temporal sequence of n = 621 images. Each volume image was
composed of seven 2.5 mm thick 128× 128 axial slices with a 24.0 cm FOV. Due
to the decussation of nerve fibers in the upper slices of the brain, crossing from one
lateral side to the other (Carpenter, 1991), the right-hand finger tapping activates
the left central sulcus (identified in Figure 1).

The data were acquired with the body coil (also known as the RF coil, as it
produces the radiofrequency pulse used to produce the ”resonance” condition of
MRI). In general, the body coil has a large measurement field, and thus has lower
SNR than specialized coils such as the head coil usually used in fMRI studies.
Health care sites in developing countries may use body coil acquisition because
specialized coils represent additional costs beyond the MR scanner. Additionally,
spinal (Powers, Ioachim and Stroman, 2018) and renal fMRI (Zhang et al., 2013)
use body coil acquisition. Using body (rather than head) coil acquisition provides
us with a lower SNR dataset of a well-studied experiment to serve as a marker
for performance in low-SNR settings, which is where CV, MO Ricean and MO
Gaussian models have been shown to diverge previously. Further, as mentioned in
Section 1.1, it is extremely rare for such a dataset to be publicly available, so we
make it available to the scientific community at https://github.com/dadrian14/arp-

https://github.com/dadrian14/arp-rice-data
https://github.com/dadrian14/arp-rice-data
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rice-data.

2.2. Data processing pipeline. For this dataset, the phase components of the
time series images were not discarded but stored along with the magnitude images
used in traditional fMRI analysis. The data processing flow included Nyquist ghost
removal and correction for global zero-order off-resonance using three navigator
echos (Jesmanowicz, Wong and Hyde, 1993; Nencka, Hahn and Rowe, 2008), im-
age reconstruction from k-space by inverse Fourier transform (Kumar, Welti and
Ernst, 1975; Rowe, 2016), and estimation and correction of the dynamic field us-
ing temporal off-resonance alignment of single-echo timeseries (TOAST) (Hahn,
Nencka and Rowe, 2009, 2012). A binary mask of voxels above 12% of the max-
imum voxel signal magnitude was generated from the first magnitude image of
the dataset (before discarding the first three images) to represent the voxels within
the brain subject to statistical activation detection. In addition, we used smooth-
ing splines to detrend the voxel time series, after comparing several methods (see
Section S-1.1).

After preprocessing, we applied the CV and MO models to each voxel time se-
ries. For each model, the design matrix X had n = 621 rows and q = 2 columns:
one column was an intercept modeling the baseline MR signal and the other was a
zero-centered waveform modeling the expected BOLD repsonse given by a convo-
lution of the stimulus time course with the Glover (1999) hemodynamic response
function. The bottom panel of Figure S-1 shows a superposition of the block de-
sign stimulus time course with this expected BOLD response waveform. The next
section presents these CV and MO time series models in detail.

3. Methodological development. We compare three models for fMRI time
series: the AR(p) Ricean and Gaussian models for MO voxel time series, as well
as a model that utilizes the entire complex-valued (CV) data. However, the AR(p)
Ricean model and its estimation needs development, so we use this section to do
so.

3.1. Statistical models for CV and MO time series. We first introduce nota-
tion, focusing on a single voxel (and suppressing voxel-related subscripts). The
CV measurement at time t can be denoted in real/imaginary form by yRt + iyIt
or in magnitude/phase form by rt exp (iϕt) = rt(cosϕt + i sinϕt). Trigonomet-
ric identities in the complex plane hold that yRt = rt cosϕt, yIt = rt sinϕt,
rt = (y2Rt + y2It)

1
2 , and ϕt = arctan4(yIt, yRt), the 4-quadrant arctangent (see

Glisson, 2011, Page 348) corresponding to arctan(yIt/yRt). We denote the real,
imaginary, magnitude, and phase time series vectors by yR = (yR1, . . . , yRn)

′,
yI = (yI1, . . . , yIn)

′, r = (r1, . . . , rn)
′, and ϕ = (ϕ1, . . . , ϕn)

′, with n denoting

https://github.com/dadrian14/arp-rice-data
https://github.com/dadrian14/arp-rice-data
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the number of MR scans. The Rowe and Logan (2004) model states that

(1)
(

yR

yI

)
=

(
X 0
0 X

)(
β cos θ
β sin θ

)
+

(
ηR

ηI

)
,

where the expected magnitude response Xβ is coupled with the constant phase lo-
cation parameter θ. The columns of X represent various components of the mag-
nitude signal including the baseline level and the expected BOLD contrast. The
errors η = (η′

R,η
′
I)

′ ∼ N (0,Σ ⊗ Φ), where Σ and Φ are matrices of order
2 and n, specifying the real/imaginary and temporal covariances (the latter with
an AR(p) structure), and the direct (Kronecker) product ⊗ implies separability of
these covariances. Based on this framework, we present three models:3

1. Complex-valued AR(p) (CV) model: This model takes the form of (1) with
an AR(p) structure for Φ and Σ = σ2I2. We denote the AR coefficients by
α = (α1, . . . , αp)

′.
2. Magnitude-only AR(p) Ricean (MOR) model: The MOR model is the MO

(marginal) counterpart of the CV model; in other words, under the MOR
model, the latent real and imaginary time series follow the CV model. Un-
der the MOR model, the probability density function (PDF) of magnitude
measurements rt is

(2) f(rt;µt, γ0) =
rt
γ0

exp

[
−(r2t + µ2

t )

2γ0

]
I0
(
µtrt
γ0

)
,

where µt = x′
tβ, x′

t is the tth row of X , γ0 = V ar(ηRt) = V ar(ηIt) is
zeroth order autocovariance of the latent real and imaginary errors, and I0(·)
is the modified Bessel function of the first kind and the zeroth order.

3. Magnitude-only AR(p) Gaussian (MOG) model: This model assumes r =
Xβ + ϵ, where ϵ follows an AR(p) structure.

These three models are summarized in Table 1, which lists the key features that
differentiate them. These features are as follows:

1. Twice the quantities: The CV model uses the real and imaginary measure-
ments at each voxel and time-point, while the MOR/MOG models use only
the magnitudes, so the CV model uses twice the quantities of the MO data-
based models. (This does not necessarily mean that twice the amount of use-
ful information is present in the CV over the MO data, especially for models
of magnitude-related activation.4)

3For brevity, the distinction between the notations of corresponding parameters in different mod-
els is dropped.

4Rowe (2005a) introduces fMRI models that allow for activation in both the magnitude and phase
data.
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Model features
Model Twice the Ricean

Model Abbrev. Quantities magnitudes
Complex-valued AR(p) CV ✓ ✓

Magnitude-only Ricean AR(p) MOR ✓

Magnitude-only Gaussian AR(p) MOG
TABLE 1

Summary of the three models compared in this paper for complex-valued (CV) and magnitude-only
(MO) fMRI data and the features present in each model. These features are italicized whenever they

appear in the text.

2. Ricean magnitudes: The MOR model assumes the magnitude measurements
are Ricean distributed, while the MOG model uses a Gaussian approxima-
tion. The CV model also has Rice-distributed magnitudes.

Table 1 illustrates the hierarchical pattern of the features present across the three
models. As a result, comparing results for the CV/MOR models allows us to isolate
the influence of having twice the quantities in the CV data. Similarly, comparing
the MOR/MOG models shows the result of the Gaussian approximation of the
Ricean magnitudes.

3.2. Parameter Estimation. Of the three models introduced in Section 3.1, we
focus on the methodology of the MO Ricean AR(p) (or MOR) model due to its
novelty. We relegate methodological discussions of the CV and MOG models to
Section S-2.1.

The methodology for the Ricean AR(p) model fits nicely into the framework of
the EM algorithm (Dempster, Laird and Rubin, 1977; McLachlan and Krishnan,
2008) with r, ϕ, and (r,ϕ) playing the roles of the observed, missing, and com-
plete data, respectively. And because the EM algorithm and its extensions serve as
our “workhorse” methodology for the Ricean AR(p) model, we review it briefly
here. An iteration of the EM algorithm consists of the Expectation (E-) and Max-
imization (M-) steps. At the (k + 1)th iteration, the E-step calculates the objec-
tive function Q(τ ; τ (k)) = Eϕ|r,τ (k) [log f(r,ϕ; τ )], the expectation of the com-
plete data log-likelihood with respect to the conditional distribution ϕ|r at the cur-
rent parameter estimates τ (k). The M-step calculates the updated parameter values
τ (k+1) = argmaxτ Q(τ ; τ (k)) by maximizing the objective function. We denote
the vector of parameters by τ = (α′,β′, σ2)′. The EM algorithm has well-known
favorable properties such as monotone increase of the likelihood for each iteration
and reliable global convergence (McLachlan and Krishnan, 2008).

3.2.1. EM algorithm for ML estimation under the MO AR(p) Ricean model. In
this estimation procedure, we assume a known AR order p, after following the
methods described in Section 3.4. To compute starting values τ (0), we use the
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MOG model as demonstrated in Section S-2.1.2. With the algorithm initialized,
the E- and M-steps are as follows.

E-step. The complete data log-likelihood can be shown to be

(3) log f(r,ϕ; τ ) = −n log σ2 − log |Rn| − h/2σ2,

(Miller, 1995; Pourahmadi, 2001) where h = α̃′Dα̃, with α̃ as the (p+1)-vector
(1,−α1, . . . ,−αp), and D the (p + 1) × (p + 1) symmetric matrix with (i, j)th
element

(4) dij =

n−i−j∑
t=1

[
rt+irt+j cos(ϕt+i − ϕt+j)− µt+irt+j cos(ϕt+j − θ)
−µt+jrt+i cos(ϕt+i − θ) + µt+iµt+j

]
,

where µt = x′
tβ, x′

t is the tth row of X . In view of (3) and (4), the E-step involves
two kinds of expectations: the univariate expectations E[cos(ϕt − θ)|rt; τ (k)], t =
1, . . . , n, and the bivariate expectations E[cos(ϕt−ϕt+j)|rt, rt+j ; τ

(k)], j = 1, . . . , p,
t = 1, . . . , n− j. The univariate expectations can be shown (Section S-2.3.1) to be

Eϕt|rt;τ (k) [cos(ϕt − θ)] = A(µ(k)
t rt/γ

(k)
0 ), t = 1, . . . , n,

where A(ξ) = I1(ξ)/I0(ξ), with Im(ξ) being the mth order modified Bessel func-
tion of the first kind (Abramowitz and Stegun, 1965) evaluated at ξ.

The bivariate expectations are more cumbersome to obtain. First, we reduce
Eϕt,ϕt+j |rt,rt+j ;τ (k) [cos(ϕt − ϕt+j)] to the univariate expectation

(5) Eϕt|rt,τ (k)

{
A(K(ϕt))

K(ϕt)
[κ cos(ϕt − θ) + δ]

}
,

where K(ϕt) = [κ2+δ2+2κδ cos(ϕt−θ)]1/2, κ = rt+j(γ
(k)
0 µ

(k)
t+j−γ

(k)
j µ

(k)
t )/b(k),

and δ = γ
(k)
j rtrt+j/b

(k), with b(k) = γ
2(k)
0 − γ

2(k)
j . (See Section S-2.3.2 for more

details.) Because (5) cannot be evaluated analytically, we approximate it via the
Delta Method (Casella and Berger, 2002): E[f(X)] ≈ f [E(X)]. When applied to
(5), the Delta Method substitutes A(rtµ

(k)
t /γ

(k)
0 ) for each instance of cos(ϕt − θ),

including those in the K(ϕt) terms.

M-step. The global maxima of the objective function is not of closed form, so
we obtain τ (k+1) through three conditional maximization steps as in the ECM
algorithm (Meng and Rubin, 1993). First, we calculate the updated estimate α(k+1)

via the equations

(6)
p∑

j=1

(
d
(k)
ij + 2jγ

(k)
|j−i|

)
αj = d

(k)
i0 , i = 1, . . . , p,
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where d
(k)
ij is the E-step expectation of dij with µt evaluated at µ(k)

t and γ
(k)
j =

d
(k)
0j /(2n). Next, we calculate

(7) β(k+1) = (X ′R−1
n X)−1X ′R−1

n u(k),

where R−1
n is obtained from α(k+1) (as in Pourahmadi, 2001) and u(k) is a vec-

tor of n variables with tth element u(k)t = rtA(rtµ
(k)
t /γ

(k)
0 ). Note that it may

be necessary to enforce the boundary conditions Xβ(k+1) ≥ 0, in which case
(7) needs to be modified as discussed in Section S-2.3.3. Finally, we calculate
σ2(k+1) = h(k+1)/(2n), where h(k+1) = α̃′(k+1)D(k+1)α̃(k+1) and D(k+1) is
a matrix as before with terms d(k+1)

ij evaluated using µ
(k+1)
t = x′

tβ
(k+1).

3.2.2. Hybrid algorithm for ML estimation. As the EM algorithm progresses
through iterations, we monitor convergence using the maximum change in the pa-
rameter values across successive iterations. However, as is commonly known (McLach-
lan and Krishnan, 2008) the convergence of the EM algorithm is slow at low SNRs,
especially when β0/σ < 2. In order to speed up convergence, we employ the hy-
brid algorithm of Aitkin and Aitkin (1996) which alternates the EM iterations with
those from a modified Newton-Raphson (NR) method where the Fisher informa-
tion matrix is replaced by the empirical information matrix (Meilijson, 1989). The
hybrid algorithm starts with five EM iterations before switching to the modified
NR method until convergence of the parameters. In the latter case, we halve the
NR step size up to five times.

Parameter updates from the modified Newton-Raphson method are given by

(8) τ (k+1) = I −1
e (τ (k); r)S(r; τ (k)),

where I e(τ ; r) is the empirical information matrix and S(r; τ ) is the score statis-
tic. Both are constructed from the contributions to the score statistic at t=p+1, p+2,
. . . , n, denoted by s(rt; τ ) = ∂

∂τ log f(rt|rt−1, . . . , rt−p; τ ), which can be cal-
culated from the complete data loglikelihood using the identity (adapted from
McLachlan and Krishnan, 2008)

(9) s(rt; τ ) = Eϕ|r;τ

[
∂

∂τ
log f((rt, ϕt)|(rt−1, ϕt−1), . . . , (rt−p, ϕt−p); τ )

]
.

These calculations, detailed in Section S-2.3.4, use quantities from the E-step. The
empirical information matrix is calculated as

(10) I e(τ ; r) =

n∑
t=p+1

s(rt; τ )s
′(rt; τ )−

1

n− p
S(r; τ )S′(r; τ ),

where S(r; τ ) =
∑n

t=p+1 s(rt; τ ).
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3.3. Calculation of test statistics under the MO AR(p) Ricean model. We il-
lustrate the calculations of Wald and likelihood ratio test statistics for a general test
for activation, which posits H0 : Cβ = 0 against Ha : Cβ ̸= 0. Each test statistic
is based on the MLEs τ̂ calculated by the above EM/NR hybrid algorithm.

3.3.1. Wald test. The Wald test statistic is given by

(11) W = (Cβ̂)′
[
CI −1

e (τ̂ ; r)C ′]−1
(Cβ̂),

and asymptotically follows a null χ2
m-distribution, where m is the rank of C. It uti-

lizes the empirical information matrix I e of (10). However, our simulation studies
reported in Section S-2.4.1 indicate that the Wald test statistic does not follow this
null distribution for low-SNR time series, that is, when β0/σ < 2. This short-
coming of the Wald test motivates the derivation of the likelihood ratio test (LRT)
statistic described below.

3.3.2. Likelihood ratio test for Ricean AR(1) model. We derive an LRT for the
Ricean AR(1) model, whose false positive rate better conforms with the signifi-
cance level than the Wald test for low-SNR time series, as shown in Figure S-6.
This LRT statistic is only for the Ricean AR(1) model, as the observed data log-
likelihood is quite intractible for higher AR orders.5 From standard results, the
LRT statistic Λ = 2[ℓ(τ̂ )− ℓ(τ̃ )], where ℓ(·) is the loglikelihood function logL(·)
and τ̂ and τ̃ represent the MLEs of τ under Ha and H0, respectively. Like the
Wald statistic, the LRT statistic asymptotically follows a null χ2

m-distribution. To
derive the likelihood function L(τ ) = f(r; τ ) for the Ricean AR(1) model, we
note that f(r; τ ) can be factored as f(r1; τ )

∏n
t=2 f(rt|rt−1; τ ), where f(r1; τ )

is the Ricean PDF of (2). It can be shown (see Section S-2.4.2) that the conditional
PDF f(rt|rt−1; τ ) is equal to

(12)
rt
σ2

eC0

[
I0
(
rt−1µt−1

γ0

)]−1 ∞∑
m=0

ωmIm(C1)Im(C2)Im(C12),

where C0 = −[r2t +µ2
t +α2(r2t−1+µ2

t−1)−2αµt−1µt]/(2σ
2), C1 = rt−1(µt−1−

αµt)/σ
2, C2 = rt(µt−αµt−1)/σ

2, and C12 = αrt−1rt/σ
2. Also, in (12), ωm = 1

for m = 0 and ωm = 2 for m ≥ 1.

3.4. Choosing the order of the AR model. We suggest a sequential testing ap-
proach for determining the AR order p. Starting with k = 1, and for increasing
k, we posit H0 : p = k − 1 vs. Ha : p ≥ k (or, in terms of the AR coefficients,
H0 : ∀j ≥ k, αj = 0 vs. Ha : ∃j ≥ k : αj ̸= 0). The estimated AR order is then

5Recall that the Wald test statistic can derived for any AR order.
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p̂ = k′ − 1, where k′ is the first k in the sequence of tests for which H0 is not re-
jected. An LRT statistic given by 2(ℓk − ℓk−1), where ℓk is the optimized loglike-
lihood function for the AR(k) model, may be employed under the CVS and MOG
models. For the MOR model, we use the Wald test statistic α̂2

k/I
−1
e (τ̂ , r)αkαk

,
where the denominator is the diagonal entry of the inverse empirical information
matrix corresponding to αk. From standard results, each test statistic (whether LRT
or Wald) is asymptotically χ2

1-distributed under H0 : p = k − 1.
It can be shown that the significance level δ applied to each test controls “over-

detecting” the order (i.e., p̂ > p) in the sense that δ = P(p̂ > p|p̂ ≥ p). See
Adrian, Maitra and Rowe (2018, Section S-2.4) for a justification. Section S-2.5
uses simulation to demonstrate that the sequential testing approach to detecting
p gives similar results to approaches based on the AIC and BIC (Akaike, 1973;
Schwarz, 1978).

Our development in this section has laid the groundwork for our investigation of
fMRI analyses using the three models. We now proceed with our evaluations.

4. Simulation experiments. We perform simulation experiments to compare
the AR(p) Ricean model to two other models in a setting of known truth. See
Section 3.1 and Table 1 for a summary of these three models: the CV, MOR,
and MOG models. We simulated low-SNR complex-valued time series under the
CV model — and therefore also magnitude time series under the MOR model
— with the X matrix of the finger-tapping experiment (see Section 2). We used
white noise variance σ2 = 1, AR(1) temporal dependence with AR parameters
α = 0.2, 0.4, 0.6, and 0.8, baseline signal levels β0 from 0.5 to 5.0, and activation
levels β1 = 0.1, 0.2, and 0.3. Thus, the SNRs and CNRs of the simulated data
corresponded with these in the dataset (see Figure S-3). For each combination of
parameter values, we generated 10,000 voxel time series and fit each of the three
models under an assumed AR order of 1. Our model comparison analysis has two
main components: properties of the parameter estimates and activation detection
performance. To quantify simulation variability, we calculated standard errors for
all quantities using the bootstrap method (Efron and Tibshirani, 1986) with 1000
replications.

4.1. Properties of parameter estimates. Figure 2 summarizes the properties
of the parameter estimates, displaying the biases, standard errors (SEs), and Root
Mean Squared Errors (RMSEs) of β̂0, β̂1, σ̂2, and α̂. (It shows results for α = 0.4;
results for other αs are given in Figure S-9.) Focusing first on the biases, it is imme-
diately evident that the MOG model produces the most biased parameter estimates
due to its Gaussian approximation of the truly Ricean magnitudes. Specifically,
the biases of β̂0 and σ̂2 result from the mean and variance of the Rice distribution
(which are the quantities that the MOG model estimates) being above and below
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FIG 2. Biases, SEs (SE), and RMSEs (RMSE) of β̂0, β̂1, σ̂2, and α̂ under three models for simulated
time series under β1 = 0.2, α = 0.4, and different values of β0. The shaded areas cover the estimate
± 2 standard error intervals.

the Ricean location and scale parameters (Zhu et al., 2009). The MOG model bi-
ases decrease with increasing β0 because the Gaussian approximation to the Rice
distribution improves with SNR. These results match those already observed for
the temporally independent case (Adrian, Maitra and Rowe, 2013; Solo and Noh,
2007), and, additionally, we see here that the MOG model-based estimate of the
AR coefficient α is the most biased as well. The MOR model-based parameter es-
timates also show some biases at the lowest SNR time series; the CV model-based
estimates are unbiased in all cases.

Switching our focus to the SEs, we note that the CV model-based SEs of σ̂2

and α̂ are lower than those for the MO models. This corresponds to a similar result
observed in Rowe (2005b) about the sampling variances of σ̂2 for the temporally
independent case, and suggests that the twice the quantities feature of the CV data
is driving this difference. Overall, the RMSEs, which account for both bias and SE
as RMSE2(·) = Bias2(·) + SE2(·), are lowest for the CV model; in addition, the
CV model-based results are constant with β0 — i.e., not related to the SNR. This
suggests that, provided the CV data is collected, the CV model produces the most
reliable parameter estimates (arguing against the current practice of discarding the
phase data). However, given that archival datasets (of which there are massively
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many) do not have phase data stored, our results here also suggest the parameter
estimation benefits of using the AR MOR model in place of the currently-used AR
MOG model, especially in terms of bias for low SNR time series.

4.2. Activation detection performance. Next, we compare activation detection
performance, calculating LRT statistics for the activation test of H0 : β1 = 0 vs.
Ha : β1 ̸= 0 for each simulated time series. To summarize the power of each LRT
statistic, we calculated the partial area under the receiver operating characteristic
curve or the pAUC (McClish, 1989; Zhou, Obuchowski and McClish, 2011). The
pAUC is the area under the ROC curve — where the ROC curve plots the true
positive rate (TPR) against the false positive rate (FPR) — over a limited range of
FPR values.6 The rationale for using the pAUC rather than the (full) AUC, the area
under the ROC curve for all FPR values from 0 to 1, is to exclude contributions
to the curves from FPR values that are never used in practice, and to highlight
differences between the methods in the part of the ROC that are most likely to
be used in practice. For instance, using FPR values greater than 0.1 would allow
for far too many false positives than practically ever used; indeed, our significance
level threshold used on the real data in Section 5 is 0.001. Therefore, we calculated
the pAUCs over a FPR range of 0 to 0.05. We calculated the pAUCs (separately
for each combination of parameters β0, β1, and α) as the average of the TPRs for
the significance levels δ = 0.0001, 0.0002, 0.0003, . . . , 0.0500; each TPR is the
proportion of the 10,000 simulated test statistics greater than the χ2

1−δ,1 quantile.
As shown in Figure 3, the pAUCs of simulated LRT statistics are consistently

in the order (highest to lowest) of CV, MOR, and MOG models. While the figure
shows between-panel differences in the pAUCs due to the relationships between the
CNR and the values of β1 and α (positive and negative relationships, respectively),
the within-panel patterns are quite similar. While the CV model-based pAUCs are
relatively constant as a function of β0, the pAUCs of the two MO model-based
LRTSs decrease with β0.

We attribute the increased MOR model-based pAUCs relative to the MOG model
to proper modeling of the Rice-distributed magnitudes: the MOG model resorts to
a Gaussian approximation of the Rice distribution. Figure 4 displays the percent
pAUC increases of the MOR model-based LRTSs relative to the MOG model. We
note that the sizes of MOR model improvements in pAUC increase as β0 and β1
decrease and α increases, which correspond to decreases in SNR and CNR. While
it is not surprising that a lower SNR (with worse Gaussian approximation of the
Ricean magnitudes) is associated with a larger MOR model improvement, it is
worth noting that improvement is larger for lower activation levels (CNRs) as well.

6There are also pAUC versions that limit the TPR range (or both the FPR and TPR ranges), but
we use a FPR-limited pAUC here.
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FIG 3. The partial AUCs of the magnitude-only (MO) data-based LRT statistics decrease at low SNRs
relative to their complex-valued (CV) data-based counterparts. Also, the Ricean (MOR) model-based
pAUCs show improvements over those from the Gaussian (MOG) model. The shaded regions show
the pAUCs ± 2 standard errors.

As for the CV versus MO comparison, the twice the quantities feature seems to
be driving the difference in detection performance. The additional information in
the phase data (again, which is usually not collected) appears to be more valuable
to the activation detection as β0 (the SNR) decreases, as shown by the increasing
discrepancy in CV/MO pAUCs. In fact, we may view this in terms of the “missing
information principle” (Orchard and Woodbury, 1972). Section S-3.1.1 describes
how to calculate the observed (MO), missing (phase only), and complete (CV)
data-based the Fisher information matrices by applying the EM algorithm. Interest-
ingly, the curves of the “observed information” (in the MO data) and the “complete
information” (in the CV data) in Figure 5 look similar to the MO and CV model-
based pAUC curves in Figure 3. Both figures suggest that the phase data contain
useful information about the activation, even though the activation itself occurs in
the magnitude signal Xβ.

To summarize, the results of our experiments suggest that modeling the Ricean
magnitudes produces less-biased parameter estimates and better activation detec-
tion performance than the Gaussian approximation. Also, using twice the quanti-
ties in CV rather than MO data-based models leads to parameter estimates with
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FIG 5. Plots of the information matrices as a function of the SNR.

less variation and additionally improved activation detection. Although using the
CV data produces the best estimation and activation detection, the CV data has
historically not been collected; in this case, utilizing the Ricean model when only
magnitude (archival) data is available produces sizeable gains over the Gaussian
approximation.

5. Results on low-signal fMRI dataset. In this section, we identify activa-
tion in the low-SNR fMRI dataset introduced in Section 2 under the CV, MOR,
and MOG models. Working with each voxel time series of the dataset separately,
we first detected the AR orders (see Figure S-10) and then tested for activation
using H0 : β1 = 0 vs. Ha : β1 ̸= 0, obtaining p-values from the LR and Wald
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FIG 6. Activation maps with inset maps showing left central sulcus ROI; numbered voxels represent
those having test statistics with the lowest p-values.

test statistics under the null χ2
1-distribution. To determine activation, we used a

significance level threshold of 0.001 (Woo, Krishnan and Wager, 2014).

5.1. Activation detection in raw data. We display activation maps of the sec-
ond slice7 according to each of the three models in Figure 6. Each map shows a

Voxel numbers from Fig. 6
Model 1 2 3 4 5 6 7 8 9 10 avg
CV 8.82 8.70 8.18 7.53 5.31 4.42 4.65 3.14 4.24 3.61 5.86
MOR 8.48 5.52 6.93 5.20 5.71 5.21 5.20 5.00 4.37 4.13 5.57
MOG 8.49 4.96 6.94 5.20 5.71 5.03 5.21 5.00 4.37 4.13 5.50

TABLE 2
Negative logarithm (base 10) of the p-values for the voxels numbered 1-10 in the inset maps of

Figure 6 for test statistics under the CV, MOR, and MOG models. (For instance, the CV model-based
p-value for voxel 1 is 10−8.82.) Also, the ”avg” column represents the average across voxels.

grayscale anatomical image (the magnitude image at the first time point) with the
voxels having p-values less than 0.001 colored according to the legend. The acti-
vation is rather sparse except for a region containing the left central sulcus (Figure
1) — recall, the site guiding right-hand function for normal healthy adults — so
we focus on this region of interest (ROI) in the inset maps. Specifically, we focus
on the ten voxels in this ROI with test statistics that provide the lowest minimum
p-value over the three models, which are identified by numerals (from 1 = lowest to
10 = highest p-value) in the inset maps of Figure 6. This numbering carries over to
Table 2 where the size of the p-values can be compared more clearly across models.
(See Figure S-12 for a graphical representation of Table 2.) Though this compar-
ison varies of across voxels, we note that the average of the log base-10 p-values
is lowest for the CV model, followed by the MOR model and then by the MOG
model. As we saw in simulation experiments, the experimental data also indicates

7We focus on the second slice (in the superior direction) because it shows the strongest activation.
For comparison with the two neighboring slices, see Figure S-11.
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that if the CV data is available, the CV model produces better activation detection
power than MO data-based models. However, in the common case of MO data, our
AR(p) Ricean model shows more power than the the corresponding model based
on a Gaussian approximation to the Rice distribution.

5.2. Adding noise to the raw data. To further investigate the effect that low
SNR has on activation detection, we added more noise to the acquired CV data. So,
for the ten voxels identified in Figure 6 with acquired CV time series (yRt, yIt), t =
1, . . . , 621, we obtained new synthetic data y∗Rt = yRt +wRt and y∗It = yIt +wIt,
with wRt, wIt ∼ iid N(0, σ2

a). Because a representative, data-based estimate of the
noise SD is 0.15, we generated data using σa = 0.15, 0.20, 0.25, and 0.30. Adding
noise to the original data in this manner reduces the SNR and CNR (see Figure
S-13) as would occur with increasing spatial resolution or decreasing field strength
of the MR scan. Table 3 shows the proportions of the 10,000 generated datasets in
which each of the ten voxels was detected under each model at the 0.001 signifi-
cance level (also see Figure S-14). With the added noise, the detection power more
consistently follows the order of CV (greatest), MOR, and MOG (least) models
across the 10 voxels than the p-values of the raw data in Figure 6.

6. Discussion. In this paper, we developed a Ricean model for fMRI magni-
tude time series that incorporates autoregressive time dependence. Our approach
applies AR(p) errors to the Gaussian-distributed real and imaginary components
from which the magnitudes are computed. We estimated model parameters from
the MO data using the EM algorithm with the phase portion of the latent complex-
valued data playing the role of missing data. We then extended the EM algorithm
to derive Wald and LRTs for activation and AR order detection.

We compared this AR(p) Ricean model to two other models: the CV model for
complex-valued data and the MOG model which employs a Gaussian approxima-
tion for the truly Rice-distributed magnitudes. As previously discussed, complex-
valued fMRI data is rarely collected in practice (although we strongly advocate
for it); so, our main focus is how to make the best use of existing (i.e., archived)
magnitude-only data through the MOR rather than the MOG model. We expected
the CV model to perform better than the two MO data-based models simply due to
the CV data having twice the quantities and the MOR model to perform better than
the MOG model due to properly modeling the Ricean magnitudes.

Simulation-based results confirmed these expectations when we evaluated the
quality of parameter estimates and the activation detection under each model. The
parameter estimates of the CV model had lower RMSEs than the MO data-based
models, and the MOR model-based parameter estimates were much less biased
than those from the MOG model. Similarly, we demonstrated greater activation
detection power (as measured by pAUC) for the CV model than the two MO data-
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SD of added noise σa

Voxel Model 0.15 0.2 0.25 0.3
1 CV 0.951 (0.002) 0.731 (0.004) 0.476 (0.005) 0.304 (0.004)
1 MOR 0.931 (0.002) 0.670 (0.004) 0.390 (0.004) 0.216 (0.004)
1 MOG 0.903 (0.003) 0.625 (0.004) 0.363 (0.004) 0.200 (0.004)
2 CV 0.947 (0.002) 0.719 (0.004) 0.479 (0.005) 0.306 (0.004)
2 MOR 0.929 (0.002) 0.660 (0.004) 0.409 (0.004) 0.230 (0.004)
2 MOG 0.868 (0.003) 0.579 (0.005) 0.357 (0.004) 0.204 (0.004)
3 CV 0.896 (0.003) 0.633 (0.004) 0.399 (0.004) 0.238 (0.004)
3 MOR 0.717 (0.004) 0.398 (0.004) 0.212 (0.004) 0.103 (0.003)
3 MOG 0.718 (0.004) 0.405 (0.004) 0.209 (0.004) 0.102 (0.003)
4 CV 0.880 (0.003) 0.611 (0.004) 0.378 (0.004) 0.229 (0.004)
4 MOR 0.408 (0.004) 0.180 (0.004) 0.090 (0.003) 0.045 (0.002)
4 MOG 0.351 (0.004) 0.156 (0.003) 0.081 (0.002) 0.042 (0.002)
5 CV 0.490 (0.005) 0.261 (0.004) 0.152 (0.003) 0.090 (0.003)
5 MOR 0.513 (0.005) 0.244 (0.004) 0.121 (0.003) 0.057 (0.002)
5 MOG 0.442 (0.005) 0.210 (0.004) 0.106 (0.003) 0.052 (0.002)
6 CV 0.811 (0.004) 0.525 (0.005) 0.314 (0.004) 0.192 (0.004)
6 MOR 0.788 (0.004) 0.468 (0.005) 0.242 (0.004) 0.132 (0.003)
6 MOG 0.629 (0.004) 0.357 (0.004) 0.188 (0.004) 0.108 (0.003)
7 CV 0.361 (0.004) 0.187 (0.004) 0.109 (0.003) 0.068 (0.002)
7 MOR 0.412 (0.004) 0.201 (0.004) 0.108 (0.003) 0.060 (0.002)
7 MOG 0.372 (0.004) 0.187 (0.004) 0.102 (0.003) 0.057 (0.002)
8 CV 0.443 (0.005) 0.240 (0.004) 0.133 (0.003) 0.085 (0.003)
8 MOR 0.410 (0.004) 0.214 (0.004) 0.108 (0.003) 0.065 (0.002)
8 MOG 0.322 (0.004) 0.171 (0.003) 0.091 (0.003) 0.057 (0.002)
9 CV 0.293 (0.004) 0.165 (0.003) 0.085 (0.003) 0.058 (0.002)
9 MOR 0.282 (0.004) 0.143 (0.003) 0.068 (0.002) 0.038 (0.002)
9 MOG 0.283 (0.004) 0.142 (0.003) 0.067 (0.002) 0.039 (0.002)
10 CV 0.193 (0.004) 0.109 (0.003) 0.067 (0.002) 0.042 (0.002)
10 MOR 0.216 (0.004) 0.109 (0.003) 0.054 (0.002) 0.028 (0.002)
10 MOG 0.182 (0.004) 0.093 (0.003) 0.048 (0.002) 0.025 (0.001)
avg CV 0.627 (0.001) 0.418 (0.001) 0.259 (0.001) 0.161 (0.001)
avg MOR 0.561 (0.001) 0.329 (0.001) 0.180 (0.001) 0.097 (0.001)
avg MOG 0.507 (0.001) 0.293 (0.001) 0.161 (0.001) 0.089 (0.001)

TABLE 3
Proportions (and their standard errors) of simulated time series detected as detected when noise

with standard deviation σa was added to the raw data for the 10 voxels identified in Figure 6. The
”avg” rows show average proportions over the 10 voxels.

based models, and the MOR model-based pAUCs were greater than those from the
MOG model. For all comparisons, the differences were greatest at low SNRs.

We then compared these models on a finger-tapping experiment, acquiring the
data using the body coil to study a low-SNR dataset. For voxels in the expected
activation region showing the most activation, the CV model produced the lowest
average p-values, followed by the MOR model (and the MOG model last). Al-
though the order of the p-values varied by voxel, we are able to more consistently
superior activation detection of the CV model (and MOR model greater than MOG
model) when we added extra simulated white noise to the experimental voxel time
series, which decreased the SNR.

A reviewer has asked about the computational complexity of MO Ricean over
CV data-based methods. We note that while the CV-based analysis has a larger
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storage requirement, the CV-based and Gaussian MO models are of lower com-
puts can use direct methods to estimate parameters, the CV-based analysis is the
highest since it deals with twice the amount of data, however, in terms of CPU
usage, CV-based analysis (and Gaussian MO-only analysis) have lower computa-
tional complexity than the Rice-based model. However, the Rice-based MO anal-
ysis is more accurate, in terms of parameter estimation and activation detaction,
than the Gaussian MO-only analysis, and especially at lower SNR.

Future directions for this research can explore fMRI time series models that al-
low for activation in magnitude and phase (Rowe, 2005a). The models we have fo-
cused upon in this article (even the CV data-based ones) have assumed task-related
changes in magnitude only, with no task-related phase changes. It may be worth
exploring a single model that allows for both. Another area for future work lies in
generalizing the modeling of magnitude time series beyond the AR(p) Rice model
presented here. MR images collected by simultaneous acquisition from multiple
independent coils (Tristán-Vega, Aja-Fernández and Westin, 2012) can be shown
to follow the non-central chi distribution, with degrees of freedom equal to twice
the number of coils (Wegmann, Eklund and Villani, 2017). The Rice distribution is
the special case for a single coil and two degrees of freedom.
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S-1. Supplement to Section 2 – Further description of the dataset. Figure
S-1 shows plots of the real, imaginary, magnitude, and phase time series at a single
voxel, at one of the voxels showing the most activation. It also displays the time
course of the “on-off” fingertapping and the expected BOLD response obtained
by convolving this 0/1 stimulus time course with the Glover (1999) hemodynamic
response function (HRF). Although this BOLD response is present in the data,
trends in the time series (also known as also scanner drift) are also present which
must be accounted for.

S-1.1. Detrending scanner drift. Detrending scanner drift is a common pre-
processing step in the statistical analysis of fMRI time series. Two sources of this
drift are noise from the MR scanner and aliasing of cardiorespiratory cycles (Tan-
abe et al., 2002), and the magnitude of these changes “often far exceeds” both the
white noise and the amplitude of the task-related single change (Genovese, 2000).
Our study of the dataset’s time series suggests diverse, nonlinear shapes of drift
profiles, not only for magnitude time series such as those reported in Genovese
(2000), but for the real, imaginary, and phase time series as well. Figure S-2 shows
the plot of such a time series and compares four methods for fitting the trend: the
CV running line (Adrian, Maitra and Rowe, 2018), a polynomial fit, a natural cu-
bic spline, and a smoothing spline. We determined that the smoothing spline was
the preferred choice, but to study the robustness of our choice, we used both the
CV running line and smoothing splines in practice.1 Figure S-2 shows a plot of
the magnitude and phase time series for a selected voxel and compares the fit from
four curve fitting methods. One is the “CV running line” method introduced in
Adrian, Maitra and Rowe (2018) that fits linear models to both the magnitude and
phase time series (simultaneously), using a moving window that only considers

*Research supported in part by the the National Science Foundation CAREER Grant # DMS-
0437555 and the National Institutes of Health (NIH) awards #R21EB016212 and #R21EB034184.

†Research supported in part by the National Institutes of Health (NIH) award #R21NS087450.
1Indeed, the results were very similar for both detrending approaches, so we only present those

based on smoothing splines.
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FIG S-1. Time series of (from top) the real, imaginary, magnitude, and phase observations for one of
the voxels showing the most activation. Lighter lines in each display represents the raw time series,
while the darker lines show the result after applying a simple, central moving average filter with 5
nearest neighbors. The bottom display is of the 0/1 block design of the stimulus superimposed with
the stimulus/HRF convolution, after zero-centering and unit scaling.

time points within 64 seconds of the fitted time. The other three are more estab-
lished curve-fitting methods: a polynomial of degree 8, a natural cubic spline with
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6 evenly spaced knots, and a smoothing spline with 8 effective degrees of freedom
(Hastie, Tibshirani and Friedman, 2009). These last three methods are all based
on fitting separate curves to the real and the imaginary time series. As shown in
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FIG S-2. Comparison of four curve fitting methods on a selected voxel’s time series for the purpose
of detrending to correct scanner drift: CV running line (Adrian, Maitra and Rowe, 2018), degree
8 polynomial, natural cubic spline with 6 evenly spaced knots, smoothing spline with 8 effective
degrees of freedom.

Figure S-2(a), the four methods all capture changes in the global nonlinear trend
well. However, a closer look in Figure S-2(b) shows some differences. For one, the
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CV running line does not produce a smooth curve, which may introduce additional
variance to the detrended time series. Overall, it appears that the smoothing spline
is the “Goldilocks’ choice” as it seems to do the best in terms of not taking the
largest or smallest fitted value across all time points for both time series.

For clarity, we describe the detrending process using notation. First, for the real
and imaginary data, yRt and yIt, at a single voxel and time t, we use one of the
four methods to obtain the fitted trend values ŷRt and ŷIt. The detrended values are
then calculated as y̌ξt = yξt − ŷξt + ¯̂yξ, for ξ = R, I , where ¯̂yξ is the mean of the
fitted values across the corresponding time series. (The same approach applied to
magnitude-only data produces the magnitude-only detrended data.)

S-1.2. Graphical summaries of SNR and CNR. Figure S-3 shows spatial and
frequency distributions of the signal-to-noise ratio (SNR) and the contrast-to-noise
ratio (CNR) of the dataset. The SNRs and CNRs above were calculated as β̂0/σ̂
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FIG S-3. Graphical summaries of SNR and CNR: (left) images of slice 2; (right) frequency distribu-
tions

and β̂1/σ̂, respectively, where the previous parameter estimates were calculated
from the magnitude voxel time series using ordinary least squares regression with
an intercept term and the expected BOLD response in Figure S-1.

S-2. Supplement to Section 3 – Further Methodological Development.

S-2.1. CV and MOG model methodology.

S-2.1.1. CV model. The log-likelihood function is given by

(S-1) log f(yR,yI ; τ ) = −n log σ2 − log |Rn| − h/(2σ2),

where

(S-2) h =

(
yR −Xβ cos θ
yI −Xβ sin θ

)′(
R−1

n 0
0 R−1

n

)(
yR −Xβ cos θ
yI −Xβ sin θ

)
.

The maximum likelihood estimate (MLE) of β is β̂ = β̂R cos θ̂ + β̂I sin θ̂, where
β̂R = (X ′R̂

−1

n X)−1X ′R̂
−1

n yR, β̂I = (X ′R̂
−1

n X)−1X ′R̂
−1

n yI , and R̂
−1

n is a
4



function of α̂, the MLE of α, according to the (2p + 1)-diagonal matrix given
in Pourahmadi (2001). Further, the MLEs of θ and σ2 are given by

(S-3) θ̂ =
1

2
arctan

[
2β̂

′
RX

′R̂
−1

n Xβ̂I

β̂
′
RX

′R̂
−1

n Xβ̂R − β̂
′
IX

′R̂
−1

n Xβ̂I

]

and σ̂2 = ĥ/(2n), where ĥ evaluates the parameters in (S-2) at their MLEs. We
obtain α̂ by solving the system of equations (Miller, 1995)

(S-4) d̂0k =

p∑
j=1

(d̂jk + 2jγ̂|j−k|)α̂j ,

for k = 1, . . . , p, with d̂ij =
∑n−i−j

t=1 η̂R,t+iη̂R,t+j + η̂I,t+iη̂I,t+j , 0 ≤ i, j ≤ p,
and γ̂k = d̂0k/(2n), wherein η̂Rt = yRt − x′

tβ̂ cos θ̂ and η̂It = yIt − x′
tβ̂ sin θ̂,

t = 1, . . . , n. In practice, ML estimation consists of alternately updating (θ̂, β̂) and
(α̂, R̂

−1

n ) in a Cochrane and Orcutt (1949)-type procedure until convergence. The
LRT statistic for the test of H0 : Cβ = 0 vs. Ha : Cβ ̸= 0 is given by

(S-5) ΛCV S,p = 2n log

(
σ̃2

σ̂2

)
− 2 log

(∣∣∣R̃−1
p

∣∣∣ / ∣∣∣R̂−1

p

∣∣∣) ,
where Rp is such that σ2Rp = Cov(ηR1, . . . , ηRp) = Cov(ηI1, . . . , ηIp), R−1

p

is a function of α as in Pourahmadi (2001), and the “hats” and “tildes” denote
quantities maximized with respect toHa andH0, respectively. It can be shown that
ΛCV S,p follows an asymptotic χ2

m null distribution, where m = rank(C).

S-2.1.2. MOG model. The log-likelihood function for the MOG model is given
by log f(r; τ ) = −n

2 log σ
2 − 1

2 log |Rn| − 1
2σ2 (r −Xβ)′R−1

n (r −Xβ), where
Rn is such that σ2Rn = Cov(ϵ). The MLEs of β and σ2 are given by β̂ =

(X ′R̂
−1

n X)−1X ′R̂
−1

n r and σ̂2 = (r −Xβ̂)′R̂
−1

n (r −Xβ̂)/n, respectively. We
obtain α̂ by solving the system of equations

∑p
j=1{d̂ij + (j/n)d̂0,|i−j|}α̂j = d̂0i,

i = 1, . . . , p, where d̂ij =
∑n−i−j

t=1 ϵ̂t+iϵ̂t+j , for 0 ≤ i, j ≤ p, and ϵ̂t = rt − x′
tβ̂,

t = 1, . . . , n. The estimation procedure begins with R̂n = In and then itera-
tively updates β̂, α̂, and R̂

−1

n until convergence. The LRT statistic for the test of
H0 : Cβ = 0 vs. Ha : Cβ ̸= 0 is given by

(S-6) ΛMOG,p = n log(σ̃2/σ̂2)− log
(∣∣∣R̃−1

p

∣∣∣ / ∣∣∣R̂−1

p

∣∣∣) ,
where Rp is such that σ2Rp = Cov(ϵ1, . . . , ϵp).
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S-2.2. Relationships between CV, MOR, and MOG model densities. We illus-
trate some relationships between the probability density functions (PDFs) of the
CV, MOR, and MOG models for the observations at a single voxel and time-point.
Before we get into the derivations, let us state these relationships:

1. Fact 1: The MOR model PDF is the marginal PDF for the magnitude in the
CV model PDF.

2. Fact 2: For large SNR, the MOR model PDF approaches the MOG model
PDF.

Derivation of Fact 1. Under the CV model (and suppressing subscripts for time),
the PDF is
(S-7)

f(yR, yI ;µ,γ0, θ) = (2πγ0)
−1 exp

[
−(yR − µ cos θ)2 + (yI − µ sin θ)2

2γ0

]
.

Transforming this PDF for the real/imaginary data to the magnitude/phase data
yields

(S-8) f(r, ϕ;µ, γ0, θ) =
r

2πγ0
exp

[
−(r2 + µ2)

2γ0

]
exp

[
µr

γ0
cos(ϕ− θ)

]
.

The MO Ricean PDF then arises from integrating out ϕ in (S-8). That is, because∫ π
−π exp[µrγ0 cos(ϕ− θ)]dϕ = 2πI0(µr/γ0), the Ricean PDF (Rice, 1944) is

(S-9) f(r;µ, γ0) =
r

γ0
exp

[
−(r2 + µ2)

2γ0

]
I0
(
µr

γ0

)
.

Derivation of Fact 2. It can be shown the Ricean PDF approaches the Gaussian
PDF at large SNRs – that is, for large values of µ/

√
γ0. We use the approximation

(Abramowitz and Stegun, 1965) that for large values of x,

(S-10) I0(x) = (2πx)−1/2ex{1 + 1/(8x) +O(x−2)}.

Thus, for large SNR, which also implies large values of µr/γ0, substituting (S-10)
into the Ricean PDF (S-9) yields the Gaussian PDF

(S-11) f(r;µ, γ0) = (2πγ0)
−1/2 exp[−(r − µ)2/(2γ0)]

times two additional terms, (r/µ)1/2 and [1+(1/8)(µr/γ0)
−1] that approach unity

for large SNRs. (The former approaches unity because |r − µ| is on the order
of

√
γ0 ≪ µt. ) Indeed, Figure S-4 shows that the Ricean and Gaussian PDFs

converge with increasing SNR.
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FIG S-4. As the SNR (here, µ) increases, the Ricean and Gaussian PDFs converge.

S-2.3. Supplement to Section 3.2.1 – Methodological details of the EM algo-
rithm corresponding to the AR(p) Ricean model.

S-2.3.1. Supplement to Section 3.2.1 – Univariate Expectations. To find the
univariate expectations Eϕt|rt;τ (k) [cos(ϕt − θ)], we show that the distribution of
ϕt conditional on rt is von Mises. From standard results, the conditional PDF
f(ϕt|rt; τ ) is the joint PDF f(ϕt, rt; τ ) in (S-8) divided by the marginal PDF
f(rt; τ ) in (S-9). Thus, the conditional PDF is

(S-12) f(ϕt|rt; τ ) =
[
2πI0

(
µtrt
γ0

)]−1

exp

[
µtrt
γ0

cos(ϕt − θ)

]
,

which is the von Mises PDF with location parameter θ and concentration pa-
rameter µtrt/γ0 (Mardia and Jupp, 2000). It then follows from properties of the
von Mises distribution that the univariate expectations Eϕt|rt;τ (k) [cos(ϕt − θ)] =

A(rtµ
(k)
t /γ

(k)
0 ), t = 1, . . . , n.

S-2.3.2. Supplement to Section 3.2.1 – Bivariate Expectations. Here, we show
that the bivariate expectations E[cos(ϕt−ϕt+j)|rt, rt+j , τ

(k)] can be reduced to the
univariate expectations in (5). Our strategy is to take the bivariate expectation as the
“iterated expectations” Eϕt|rt [Eϕt+j |ϕt,rt,rt+j

{cos(ϕt+j − ϕt)}]. First, expanding
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the cosine term yields

Eϕt|rt

{
cos(ϕt − θ)Eϕt+j |ϕt,rt,rt+j

[cos(ϕt+j − θ)]

+ sin(ϕt − θ)Eϕt+j |ϕt,rt,rt+j
[sin(ϕt+j − θ)]

}
.

(S-13)

We now derive the conditional PDF of ϕt+j given ϕt, rt, rt+j . Starting with the
distributions of (yRt, yR,t+j) and (yIt, yI,t+j), which are independent and bivariate
normal, and using its magnitude and phase transformations, it can be shown that

(S-14) f(ϕt+j |ϕt, rt, rt+j) ∝ exp[κ cos(ϕt+j − θ) + δ cos(ϕt+j − ϕt)],

where κ = rt+j(γ0µt+j − γjµt)/b and δ = γjrtrt+j/b, with b = γ20 − γ2j . It
can then be shown that ϕt+j |ϕt, rt, rt+j follows the von Mises distribution by
writing the bracketed portion of (S-14) as K cos(ϕt+j − Ψ) where K = [κ2 +
δ2 + 2κδ cos(ϕt − θ)]1/2 and Ψ is such that sin(Ψ − θ) = δ sin(ϕt − θ)/K and
cos(Ψ−θ) = [κ+δ cos(ϕt−θ)]/K. Thus, the conditional distribution of (ϕt+j−θ)
given ϕt, rt, rt+j is von Mises with location parameter Ψ−θ and concentration pa-
rameter K. It follows that Eϕt+j |ϕt,rt,rt+j

[cos(ϕt+j − θ)] = A(K) cos(Ψ− θ) and
Eϕt+j |ϕt,rt,rt+j

[sin(ϕt+j − θ)] = A(K) sin(Ψ− θ) (Mardia and Jupp, 2000). Sub-
stituting these expectations into (S-13) and using the earlier expressions for the
sine and cosine of (Ψ− θ), we obtain (5).

S-2.3.3. Supplement to Section 3.2.1 – Maximizing with respect to constraints.
To find β(k+1) = argmaxβQ(α(k+1),β, σ2(k); τ (k)) as part of the (conditional)
M-step, we must maximize with respect to the constraint Xβ(k+1) ≥ 0. In the
following, we illustrate this constrained maximization for the X matrix defined in
Section 2.2, which has two columns: the first is an intercept containing all ones
and the second is the expected BOLD response, which we denote by b. It can be
shown that Xβ ≥ 0 if and only if Aβ ≥ 0, where A contains only two rows of
X: the rows a′

1 = (1,min(b)) and a′
2 = (1,max(b)). To maximize with respect

to Aβ ≥ 0, we first calculate the unrestricted maximizer

(S-15) β̂ = (X ′R−1
n X)−1X ′R−1

n u(k).

If Aβ̂ ≥ 0, then β(k+1) = β̂. Otherwise, let J = {j : a′
jβ̂ < 0}. Calculate β̃j =

Ωjβ̂ for each j ∈ J , where Ωj = I2−[a′
j(X

′R−1
n X)−1aj ]

−1(X ′R−1
n X)−1aja

′
j .

Then β(k+1) is the β̃j which maximizes Q(α(k+1), β̃j , σ
2(k); τ (k)).

S-2.3.4. Supplement to Section 3.2.2 – Empirical Information Matrix. We il-
lustrate the calculation of s(rt; τ ), t = p+ 1, . . . , n, the contributions to the score
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statistic from time t from which the empirical information matrix I e(τ ; r) is con-
structed as in (10). We denote the elements of s(rt; τ ) that come from taking the
partial derivatives in (9) with respect to σ2, α, and β by sσ2(t), sα(t), and sβ(t),
respectively. It can be shown that sσ2(t) = [α̃′Dtα̃ − 2σ2]/(2σ4), where Dt

is a matrix of order (p + 1) having (i, j)th entry dt(i, j) = rt−irt−jEt−i,t−j −
µt−iut−j − µt−jut−i + µt−iµt−j , 0 ≤ i, j ≤ p, with Ers = Eϕ|r;τ [cos(ϕr − ϕs)],
ut = rtA(rtµt/γ0), and µt = x′

tβ. Further, sα(t) = D′
t(0)α̃/σ

2, where Dt(0)

is the matrix Dt, but without the first row. Finally, sβ(t) = α̃′Dt,βα̃/(2σ
2),

where Dt,β is the partial derivative of Dt with respect to β, with (i, j)th entry
dt,β(i, j) = (ut−i − µt−i)xt−j + (ut−j − µt−j)xt−i.

S-2.3.5. Supplement to Section 3.2.2 – Computation time. The computation
time under the MOR model is much greater than the other models because the con-
vergence of the EM algorithm is slow, even with the acceleration provided by the
hybrid scheme including Newton-Raphson steps. Figure S-5 shows the computa-
tion times required for parameter estimation of 1000 simulated time series under

α = 0.4 α = (0.4, 0.32) α = (0.4, 0.3, 0.2)
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FIG S-5. Computation times (sec) for parameter estimation per 1000 simulated time series under
the three models. The EM algorithm used by the MOR model has much slower convergence than the
other estimation schemes.

the three models. We generated these time series under the CV model with X ma-
trix described in Section 2.2, σ2 = 1, β = (β0, 0)

′ for β0 from 0.5 to 5.0, and AR
coefficients of 0.4, (0.4, 0.32), and (0.4, 0.3, 0.2). In our calculation, we assumed
the correct AR order was known. Per thousand time series, the computation times
for MOR model range from 24 to 447 seconds, while the other models are most
always under one second. It is interesting to note that the MOR model computation
time decreases as the SNR increases, decreasing by a factor of 10 as β0 increases
from 0.5 to 5.0. Computation times also increase for all models as the AR order
increases.

S-2.4. Supplement to Section 3.3 – Further details regarding test statistics.

9



S-2.4.1. Supplement to Section 3.3 – Comparing false positive rates. The fol-
lowing simulation experiment examines the basic utility of the Wald and likeli-
hood ratio test (LRT) statistics in terms of whether they follow their theoretical
null distributions. To mimic the finger-tapping experiment, we generated magni-
tude time series from the AR(1) Ricean model with the two-column X matrix de-
scribed in Section 2. Of the parameter β = (β0, β1) corresponding to X , only β1 is
activation-related; thus, the activation test is H0 : β1 = 0 vs. Ha : β1 ̸= 0, and we
set β1 = 0 to examine the null distributions of the test statistics, which theoretically
should be χ2

1. To examine an SNR range similar to that in the dataset (see Figure S-
3), we set σ = 1 and varied β0 from 0.5 to 5.0. We set α1 = 0.3, generated 10,000
time series for each β0 value, and calculated the Wald and LRT statistics. Figure
S-6 shows the proportions of test statistics in which H0 was rejected (in effect,

sig. level =  0.01 sig. level =  0.05 sig. level =  0.1
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FIG S-6. The false positive rates of the Wald test statistics fall sharply below the significance levels
(shown by the thick grey lines) for β0/σ values below 2, showing that LRT statistic is more reliable
for low SNRs.

the false positive rates) based on the theoretical χ2
1 null distribution at significance

levels of 0.01, 0.05, and 0.10. If the test statistic truly followed the theoretical null
distribution, each false positive rate should be close to the significance level (with
small discrepancies explained by simulation variability). However, it is evident that
the Wald test is unusable at β0 values below 2 due to its false positive rates falling
sharply below the significance level. Overall, the LRT statistic seems more reliable
due to its false positive rates better conforming with the significance level.

S-2.4.2. Supplement to Section 3.3 – Ricean AR(1) LRT statistic. Here, we
derive the expression for f(rt|rt−1; τ ) in (12). For notational simplicity, we focus
on f(r2|r1). Starting with yR2|yR1 ∼ N(µ2 cos θ + α(yR1 − µ1 cos θ), σ

2) and
yR1 ∼ N(µ1 cos θ, σ

2/(1− α2)), and similarly for the imaginary component, and
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transforming to magnitude and phase, it can be shown that
(S-16)
f(r1, ϕ1, r2, ϕ2) ∝ exp[C1 cos(ϕ1 − θ) + C2 cos(ϕ2 − θ) + C12 cos(ϕ1 − ϕ2)],

where C1 = r1(µ1 − αµ2)/σ
2, C2 = r2(µ2 − αµ1)/σ

2, and C12 = αr1r2/σ
2.

First, we integrate with respect to ϕ2. WritingC2 cos(ϕ2−θ)+C12 cos(ϕ1−ϕ2) =
K cos(ϕ2 − ψ), where K = [C2

2 + C2
12 + 2C2C12 cos(ϕ1 − θ)]1/2, and using∫ 2π

0 exp[K cos(ϕ2−ψ)]dϕ2 = 2πI0(K), we apply the Neumann Addition Formula
(Watson, 1948) to write

(S-17) I0(K) =
∞∑

m=0

ωmIm(C2)Im(C12) cos[m(ϕ1 − θ)],

where ωm = 1 for m = 0 and ωm = 2 for m ≥ 1. Also, using the result∫ 2π
0 cos[m(ϕ1 − θ)] exp[C1 cos(ϕ1 − θ)] = Im(C1), for m ≥ 0 (Mardia and Jupp,

2000), we obtain f(r1, r2). Dividing the result by (S-9), we obtain

(S-18) f(r2|r1) =
r2
σ2
eC0

[
I0
(
r1µ1
γ0

)]−1 ∞∑
m=0

ωmIm(C1)Im(C2)Im(C12),

where C0 = −[r22 + µ22 + α2(r21 + µ21)− 2αµ1µ2]/(2σ
2).

S-2.4.3. Supplement to Section 3.3 – Calculating the AR(1) log-likelihood func-
tion at high SNRs is computationally prohibitive. The following simulation study
demonstrates that calculation of the Ricean AR(1) log-likelihood function (12) be-
comes increasingly computationally prohibitive as the SNR increases. To vary the
SNR over the range of values seen in the dataset over different amounts of spatial
smoothing, we generated magnitude time series from the Ricean AR(1) model with
the X matrix described in Section 2.2, and β0 varied over {2j : j ∈ Z, 0 ≤ j ≤ 7}.
Other parameter values of σ2 = 1, α = 0.3, and β1 = 0 were held constant.

After the parameter estimates for each simulated time series were calculated us-
ing the hybrid EM/NR algorithm, we timed the calculation of the Wald and LRT
statistics. Timing results are from a Intel Core i5-6300M CPU 64-bit processor run-
ning Cwithin R (R Core Team, 2020). Figure S-7(a) shows that the calculation time
of the LRT statistic is uniformly higher than the Wald test statistic and increases
with the SNR. The computational time starts to become prohibitive from SNRs at
around 30, when it is aproximately 1 second per time series, and increases further
from there. As suggested by Figure S-7(b), this increase in computation time is
due to the increase in terms of the sum

∑∞
m=0 ωmIm(C1)Im(C2)Im(C12) in (12)

necessary for convergence (defined as a change of less than 10−10). As a result, we
will restrict our use of the LRT statistic to SNRs below 10 and use the Wald test
statistic otherwise (where the false positive rate problem illustrated in Figure S-6
does not appear to be an issue).
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FIG S-7. (a) The calculation time for the LRT statistic is greater than the Wald test statis-
tic, becoming prohibitive for high SNRs. (b) The average number of terms of the sum∑∞

m=0 ωmIm(C1)Im(C2)Im(C12) needed for convergence increases with SNR as well. (Note: Both
plots use log scales.)

S-2.5. Supplement to Section 3.4 – Choosing the order of the AR model. We
performed a simulation study to compare the AR orders detected under the sequen-
tial testing method proposed in Section 3.4 with those detected under the AIC and
BIC (Akaike, 1973; Schwarz, 1978) – i.e., more common model selection criteria.
We generated 10,000 time series under the CV model with X matrix described in
Section 2.2, β = (5, 0)′, σ2 = 1, and four sets of different AR coefficients: (1)
α = 0 for temporal independence, (2) α = 0.1 and (3) α = 0.2 for AR(1) de-
pendence, and (4) α = (0.1, 0.1)′ for AR(2) dependence. The proportions of time
series detecting each AR order p̂ based on the AIC, BIC, and sequential testing
method using a significance level of δ = 0.01 under the three models are shown in
Figure S-8.2

Two main results are worthy of special attention: first, the sequential testing
method in general detects a similar distribution of orders as the AIC and BIC. The
BIC is more similar to the sequential method, which can be explained by the fact
that the BIC penalty for each additional parameter of log n = 6.43 in this case is
closer to the sequential testing threshold of χ2

1,0.99 = 6.63 than the AIC penalty of
2. The second result is that the MO data-based order detection methods are more
likely to have a negative bias, and under-detect orders (in this case, especially for
α = 0.1 and α = (0.1, 0.1)′) than the CV model-based method. This difference
can be attributed to the fact that CV model has twice the amount of data, which
gives it more power in the sequential testing method.

S-3. Supplement to Section 4 – Further Simulation-based analyses.

S-3.1. Supplement to Section 4.1 – Properties of parameter estimates. Figure
S-9 expands on the results in Figure 2, summarizing the biases, standard errors, and

2Note that MOR model results are not shown for the AIC and BIC because the MOR model
log-likelihood is not tractable for general p.
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FIG S-8. Proportion of simulated time series in which each AR order (0-4) is detected for four
different sets of AR coefficients (columns), based on the AIC, BIC, and sequential testing methods
(rows) and the three models (colored bars). Note that MOR model results are not shown for the AIC
and BIC because the MOR model log-likelihood is not tractable for general p.

root mean squared errors of β̂0, β̂1, σ̂2, and α̂ under the three models for simulated
values of α = 0.2, 0.4, 0.6, and 0.8. (Figure 2 only shows α = 0.4.) Qualitative
comparisons of the parameter estimate properties across models (which models are
better/worse) are consistent across different values of α.

S-3.1.1. Supplement to Section 4.2 – Missing information matrix. The Fisher
information matrix is commonly used to estimate the standard errors of parame-
ter estimates (Casella and Berger, 2002) and in-so-doing, quantify the amount of
“information” given in the data about a parameter. In the framework of the EM
algorithm, separate information matrices can be derived based on the complete,
observed, and missing data (McLachlan and Krishnan, 2008). This extension al-
lows us to quantify the amount of “missing information” in the missing data about
a parameter (Orchard and Woodbury, 1972). In our context, recall that the magni-
tude, phase, and magnitude-phase constitute the observed, missing, and complete
data, respectively. Thus, by deriving the missing information matrix, we can quan-
tify the amount of “missing information” in the phase we miss out on when using
magnitude-only data.

For simplicity, consider a single complex-valued measurement, with magnitude
r and phase ϕ. We assume that the real and imaginary components yR and yI are
independent and normally distributed, with means µ cos θ and µ sin θ, respectively,
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and identical variances σ2. The log-likelihood function of the observed data r is
equal to that of the complete data (r, ϕ) minus the missing data ϕ; that is,

(S-19) logL(τ ; r) = logLc(τ ; r, ϕ)− log k(ϕ|r; τ ).

Differentiating with respect to τ twice and obtaining its expectation with respect
to ϕ, conditional on r, gives the following relationship between the information
matrices:

(S-20) I (τ ; r) = I c(τ ; r)− I m(τ ; r).

In words, the observed information is equal to the complete information minus the
missing information.

It can be shown that observed-, complete-, and missing-data log-likelihoods are

logL(τ ; r) = − log σ2 − r2 + µ2

2σ2
+ log I0

(µr
σ2

)
(S-21)

logLc(τ ; r, ϕ) = − log σ2 − r2 + µ2

2σ2
+
µr

σ2
cos(ϕ− θ)(S-22)

log k(ϕ|r; τ ) = − log I0

(µr
σ2

)
+
µr

σ2
cos(ϕ− θ),(S-23)

respectively. For simplicity, suppose it is known that σ2 = 1. Then, differentiating
twice with respect to µ shows that the complete- and missing-data information
matrices are I c(µ; r) = 1 and I m(µ; r) = ∂2

∂µ2 log I0(µr), respectively. It can be
shown that

(S-24) I m(µ; r) = r2 − rA(µr)/µ− r2A2(µr),

where A(·) = I1(·)/I0(·) as before.
After averaging over the Rice(µ, 1) distribution of R using Monte-Carlo inte-

gration, these information matrices are displayed in Figure 5. Note that the fraction
of the complete-data (total) information provided by the magnitude-only data in-
creases as the SNR increases.

Interestingly, the rate of convergence of the EM algorithm is a function of the
missing- and complete-data information matrices (Dempster, Laird and Rubin,
1977). Specifically, defining the rate of convergence as rc = limk→∞ ||τ (k+1) −
τ̂ ||/||τ (k) − τ̂ ||, it can be shown that rc is given by the largest eigenvalue of
I−1
c (τ̂ ; r,ϕ)Im(τ̂ ; r). This information ratio matrix measures the proportion of

information about τ that is missing by not also observing ϕ in addition to r
(McLachlan and Krishnan, 2008, Section 3.9.3). The greater the proportion of
missing information, the slower the rate of convergence. We then see a connec-
tion between the large proportion of missing information at low SNRs in Figure 5
and the higher computation times of the MOR model at low SNRs in Figure S-5.
As the SNR increases, the proportion of missing information decreases and so does
the computation time.
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S-4. Supplement to Section 5 – Further Analysis of low-SNR Dataset.

S-4.1. Supplementary figures. The following figures are presented in the order
to which they are referred in the main article. Figure S-10 shows the frequency
distributions of the voxel-wise detected AR orders under the three models. The
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FIG S-10. Frequency distributions of detected AR orders for the fingertapping dataset under the
three models.

orders were detected using the sequential testing procedure described in Section
3.4 with a significance level of 0.01. The orders were limited to a maximum of 4
due to large computational times using the MOR model; if a larger cap on orders
is desired in practice, we suggest using the MOG model as a surrogate, as it gives
very similar results without such computational issues.

Figure S-11 expands on the results of Figure 6, showing activation maps for
slices 1, 2, and 3 with inset maps showing the left central sulcus ROI. (Figure
6 only shows slice 2.) These additional slices are shown to demonstrate that the
maps shown of slice 2 in Figure 6 show more activation than the other slices, but
the patterns of activation are somewhat similar across all slices. In addition, Figure
S-12 provides a graphical representation of the p-values in Table 2.

Figure S-13 refers to our study of adding extra noise to the original unsmoothed
data to further lower the SNR and CNR of the dataset. The plots show the average
SNRs and CNRs for 10,000 simulation-based time series generated from each of
the 10 voxel time series identified in Figure 6. The results verify that adding extra
noise to the raw data does indeed lower the SNRs and CNRs and that the effect is
intensified as the noise standard deviation σa increases. Also, Figure S-14 shows
a graphical representation of the detection proportions in Table 3.
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