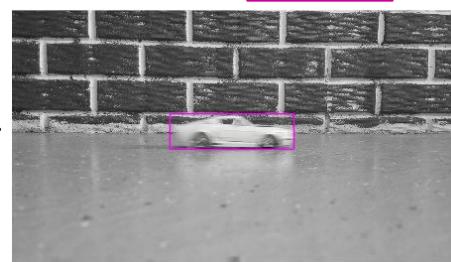

Statistical Machine Vision

Session I: Asynchronous
Distance Learning



Topics:

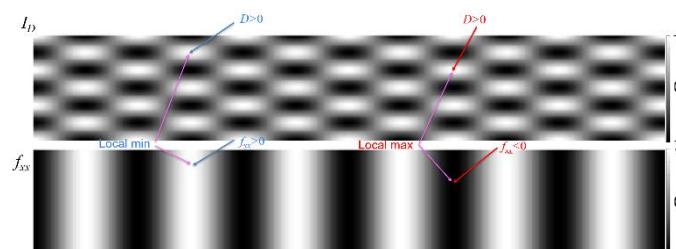
- Discrete image representation.
- Time Series & Image Convolution
- Image enhancement via local pixel weighting (spatial kernel filter and image space convolution).
- Kernel filter design with weight assignments.
- Pixel noise reduction via local averaging (smoothing filters).
- Edge enhancement via local differencing (gradient filters).
- Statistical properties of local averaging or differencing (pixel mean, variance, and correlation).
- Image text recognition, letter or word identification (letter A, word MATH).
- Time averaging (temporal recursive filters) for pixel noise reduction in image sequences.
- Identifying and tracking of objects including orientation through a sequence of images (car moving across a scene in a sequence of images).
- The DFT for accelerated convolutions in frequency space
- Line tracing within an image via discrete derivatives, gradients, and Hessians.
- Image object representations (perimeter, area, elongation, etc.), feature extraction.
- Statistical classification of image objects using features (square, circle, and rectangle).
- Computational implementations and examples will be given with Matlab.
- Additional topics covered if time permitting.

Find object

Prerequisites/Notes:

- COSC 1010, MATH 1451, and MATH 4720 or the equiv.
- MSSC 5770 will have additional assignments.

For more information, email the instructor:


- [Dr. Daniel Rowe \(Daniel.Rowe@Marquette.Edu\)](mailto:Dr. Daniel Rowe (Daniel.Rowe@Marquette.Edu))

Find text
pictures

“If your **pictures** aren’t good
enough, you’re not close enough.”
– Robert Capa

Find industrial concavities

$D>0 \& f_{xx}(x_0, y_0) > 0$, then **local min** at (x_0, y_0) .
 $D>0 \& f_{xx}(x_0, y_0) < 0$, then **local max** at (x_0, y_0) .
 $D<0$, then f has a **saddle point** at (x_0, y_0) .
If $D=0$, anything can happen at (x_0, y_0) .

