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Bayesian Statistical Learning
Univariate Simple Sampling

Model it" Observation:
U

/

Yi =B + & E(s)=0 COV(é‘i):G2

or equivalently

U

/
Yi = (1)(130) T &

1x1 1x1 1x1 1X1
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Bayesian Statistical Learning
Univariate Simple Sampling

Vi =B+ &
Model n Observations: i—1..n
/yl\ /1\ /gl\
y 1 g
.2 — : (ﬂo)+ .2
. \u
\Yn \1/ \ &n /
nx1l nxi nx1l
more compactly
y =X B+ ¢
nx1i nxl 1x1 nx1
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Bayesian Statistical Learning
Univariate Simple Sampling

The rT‘%columnofl’s
y=X fB + ¢ E(¢)=0
nxl nXx1 1><1\ nx1i

M

Y, =By + &

COV(E)ZGzln 1=1..., N

with coefficients and variance estimated as

FLOCX)T Xy G =2y - XA (Y- Xp)

1><1\ 1x1 1xn nx1

f1=X

from likelihood function

f(ylB,o%)=(2r) " |01, " exp

n x1
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Require n>1, general rule n>10

—%(JZIqﬂ)-l(y— X B)(y - X )




Bayesian Statistical Learning
Univariate Simple Sampling

y=X B+ ¢
Using the distributional assumption that if ¢ is normally distributed,
B=(X"X)*X"y is N(E(B) =5, cov()=c"(X'X)") 121, general rule n 10
\ ”
and *

6% = ﬁ (y - X B)'(y - X B) is gamma(v,c3/v)!

1x1

(15,0 = (22 ™| 0%1, [ x| - (0%1,.) “(y = X ) (y - X )

n x1
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Bayesian Statistical Learning
Univariate Simple Linear Regression

Model it" Observation:

Yi=FGo+ B %+ & E(s)=0 COV(é‘i):(T2

or equivalently

R

2x1
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Bayesian Statistical Learning
Univariate Simple Linear Regression

Yi =B, + BX t&
Model n Observations: i—1..n
/yl\ /]_ )(1\ /gl\
3{2 _ 1 X.z ['BO]+ 5.2
: S :
2 X1
\Yn \1 X ) \ &n /
nx1 nx2 nx1
more compactly
y =X f+ ¢
nx1 nx2 2 X1 nx1
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Bayesian Statistical Learning
Univariate Simple Linear Regression

Yi =B, + BX t&
The model

y=X [+ ¢ E(¢)=0 cov(s) = ol 1=1..,n

nxl nx2 2X1 nx1i

with coefficients and variance estimated as

B(XX)" X"y G =2y - XA (Y- Xp)

2 X1 2X2 2Xn nxl1

Require n>2, general rule n>20

from likelihood function

(15,0 = (22 ™| 0%1, [ x| - (0%1,.) “(y = X ) (y - X )

n x1
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Bayesian Statistical Learning
Univariate Simple Linear Regression

y=X fB + ¢

nXxl nx2 2 X1 nx1l

Using the distributional assumption that if ¢ is normally distributed,
B=(X'X)*X"y is N(E(B)=p, cov(B)=c"(X'X)") 122, general rule 1520
and

62 = ﬁ (y —NX,B) (y ;X,B) IS gamma(v,c?/v)!

1x1

(Y1 5,09 =22 " |71, exp| = (0L (Y = X ) (y - X )

n x1
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Bayesian Statistical Learning
Univariate Multiple Linear Regression

Model ith Observation:
yi :ﬂ0+ﬁlxil+"'+ﬂqxiq+gi E(gi):O COV(&'i)ZGZ

or equivalently

/Igo\
p
Vi =L Xigseees Xig) |+e
1x1 1 (q+1) : 1x1
LY
(q+1) X1

D.B. Rowe



Bayesian Statistical Learning
Univariate Multiple Linear Regression

=B, + X+ +,quq + &

Model n Observations:

1=1..n
(yl\ /1 X11 qu\(ﬂO\ /gl\
Y, 1 Xy, X2q by &,
S=. 7. . N
\ Yn \1 Kp an/\'gq/ \ én/
nx1 nx(q+1) (g+1) X1 nx1
more compactly
y = X B+ ¢

nxl1 nx(g+l)(q+l) X1nx1
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Bayesian Statistical Learning
Univariate Multiple Linear Regression

The model
y=X S+ ¢ E(e)=0 cov(s) = ol 1=1..,n

nx1l nx (g+tl)(g+l) X1nx1

with coefficients and variance estimated as

B=(XX)" X"y G =2y - XA (Y- Xp)

(g+1) X1 (g+1) X (g+1) (q+1)Xn nx1

Require n>(g+1), general rule n>10(q+1)

from likelihood function

(15,0 = (22 ™| 0%1, [ x| - (0%1,.) “(y = X ) (y - X )

n x1

D.B. Rowe



Bayesian Statistical Learning
Univariate Multiple Linear Regression

y=X pf+ ¢
Using the distributional assumption that if ¢ is normally distributed,
f=(X"X)'X"y is N(E(S) =5, cov(f) =" (X"X)") 122, general rule 20
(q+1) x1 (@+1) x 1 q+1) x (q+1
and
5 1

G e 1(y7x3<,8)'(ynjlx,8)is gamma(v,c?/v)!

(15,0 = (22 ™| 0%1, [ x| - (0%1,.) “(y = X ) (y - X )

n x1
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Bayesian Statistical Learning
MatriX Normal and MatriX-T PDFS Separable used for vectors over time

or row-col correlation in images..

Let y be have a multivariate normal PDF, y = N(,u, Q)

fyl w Q) =(27) Q™ exp —E(y—u)'ﬂ‘l(y—ﬂ) y,ueR® Q>0

npx1 npX1l npX

and that Q has a separable or Kronecker product structure Q 01293
We utilize mathematical results that xonxn pxep

QHEPOZHOFIZI  and (y-w)'( @) (y— ) =trz(Y =M)'® (Y = M)

where y= vec(Y) and u—vec(M) to arrive at a reformulated PDF.

npx1 npx1

Y = (yl""’ yn)
M = (.0 1,)
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Bayesian Statistical Learning

Matrix Normal and Matrix-T PDFs

The new Matrix Normal PDF for Y IS

f(Y|M, @, 2)=2x)™*|d[ "= e

nXp nXxp nxn pxp

1

Xp —EtrZ‘l(Y ~M)' O - M)

and we write Y N(M, @, ¥) akay ~ N( i, D®L).

npnnpp npx 1

There are various mean and covariance notations,

E(Y) I\/Ior E(vec(Y)) = u and cov(Y) CD®Z or cov(y) = CI>®Z

npx1 npx1

npx1

np X np

npx1

Separable used for vectors over time
or row-col correlation in images..

n=1—multivariate
n,p=1—univariate

Y = (yl""’ yn)

M = (.0 1,)
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Bayesian Statistical Learning

Matrix Normal and Matrix-T PDFs

There is also a CLT result that MT becomes MN.

the Matrix-T distribution can be arrived at via a transformation of
variable from a matrix normal to a standard matrix normal and a

Wishart PDF. n ¥
EIEbIE [T,.r(%)
(Y v, M,Z,®) =k — e =—%- |
o - (vzr) 2 Hj—lr(v+§_1)
and we write Y ~ T(v, M, ®, ¥) aka y ~ T( u, O9F). L uivariate

nxpn n p X npX 1 npx 1 np X np

There are various mean and covariance notations,
E(Y) = M or E(vec(Y)) = u and cov(Y) == OB or cov(y) =, DY )
% — 111 ¥n

npx1 npx1 X np X np npx1 np X np
M = (th,.... i)
17
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Bayesian Statistical Learning
Multivariate Multiple Linear Regression

Model it" Observation:

yij ::801' +ﬂ1jxi1+"'+ﬂqjxiq+gij E(gi):O Cov(gi)zz
r equivalentl =Tt
or equivalently =170
(e )
(1801 :802 IBOD\ '
Pu P p &i2
(yil"'1yip):(1’ Xil""’xiq) :11 :12 . :1IO +(‘9i1""’gip) & = .
1xp 1x(q+1) ' ' ' ' 1xp
\ﬂql :qu ﬂqp/ \gip)
(@+1) Xp
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Bayesian Statistical Learning

Multivariate Multiple Linear Regression Pu Ba o By
ﬁZl ﬁ22 IBZp
(Yirs- Vip) = @ Xy Xig) | . c (et Ey)
Model n Observations: o P = By) .,
KY11 Yo Y1p\ 1 X o qu\/ﬂm :Boz ﬁOp\ /511 Ep glp\
Yoo Yo Yop | 1 Xy Xoq b P :Blp N &y &y Erp
\ynl yn2 ynp/ \1 an an/\ﬁql :qu ﬂqp/ \gnl gn2 gnp)
nxp nx(g+1) (g+1) xp P i1
more compactly
Y = X B+ E

nXp  nX(g+l)(g+l) XpnXp

B = ('Bl";:.s’ B,) = (blvr;v'v: b,)’

(@+1) Xp
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Bayesian Statistical Learning

Multivariate Multiple Linear Regression Pu Po - P
ﬁ21 ﬂ22 ﬂZp
(Virres Yip) = (L Xigs ey Xiq) : SR +(&y+. 1 &)
The model Bu P 0 Bo) |
Y=X B+ E E(vec(E)) =0 cov(vec(E))=1 ®x I1=1..,n

nXp nx (g+1)(g+l) Xpnx1
Each row of E has cov(g;)=X.

with coefficients covariance estimated as

8= (X' X)L X" Y $ — 1y~ XB)(Y - XB)
N

(g+1) xp (g+1) x(g+1) (g+1) Xn nXp p Xp

from likelihood function Require n=(q+1)p, general rule n=10p(q+1)

f(Y|B,2)=02x) ™= exp —%trzl(Y — XB)'(Y — XB)

nxp

tr(-) is trace, sum of diagonal elements

D.B. Rowe



Bayesian Statistical Learning
Multivariate Multiple Linear Regression

Y=X B+ ¢

nXp nX(g+l)(g+l) X1 nXxp

Using the distributional assumption that if ¢ is normally distributed,

B (X X) XY IS N( E(B) B COV(VeC(B)) — (X) >(( )) ® Z) n>(g+1), general rule n>10p(g+1)
(q+1) xp (q+1) x (g+1 pxp

and cov(B) =2 (X' X)" COV(EViVS):VViiZ W =(X'X)"

A 1 A A . :

S = (Y — XB)'(Y — XB) is Wishart(v,Z/)!

pxp N—( — P e W, S W, ]

W W,
cov(vec(B)) =
p(g+1) X p(q+1)
- _ i Wigs), g+ |
f(Y|B,2)=02x) ™= exp —EtrZ‘l(Y — XB)'(Y — XB)
n xp B a

D.B. Rowe



Bayesian Statistical Learning
Multivariate Multiple Linear Regression

Example:
It Is believed that the heights of sons (y,) and daughters (y,) are
linearly dependent upon the heights of their fathers (x;) and mothers (x..).

(ﬁOS IBOd \
Yis: Yia) = L X Xin)| Brs Bug |+ (06 (€.,&4) ~ N(0,%) 1=1..,n
\1823 IBZd J
Assume that the true parameter values are: could s imagine
(141 10.8) nmodelasrs

B=|041 039 [2-250 1-125]
(043 0.43) ¥

0 % 11,125 2.250

http://chance.amstat.org/2013/09/1-pagano/
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Bayesian Statistical Learning
Multivariate Multiple Linear Regression

Example:

Selected

x; ={66,67,68,69,70,71,72,73,74,75},
x.,—{60,61,62,63,64,65,66,67,68,69} .
combinations (n=100), multiplied each with B

then added correlated normal noise with .

Repeated L=10,000 times. 2=

D.B. Rowe

(14.1 10.8)
0.41 0.39

(043 0.43,

2.250 1.125
1.125 2.250

A 1.50 O
0.755 1.30

J



Bayesian Statistical Learning
Multivariate Multiple Linear Regression

Example:
Estimates and plots from all 10°.

(14.0511 10.8487"
0.4108 0.3899

| 0.4299  0.4294

. (22504 11207
11207  2.2465

o>
I

Daughters Heights

55

80

65 70
Sons Heights

D.B. Rowe

75

(14.1 10.8)
B=|0.41 0.39
043 0.43,

2.250 1.125
1.125 2.250

A 150 O
- 10.755 1.30

J



Bayesian Statistical Learning
Multivariate Multiple Linear Regression

% Multivariate model for replicate=10000;
% Yl=son height, Y2Z2=daughter height X=repmat (X, replicate, 1) ;
% X1 = father height, XZ2=mother height n=size (X,1);
clear all
close all E=(A*randn (2,n)) ';
rng ('default'") Y=X*B+E;
% define true parameter values % Estimate parameters
n=100; Bhat=inv (X'*X) *X'*Y;
B=[[14.1;.41;.43],[10.8;.39;.43]] SigmaHat=(Y-X*B) '* (Y-X*B) / (n-3) ;
sigmal=1.5; sigma2=1.5; rho=.5;
Sigma=[sigmal”2,sigmal*sigma2*rho; ... [Bhat, B]

sigmal*sigma2*rho, sigma2”™2] [SigmaHat, Sigma]
A=chol (Sigma) '

figure;

% generate simulated data scatter(Y(:,1),Y(:,2))
hf=(66:066+9);,hm=(60:60+9) ; axls square
[Xf, Xm]=meshgrid (hf, hm); xlabel ('Sons Heights')
xf=reshape (Xf,n, 1) ;,xm=reshape (Xm,n, 1) ; yvlabel ('Daughters Heights')
X=[ones(n,1l),xf, xm] x1lim([61,80]),ylim([54,78])

D.B. Rowe



Bayesian Statistical Learning
Bayesian Multivariate Multiple Linear Regression

The model
Y=X B+ E E(vec(E)) =0 cov(vec(E)) =1 ®x I1=1...n

nXp nX (g+1)(g+l) Xpnx1

with likelihood

Each row of E has cov(g;)=X.

f(Y|B,Z)=(27)"™|Z|™ exp —%trz—l(v — XB)'(Y — XB) matrix norma

nxp

and priors

f(B|Z)=(27) P22/ n, [ exp —&trZ‘l( B—B,)'(B—B,)| marxnoma

(q+1) xp 2

f(Z)=K|H [P exp —%trZ‘lH

pXp

Inverse Wishart

D.B. Rowe



Bayesian Statistical Learning

Bayesian Multivariate Multiple Linear Regression
H.=(Y = XB)'(Y - XB)+n,(B-B,)'(B-B,)+ H
vi=v+n+Qq+1

yields posterior

f(B,Z|Y)oc| S| rPH) exp{—%terH*}

(@+1) xp

B=(X'X+n,1)*(X"'Y +n,B,)
complete the square

f(B,Z|Y) o[ P12 exp Ly (B=B)'(X'X +n,1)(B-B)+W
0

(q+1) xp 2

W =n,B/B,+H +Y'Y —B'(X'X +n,1)B

Integrate wrt to X to get Matrix Student-T PDF for B.
Integrate wrt to B to get Inverse Wishart PDF for X.

D.B. Rowe



Bayesian Statistical Learning

Bayesian Multivariate Multiple Linear Regression ]
f(Y|B,2)=(2x) ™|z exp[—%trzl(Y — XB)'(Y — XB)

The marginal PDF of B can be found

f(B|Z)=(27) P22/ n, [ exp[—%trZ‘l(B -B,)'(B-B,)

f (B |Y) — _L f (B,Z |Y)d2 f(X)=k|H ||z [VPre exp[—%trZ‘lH}

(@+1) xp

f(B|Y) o I|Z|(”p”)’2exp{—%tr2 [(B B)'(X'X +n,1)(B - B)+vv]}dz

(g+1)Xp

e v.=v+n+Qq+1
—trX "H.

f(BlY)OclH |v/2.[ |H |v/2|2|(v+p+1)/2e 2 dZ

(g+1)Xp

' =constant

H. =(B-B)'(X'X +n,1)(B—B)+W
W =nB.B,+H +Y'Y —B'(X'X +n,1)B

D.B. Rowe 28



Bayesian Statistical Learning

Bayesian Multivariate Multiple Linear Regression

f(Y|B,2)=(2x) ™|z exp[—%trzl(Y — XB)'(Y — XB)

The marginal PDF of pu can be found . e[ e | ’
f(B|%)=(27) P2 |5 /n, [ exp[—?"trE (B-B,)'(B—B,)

f(B|Y) o H. [ f(Z)=k|H |72z tPor exp[—%trZ‘lH}

(@+1) xp

1
f(B|Y)cc —— —
(a+1) xp |W T (B — B) (X X + ﬂo|)(B — B)l

Note: If ApXxqgandBisqgXp, then

[1,+AB|< 1 +BA]|

v.=v+n+(q+1
f(B|Y) o 1 v,=v+n-p+q+1

1) X 1 1 (vy+p)/2
w0 ]+ (X X+n|)(B B)T (B —B)'
E(B|Y)=B W H. =(B—B)(X'X +nyl)(B-B)+W
e v, W =n,B/B,+H +Y'Y —B'(X'X +n,1)B
D.B. Rowe
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Bayesian Statistical Learning

Bayesian Multivariate Multiple Linear Regression ]
f(Y|B,2)=(2x) ™|z exp[—%trzl(Y — XB)'(Y — XB)

The marginal PDF of X can be found

f(B|Z)=(27) P22/ n, [ exp[—%trZ‘l(B -B,)'(B-B,)

f (2 |Y) — IB f (512 |Y)dB f(X)=k|H ||z [VPre exp[—%trZ‘lH}

pxp

fS]Y)oc [ [Z[0rr” exp{—%trzl[(B ~B)'(X'X +n,1)(B-B) +w]}d5
pXxXp

oy 1 V.=Vv+Nn+(q+
f(S]Y) o S| tPa2g 2 j|2| e exp{—gtrZ (B-B)'(X'X +n,1)(B - B)

pXp

|
=constant

W =n,B/B,+H +Y'Y —B'(X'X +n,1)B

D.B. Rowe 30



Bayesian Statistical Learning
Bayesian Multivariate Multiple Linear Regression

The marginal PDF of X can be found to be inverse Wishart

Lisw

f (z |Y) _ k |W |(v**)/2| D |—(v**+p+l)/2 e 2

pxp
with expectation, variances, and covariances

E(Z|Y) = W
pXp Ve — P -1 | :
var(s, |Y) = W,
Vie =V + 1 Ve — P=1D)° (Ve — p—3)
— 2 —p-DWW. 2W.W «— P-DW W, +WW.
Var(Zij |Y) _ (V** p +1)le + (V** p l)WIIWjj COV(ZU- |Y) _ ij° "kl + (V p )(\N|k 1 + il kj)

(Ve = P)(Ver — P—1)* (Ve — p—3) (Ve = P)(Ver — P=1)° (Ve — p—3)

W =n,B/B,+H +Y'Y —B'(X'X +n,1)B

D.B. Rowe 31



Bayesian Statistical Learning
Discussion

We started with the univariate simple normal samples model and
built up to the multivariate multiple linear regression model.

We formulated a Bayesian multivariate multiple regression model
with assessed hyperparameters for conjugate priors and estimated
the model parameters exactly a posteriori.

D.B. Rowe



Bayesian Statistical Learning
Discussion

Questions?

Y=X B+ E

nXp nX(g+l) (g+l)xp nxp

Non-Bayesian

B, r =(X'X)'X"Y

(q+1) xp

cov(vec(B)) = (X 'X) @2
(@+1)p x (q+1) p

1
n—qgq-1

(Y'Y —B'X 'XB)

Bayesian

B=(X"'X +n,1)*[X"'XB,, . +Nn,B,]
(g+1)xp

cov(vec(B)) =(X"X +n,| )_l ®5T

(+1)p x (q+1) p -

T =[n,B!B, +H +Y'Y —B'(X'X +n,1)B]/ v,
v,=v+n-p+q+1

D.B. Rowe



Bayesian Statistical Learning
Homework 14

1*** Select observed known father x;; and mother x; . heights, multiply
by coefficients B, add correlated error correlated & with mean 0 and

covariance X, repeat n=100 times. B=(X'X)EX'Y
(fou oo’ Y — XB)'(Y — XB
Vier Yia) = B X% X)) | Bis Bug |+ (&5, 6i0) ép: - n _)q(_I )
\ﬂZs ﬁzd) I=1..,n

form Y and X, estimate B and X .

Repeat a large number of times L so that you have
BO® .. B® andz®,. " |

Compute means, variances, make histograms, etc.

Compare to true values. *** For enthusiastic students.



Bayesian Statistical Learning
Homework 14

2*** Assess hyperparameters B, n,, v, and H for the conjugate prior PDFs.

Compute Bayesian posterior estimates of data sets generated in #2.

try
(14 11

B,=|0.4 0.4
0.4 04,

*** For enthusiastic students.

D.B. Rowe



Bayesian Statistical Learning
Univariate Simple Sampling Slides Reordered

Model it" Observation:
U

/

Yi =B + & E(s)=0 COV(é‘i):G2

or equivalently

U

/
Yi = (1)(130) T &

1x1 1x1 1x1 1X1

D.B. Rowe



Bayesian Statistical Learning
Univariate Simple Linear Regression

Model it" Observation:

Yi=FGo+ B %+ & E(s)=0 COV(é‘i):(T2

or equivalently

R

2x1

D.B. Rowe



Bayesian Statistical Learning
Univariate Multiple Linear Regression

Model ith Observation:
yi :ﬂ0+ﬁlxil+"'+ﬂqxiq+gi E(gi):O COV(&'i)ZGZ

or equivalently

/Igo\
p
Vi =L Xigseees Xig) |+e
1x1 1 (q+1) : 1x1
LY
(q+1) X1

D.B. Rowe



Bayesian Statistical Learning
Multivariate Multiple Linear Regression

Model it" Observation:

yij ::801' +ﬂ1jxi1+"'+ﬂqjxiq+gij E(gi):O Cov(gi)zz
r equivalentl =Tt
or equivalently =170
(e )
(1801 :802 IBOD\ '
Pu P p &i2
(yil"'1yip):(1’ Xil""’xiq) :11 :12 . :1IO +(‘9i1""’gip) & = .
1xp 1x(q+1) ' ' ' ' 1xp
\ﬂql :qu ﬂqp/ \gip)
(@+1) Xp

D.B. Rowe



Bayesian Statistical Learning
Univariate Simple Sampling

Vi =B+ &
Model n Observations: i—1..n
/yl\ /1\ /gl\
y 1 g
.2 — : (ﬂo)+ .2
. \u
\Yn \1/ \ &n /
nx1l nxi nx1l
more compactly
y =X B+ ¢
nx1i nxl 1x1 nx1

D.B. Rowe



Bayesian Statistical Learning
Univariate Simple Linear Regression

Yi =B, + BX t&
Model n Observations: i—1..n
/yl\ /]_ )(1\ /gl\
3{2 _ 1 X.z ['BO]+ 5.2
: S :
2 X1
\Yn \1 X ) \ &n /
nx1 nx2 nx1
more compactly
y =X f+ ¢
nx1 nx2 2 X1 nx1

D.B. Rowe



Bayesian Statistical Learning
Univariate Multiple Linear Regression

=B, + X+ +,quq + &

Model n Observations:

1=1..n
(yl\ /1 X11 qu\(ﬂO\ /gl\
Y, 1 Xy, X2q by &,
S=. 7. . N
\ Yn \1 Kp an/\'gq/ \ én/
nx1 nx(q+1) (g+1) X1 nx1
more compactly
y = X B+ ¢

nxl1 nx(g+l)(q+l) X1nx1

D.B. Rowe



Bayesian Statistical Learning

Multivariate Multiple Linear Regression Pu Ba o By
ﬁZl ﬁ22 IBZp
(Yirs- Vip) = @ Xy Xig) | . c (et Ey)
Model n Observations: o P = By) .,
KY11 Yo Y1p\ 1 X o qu\/ﬂm :Boz ﬁOp\ /511 Ep glp\
Yoo Yo Yop | 1 Xy Xoq b P :Blp N &y &y Erp
\ynl yn2 ynp/ \1 an an/\ﬁql :qu ﬂqp/ \gnl gn2 gnp)
nxp nx(g+1) (g+1) xp P i1
more compactly
Y = X B+ E

nXp  nX(g+l)(g+l) XpnXp

B = ('Bl";:.s’ B,) = (blvr;v'v: b,)’

(@+1) Xp

D.B. Rowe



Bayesian Statistical Learning
Univariate Simple Sampling

Y =5 +&

The model
y=X S+ ¢ E(e)=0 cov(s) = ol 1=1..,n

nxl nxl1 1><1\ nx1
K

with coefficients and variance estimated as

n L R 1 AL A
PIXRTXY G == (y=XP)(y-Xp)

Require n>1, general rule n>10

from likelihood function

(15,0 = (22 ™| 0%1, [ x| - (0%1,.) “(y = X ) (y - X )

n x1

D.B. Rowe



Bayesian Statistical Learning
Univariate Simple Linear Regression

Yi =B, + BX t&
The model

y=X [+ ¢ E(¢)=0 cov(s) = ol 1=1..,n

nxl nx2 2X1 nx1i

with coefficients and variance estimated as

B(XX)" X"y G =2y - XA (Y- Xp)

2 X1 2X2 2Xn nxl1

Require n>2, general rule n>20

from likelihood function

(15,0 = (22 ™| 0%1, [ x| - (0%1,.) “(y = X ) (y - X )

n x1

D.B. Rowe



Bayesian Statistical Learning
Univariate Multiple Linear Regression

The model
y=X S+ ¢ E(e)=0 cov(s) = ol 1=1..,n

nx1l nx (g+tl)(g+l) X1nx1

with coefficients and variance estimated as

B=(XX)" X"y G =2y - XA (Y- Xp)

(g+1) X1 (g+1) X (g+1) (q+1)Xn nx1

Require n>(g+1), general rule n>10(q+1)

from likelihood function

(15,0 = (22 ™| 0%1, [ x| - (0%1,.) “(y = X ) (y - X )

n x1

D.B. Rowe



Bayesian Statistical Learning

Multivariate Multiple Linear Regression Pu Po - P
ﬁ21 ﬂ22 ﬂZp
(Virres Yip) = (L Xigs ey Xiq) : SR +(&y+. 1 &)
The model Bu P 0 Bo) |
Y=X B+ E E(vec(E)) =0 cov(vec(E))=1 ®x I1=1..,n

nXp nx (g+1)(g+l) Xpnx1
Each row of E has cov(g;)=X.

with coefficients covariance estimated as

8= (X' X)L X" Y $ — 1y~ XB)(Y - XB)
N

(g+1) xp (g+1) x(g+1) (g+1) Xn nXp p Xp

from likelihood function Require n=(q+1)p, general rule n=10p(q+1)

f(Y|B,2)=02x) ™= exp —%trzl(Y — XB)'(Y — XB)

nxp

tr(-) is trace, sum of diagonal elements

D.B. Rowe



Bayesian Statistical Learning
Univariate Simple Sampling

y=X B+ ¢
Using the distributional assumption that if ¢ is normally distributed,
B=(X"X)*X"y is N(E(B) =5, cov()=c"(X'X)") 121, general rule 10
\ ”
and *

6% = ﬁ (y - X B)'(y - X B) is gamma(v,c3/v)!

1x1

(15,0 = (22 ™| 0%1, [ x| - (0%1,.) “(y = X ) (y - X )

n x1

D.B. Rowe



Bayesian Statistical Learning
Univariate Simple Linear Regression

y=X fB + ¢

nXxl nx2 2 X1 nx1l

Using the distributional assumption that if ¢ is normally distributed,
B=(X'X)*X"y is N(E(B)=p, cov(B)=c"(X'X)") 122, general rule 1520
and

62 = ﬁ (y —NX,B) (y ;X,B) IS gamma(v,c?/v)!

1x1

(Y1 5,09 =22 " |71, exp| = (0L (Y = X ) (y - X )

n x1

D.B. Rowe



Bayesian Statistical Learning
Univariate Multiple Linear Regression

y=X pf+ ¢
Using the distributional assumption that if ¢ is normally distributed,
f=(X"X)'X"y is N(E(S) =5, cov(f) =" (X"X)") 122, general rule 20
(q+1) x1 (@+1) x 1 q+1) x (q+1
and
5 1

G e 1(y7x3<,8)'(ynjlx,8)is gamma(v,c?/v)!

(15,0 = (22 ™| 0%1, [ x| - (0%1,.) “(y = X ) (y - X )

n x1

D.B. Rowe



Bayesian Statistical Learning
Multivariate Multiple Linear Regression

Y=X B+ ¢

nXp nX(g+l)(g+l) X1 nXxp

Using the distributional assumption that if ¢ is normally distributed,

B = (X lX)_lx 'Y IS N( E(é) =B, COV(VeC(é)) = ((X)l >(( ))_1 ® Z) n>(q+1), general rule n>10p(q+1)
(@+1) X p q+1) X (q+1 pX p

and cov(f) =t (X'X) covB)=wE W =(X'X)"

A 1 A AN - :

S = (Y — XB)'(Y — XB) is Wishart(v,Z/v)!

pxp N—Q—-1°= e W, S W, ]

W w,E
cov(vec(B)) =
- _ ! Wigu1),(q:%
f(Y|B,2)=02x) ™= exp —EtrZ‘l(Y — XB)'(Y — XB)
nxp B a

D.B. Rowe



