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Univariate Simple Sampling

Model ith Observation:

or equivalently
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( ) 0iE  =
2cov( )i =

1,...,i n=

µ

( )0(1)i iy  = +
1×1 1×1 1×1 1×1

µ

0i iy  = +



Univariate Simple Sampling

Model n Observations:

more compactly
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n×1 n×1 n×1
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0i iy  = +
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




    
    
    = +
    
    

    

1,...,i n=

y X  = +
n×1 n×1 n×11×1



Univariate Simple Sampling

The model

with coefficients and variance estimated as

from likelihood function

.
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1 ×1

ˆ x =

Require n≥1, general rule n≥10

µ

n×1

0i iy  = +

n×1 1×1

1ˆ ( ' ) 'X X X y −=

y X  = +
n×1 n×1

2cov( ) nI =( ) 0E  =

2 /2 2 /2 2 1

1 1

1
( | , ) (2 ) | | exp ( ) ( ) '( )

2

n n

q qf y I I y X y X      − − −

+ +

 
= − − − 

 n×1

1,...,i n=

1×1 1×n

2 1 ˆ ˆˆ ( ) '( )y X y X
n

  = − −
1 ×1

column of 1’s



Univariate Simple Sampling

Using the distributional assumption that if ε is normally distributed, 

is N(             ,                              )

and

is gamma(ν,σ2/ν)!2 1 ˆ ˆˆ ( ) '( )
1

y X y X
n

  = − −
−
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ˆ x =

n≥1, general rule n ≥10
1ˆ ( ' ) 'X X X y −= ( )

12ˆcov( ) 'X X 
−

=
n×1

ˆ( )E  =

1×1

y X  = +
n×1 n×1 1 ×1 n×1

1 ×1

n×11×n

2 /2 2 /2 2 1

1 1

1
( | , ) (2 ) | | exp ( ) ( ) '( )

2

n n

q qf y I I y X y X      − − −

+ +

 
= − − − 

 n×1

1×1



Univariate Simple Linear Regression

Model ith Observation: 

or equivalently

0

1

(1, )i i iy x





 
= + 

 

7D.B. Rowe

Bayesian Statistical Learning

1×2

2×1

1×1

( ) 0iE  =
2cov( )i =

1,...,i n=

0 1i i iy x  = + +

1×1



Univariate Simple Linear Regression

Model n Observations:

more compactly
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n×1 n×2

2 ×1

n×1

0 1i i iy x  = + +

1 1 1

2 2 20

1

1

1

1n n n

y x

y x

y x









     
     

      = +       
     
     

1,...,i n=

y X  = +
n×1 n×2 n×12 ×1



Univariate Simple Linear Regression

The model

with coefficients and variance estimated as

from likelihood function

.
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Require n≥2, general rule n≥20

0 1i i iy x  = + +

1,...,i n=

y X  = +

1ˆ ( ' ) 'X X X y −=

n×1 n×2 2×1 n×1

( ) 0E  = 2cov( ) nI =

2 /2 2 /2 2 1

1 1

1
( | , ) (2 ) | | exp ( ) ( ) '( )

2

n n

q qf y I I y X y X      − − −

+ +

 
= − − − 

 n×1

1,...,i n=

2 ×1 n×12×2 2×n

2 1 ˆ ˆˆ ( ) '( )y X y X
n

  = − −
1 ×1



Univariate Simple Linear Regression

Using the distributional assumption that if ε is normally distributed, 

is N(             ,                              )

and

is gamma(ν,σ2/ν)!
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y X  = +
n×1 n×2 2 ×1

n≥2, general rule n>20
1ˆ ( ' ) 'X X X y −= ( )

12ˆcov( ) 'X X 
−

=
2×1

ˆ( )E  =

2 1 ˆ ˆˆ ( ) '( )
2

y X y X
n

  = − −
−1×1

n×1

2 ×2

n×11×n

n×1

2 /2 2 /2 2 1

2 2

1
( | , ) (2 ) | | exp ( ) ( ) '( )

2

n nf y I I y X y X      − − − 
= − − − 

 

2×1



Univariate Multiple Linear Regression

Model ith Observation:

or equivalently

0

1

1(1, ,..., )i i iq i

q

y x x








 
 
 = +
 
  
 
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1×1 1×1

(q+1) ×1

( ) 0iE  =
2cov( )i =

1,...,i n=

0 1 1 ...i i q iq iy x x   = + + + +

1×(q+1)



Univariate Multiple Linear Regression

Model n Observations:

more compactly
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n×1 n×(q+1)
(q+1) ×1 n×1

0 1 1 ...i i q iq iy x x   = + + + +

11 1 01 1

21 2 12 2

1

1

1

1

q

q

n nq qn n

x xy

x xy

x xy

 

 

 

     
     
     = +
     
       

     

1,...,i n=

y X  = +
n×1 n×(q+1) n×1(q+1) ×1



Univariate Multiple Linear Regression

The model

with coefficients and variance estimated as

from likelihood function

.
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Require n≥(q+1), general rule n≥10(q+1)

2cov( ) nI =

0 1 1 ...i i q iq iy x x   = + + + +

1,...,i n=

y X  = +

1ˆ ( ' ) 'X X X y −=

n×1 n×1n× (q+1) (q+1) ×1

( ) 0E  =

2 /2 2 /2 2 1

1 1

1
( | , ) (2 ) | | exp ( ) ( ) '( )

2

n n

q qf y I I y X y X      − − −

+ +

 
= − − − 

 n×1

1,...,i n=

(q+1)×(q+1)(q+1) ×1 (q+1)×n n×1

2 1 ˆ ˆˆ ( ) '( )y X y X
n

  = − −
1 ×1



Univariate Multiple Linear Regression

Using the distributional assumption that if ε is normally distributed, 

is N(             ,                              )

and

is gamma(ν,σ2/ν)!
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(q+1)× (q+1)
n≥2, general rule n>20

1ˆ ( ' ) 'X X X y −= ( )
12ˆcov( ) 'X X 
−

=ˆ( )E  =

2 1 ˆ ˆˆ ( ) '( )
1

y X y X
n q

  = − −
− −1×1

y X  = +
n×1 n×2 2 ×1 n×1

(q+1)×1

n×11×n

2 /2 2 /2 2 1

1 1

1
( | , ) (2 ) | | exp ( ) ( ) '( )

2

n n

q qf y I I y X y X      − − −

+ +

 
= − − − 

 n×1

(q+1)× 1



Matrix Normal and Matrix-T PDFs

Let y be have a multivariate normal PDF, y ~ N( μ, Ω)

and that Ω has a separable or Kronecker product structure Ω=Φ⊗Σ.
We utilize mathematical results that

and

where y=vec(Y) and μ=vec(M) to arrive at a reformulated PDF.
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np×1

/2 1/2 11
( | , ) (2 ) | | exp ( ) ' ( )

2

npf y y y   − − − 
 =  − −  − 

 np×1 np×1 np× np

np×1 np×1 np× np

| | | | | | | |p n
 =   =  

np× np n× n p× p

np× np n× n p× p p× pn× n

1 1 1( ) '( ) ( ) ( ) ' ( )y y tr Y M Y M − − −
−   − =  −  −

np×1 n× p np×1 n× p

, npy  0 

Separable used for vectors over time 

or row-col correlation in images..

1( ,..., )nM  =
1( ,..., )nY y y=



Matrix Normal and Matrix-T PDFs

The new Matrix Normal PDF for Y is

and we write Y ~ N( M, Φ, Σ) aka y ~ N( μ, Φ⊗Σ).

There are  various mean and covariance notations,

E(Y) = M or E(vec(Y)) = μ and cov(Y) = Φ⊗Σ or cov(y) = Φ⊗Σ.
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p× pn× p n× nn× p

n× p

p× pn× p n× nn× p
np×1 np×1 np× np

n× pn× p np×1 np×1 n× p np× np np× npnp×1

n=1→multivariate

n,p=1→univariate

Separable used for vectors over time 

or row-col correlation in images..

1( ,..., )nM  =
1( ,..., )nY y y=

/2 /2 /2 1 11
( | , , ) (2 ) | | | | exp ( ) ' ( )

2

np p nf Y M tr Y M Y M − − − − − 
  =   −  −  − 

 



Matrix Normal and Matrix-T PDFs

the Matrix-T distribution can be arrived at via a transformation of 

variable from a matrix normal to a standard matrix normal and a 

Wishart PDF.

and we write Y ~ T(ν, M, Φ, Σ) aka y ~ T( μ, Φ⊗Σ).

There are  various mean and covariance notations,

E(Y) = M or E(vec(Y)) = μ and cov(Y) =      Φ⊗Σ or cov(y) =  Φ⊗Σ.
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2 2

21 11

| | | |
( | , , , )

( ) ' ( )

p n

pT

n

f Y M k

I Y M Y M




 +

− −

− −

 
  =

+  −  −

( )

( )

1

21

12
21

( )

n p j

j

T np
n j

j

k





+ + −

=

+ −

=


=







n=1→multivariate

n,p=1→univariate

1( ,..., )nM  =
1( ,..., )nY y y=

2



 − 2



 −
n× pn× p np×1 np×1 n× p np× np np× npnp×1

p× pn× p n× nn× p
np×1 np×1 np× np

There is also a CLT result that MT becomes MN.

n× p



Multivariate Multiple Linear Regression

Model ith Observation:

or equivalently

01 02 0

11 12 1

1 1 1

1 2

( ,.., ) (1, ,..., ) ( ,..., )

p

p

i ip i iq i ip

q q qp

y y x x

  

  
 

  

 
 
 = +
 
  
 
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(q+1) ×p

1×p 1×(q+1) 1×p

0 1 1 ...ij j j i qj iq ijy x x   = + + + +
( ) 0iE  =

1,...,i n=

1

2

i

i

i

ip








 
 
 =
 
  
 

cov( )i = 

1,...,j p=



Multivariate Multiple Linear Regression

Model n Observations:

more compactly
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11 12 1

21 22 2

1 1 1

1 2

( ,.., ) (1, ,..., ) ( ... )

p

p

i ip i iq i ip

q q qp

y y x x

  

  
 

  

 
 
 = + + +
 
  
 

11 12 1 11 1 01 02 0 11 12 1

21 22 2 21 2 11 12 1 21 22 2

1 2 1 1 2 1 2

1

1

1

p q p p

p q p p

n n np n nq q q qp n n np

y y y x x

y y y x x

y y y x x

     

     

     

      
      
      = +
      
            
      

n×p n×(q+1) n×p

1,...,i n=
n×p n×(q+1) (q+1) ×p n×p

Y X B E= +

1 1( ,..., ) ( ,..., ) 'p nB b b = =
cols

rows

(q+1) ×p

(q+1) ×p

1,...,i n=



Multivariate Multiple Linear Regression

The model

with coefficients covariance estimated as

from likelihood function

.
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Y X B E= +

Require n≥(q+1)p, general rule n≥10p(q+1)

Each row of E has cov(εi)=Σ.

tr(·) is trace, sum of diagonal elements

11 12 1

21 22 2

1 1 1

1 2

( ,.., ) (1, ,..., ) ( ... )

p

p

i ip i iq i ip

q q qp

y y x x

  

  
 

  

 
 
 = + + +
 
  
  1,...,i n=

1ˆ ( ' ) 'B X X X Y−=

n×p n× (q+1) n×1(q+1) ×p

/2 /2 11
( | , ) (2 ) | | exp ( ) '( )

2

np nf Y B tr Y XB Y XB − − − 
 =  −  − − 

 

( ( )) 0E vec E =

n×p

cov( ( )) nvec E I= 

(q+1)×(q+1)(q+1) ×p (q+1)×n n×p

1,...,i n=

p×p

1 ˆ ˆˆ ( ) '( )Y XB Y XB
n

 = − −



Multivariate Multiple Linear Regression

Using the distributional assumption that if ε is normally distributed, 

is N(             ,                                      )

and

is Wishart(ν,Σ/ν)!
1 ˆ ˆˆ ( ) '( )

1
Y XB Y XB

n q
 = − −

− −
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n×p

(q+1)×p

n≥(q+1), general rule n>10p(q+1)
ˆ( )E B B= ( )

1ˆcov( ( )) 'vec B X X
−

= 

( )
1

'W X X
−

=( )
12ˆcov( ) 'j j X X 
−

=
ˆcov( )i iib w= 

cols
rows

1ˆ ( ' ) 'B X X X Y−=

p×p p×n

Y X B = +
n×p n×(q+1)(q+1) ×1 n×p

(q+1)× (q+1) p× p

/2 /2 11
( | , ) (2 ) | | exp ( ) '( )

2

np nf Y B tr Y XB Y XB − − − 
 =  −  − − 

 

11 12

21 22

( 1),( 1)

ˆcov( ( ))

q q

w w

w w
vec B

w + +

  
 

 
 =
 
 

  

n×p

p(q+1)× p(q+1)



Multivariate Multiple Linear Regression

Example:

It is believed that the heights of sons (ys) and daughters (yd) are 

linearly dependent upon the heights of their fathers (xf) and mothers (xm).

Assume that the true parameter values are:
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1,...,i n=

14.1 10.8

0.41 0.39

0.43 0.43

B

 
 

=  
 
 

2.250 1.125

1.125 2.250

 
 =  

 

0 0

1 1

2 2

( , ) (1, , ) ( , )

s d

is id if im s d is id

s d

y y x x

 

   

 

 
 

= + 
 
 

http://chance.amstat.org/2013/09/1-pagano/

( , ) ' ~ (0, )is id N  

could also imagine 

grandparents heights 

in model as x’s

(q+1)×p
p×p



Multivariate Multiple Linear Regression

Example:

Selected 

xf ={66,67,68,69,70,71,72,73,74,75}, 

xm={60,61,62,63,64,65,66,67,68,69}

combinations (n=100), multiplied each with B

then added correlated normal noise with Σ.

Repeated L=10,000 times.
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2.250 1.125

1.125 2.250

 
 =  

 

14.1 10.8

0.41 0.39

0.43 0.43

B

 
 

=  
 
 

1.50 0

0.755 1.30
A

 
=  
 



Multivariate Multiple Linear Regression

Example:

Estimates and plots from all 106. 
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2.250 1.125

1.125 2.250

 
 =  

 

14.1 10.8

0.41 0.39

0.43 0.43

B

 
 

=  
 
 

1.50 0

0.755 1.30
A

 
=  
 

14.0511 10.8487

ˆ 0.4108 0.3899

0.4299 0.4294

B

 
 

=  
 
 

2.2504 1.1207
ˆ

1.1207 2.2465

 
 =  

 



Multivariate Multiple Linear Regression
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% Multivariate model for 

% Y1=son height, Y2=daughter height

% X1 = father height, X2=mother height

clear all

close all

rng('default')

% define true parameter values

n=100;

B=[[14.1;.41;.43],[10.8;.39;.43]]

sigma1=1.5; sigma2=1.5; rho=.5;

Sigma=[sigma1^2,sigma1*sigma2*rho;...

sigma1*sigma2*rho,sigma2^2]

A=chol(Sigma)'

% generate simulated data

hf=(66:66+9);,hm=(60:60+9);

[Xf,Xm]=meshgrid(hf,hm);

xf=reshape(Xf,n,1);,xm=reshape(Xm,n,1);

X=[ones(n,1),xf,xm]

replicate=10000;

X=repmat(X,replicate,1);

n=size(X,1);

E=(A*randn(2,n))';

Y=X*B+E;

% Estimate parameters

Bhat=inv(X'*X)*X'*Y;

SigmaHat=(Y-X*B)'*(Y-X*B)/(n-3);

[Bhat,B]

[SigmaHat,Sigma]

figure;

scatter(Y(:,1),Y(:,2))

axis square

xlabel('Sons Heights')

ylabel('Daughters Heights')

xlim([61,80]),ylim([54,78])



Bayesian Multivariate Multiple Linear Regression

The model

with likelihood

and priors

/2 /2 11
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 

Y X B E= +
n×p n× (q+1) n×1(q+1) ×p

Each row of E has cov(εi)=Σ.

( ( )) 0E vec E = cov( ( )) nvec E I=  1,...,i n=

(q+1)×p

p×p

n×p

matrix normal

matrix normal

Inverse Wishart



Bayesian Multivariate Multiple Linear Regression

yields posterior

complete the square

.

Integrate wrt to Σ to get Matrix Student-T PDF for B.

Integrate wrt to B to get Inverse Wishart PDF for Σ.
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Bayesian Multivariate Multiple Linear Regression

The marginal PDF of B can be found

1
*

* * *

1
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Bayesian Multivariate Multiple Linear Regression

The marginal PDF of µ can be found
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Bayesian Multivariate Multiple Linear Regression

The marginal PDF of Σ can be found 
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Bayesian Multivariate Multiple Linear Regression

The marginal PDF of Σ can be found to be inverse Wishart

with expectation, variances, and covariances

,

,                                                              .
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Discussion

We started with the univariate simple normal samples model and 

built up to the multivariate multiple linear regression model.

We formulated a Bayesian multivariate multiple regression model

with assessed hyperparameters for conjugate priors and estimated

the model parameters exactly a posteriori.  
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Discussion

Questions?
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Homework 14

1***.Select observed known father xif and mother xim heights, multiply 

by coefficients B, add correlated error correlated εi with mean 0 and

covariance Σ, repeat n=100 times.

form Y and X, estimate    and    . 

Repeat a large number of times L so that you have

and               . 

Compute means, variances, make histograms, etc.

Compare to true values.
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*** For enthusiastic students.



Homework 14

2***.Assess hyperparameters B0, n0, ν, and H for the conjugate prior PDFs.

Compute Bayesian posterior estimates of data sets generated in #2.
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*** For enthusiastic students.
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Univariate Simple Sampling

Model ith Observation:

or equivalently
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( ) 0iE  =
2cov( )i =
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Slides Reordered

µ

0i iy  = +



Univariate Simple Linear Regression

Model ith Observation: 

or equivalently

0

1

(1, )i i iy x





 
= + 

 
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Univariate Multiple Linear Regression

Model ith Observation:

or equivalently
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Multivariate Multiple Linear Regression

Model ith Observation:

or equivalently
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Univariate Simple Sampling

Model n Observations:

more compactly
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Univariate Simple Linear Regression

Model n Observations:

more compactly
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Univariate Multiple Linear Regression

Model n Observations:

more compactly
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Multivariate Multiple Linear Regression

Model n Observations:

more compactly
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Univariate Simple Sampling

The model

with coefficients and variance estimated as

from likelihood function

.
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Univariate Simple Linear Regression

The model

with coefficients and variance estimated as

from likelihood function

.
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Univariate Multiple Linear Regression

The model

with coefficients and variance estimated as

from likelihood function

.
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Multivariate Multiple Linear Regression

The model

with coefficients covariance estimated as

from likelihood function

.
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 
 = + + +
 
  
  1,...,i n=

1ˆ ( ' ) 'B X X X Y−=

n×p n× (q+1) n×1(q+1) ×p

/2 /2 11
( | , ) (2 ) | | exp ( ) '( )

2

np nf Y B tr Y XB Y XB − − − 
 =  −  − − 

 

( ( )) 0E vec E =

n×p

cov( ( )) nvec E I= 

(q+1)×(q+1)(q+1) ×p (q+1)×n n×p

1,...,i n=

p×p

1 ˆ ˆˆ ( ) '( )Y XB Y XB
n

 = − −



Univariate Simple Sampling

Using the distributional assumption that if ε is normally distributed, 

is N(             ,                              )

and

is gamma(ν,σ2/ν)!2 1 ˆ ˆˆ ( ) '( )
1

y X y X
n

  = − −
−
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ˆ x =

n≥1, general rule n>10
1ˆ ( ' ) 'X X X y −= ( )

12ˆcov( ) 'X X 
−

=
n×1

ˆ( )E  =

1×1

y X  = +
n×1 n×1 1 ×1 n×1

1 ×1

n×11×n

2 /2 2 /2 2 1

1 1

1
( | , ) (2 ) | | exp ( ) ( ) '( )

2

n n

q qf y I I y X y X      − − −

+ +

 
= − − − 

 n×1

1×1



Univariate Simple Linear Regression

Using the distributional assumption that if ε is normally distributed, 

is N(             ,                              )

and

is gamma(ν,σ2/ν)!
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y X  = +
n×1 n×2 2 ×1

n≥2, general rule n>20
1ˆ ( ' ) 'X X X y −= ( )

12ˆcov( ) 'X X 
−

=
2×1

ˆ( )E  =

2 1 ˆ ˆˆ ( ) '( )
2

y X y X
n

  = − −
−1×1

n×1

2 ×2

n×11×n

n×1

2 /2 2 /2 2 1

2 2

1
( | , ) (2 ) | | exp ( ) ( ) '( )

2

n nf y I I y X y X      − − − 
= − − − 

 

2×1



Univariate Multiple Linear Regression

Using the distributional assumption that if ε is normally distributed, 

is N(             ,                              )

and

is gamma(ν,σ2/ν)!
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(q+1)× 1 (q+1)× (q+1)
n≥2, general rule n>20

1ˆ ( ' ) 'X X X y −= ( )
12ˆcov( ) 'X X 
−

=ˆ( )E  =

2 1 ˆ ˆˆ ( ) '( )
1

y X y X
n q

  = − −
− −1×1

y X  = +
n×1 n×2 2 ×1 n×1

(q+1)×1

n×11×n

2 /2 2 /2 2 1

1 1

1
( | , ) (2 ) | | exp ( ) ( ) '( )

2

n n

q qf y I I y X y X      − − −

+ +

 
= − − − 

 n×1



Multivariate Multiple Linear Regression

Using the distributional assumption that if ε is normally distributed, 

is N(             ,                                      )

and

is Wishart(ν,Σ/ν)!
1 ˆ ˆˆ ( ) '( )

1
Y XB Y XB

n q
 = − −

− −
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n×p

(q+1)×p

n≥(q+1), general rule n>10p(q+1)
ˆ( )E B B= ( )

1ˆcov( ( )) 'vec B X X
−

= 

( )
1

'W X X
−

=( )
12ˆcov( ) 'j j X X 
−

=
ˆcov( )i iib w= 

cols
rows

1ˆ ( ' ) 'B X X X Y−=

p×p p×n

Y X B = +
n×p n×(q+1)(q+1) ×1 n×p

(q+1)× (q+1) p× p

/2 /2 11
( | , ) (2 ) | | exp ( ) '( )

2

np nf Y B tr Y XB Y XB − − − 
 =  −  − − 

 

11 12

21 22

( 1),( 1)

ˆcov( ( ))

q q

w w

w w
vec B

w + +

  
 

 
 =
 
 

  

n×p


