

Bayesian Factor Analysis
by Daniel B. Rowe
| p(B|A) | = | p(AB)/p(A) |
| (xi|μ,Λ,fi,m) | = | μ | + | Λ | fi | + | εi |
| (p x 1) | (p x 1) | (p x m) | (m x 1) | (p x 1) |
| (xi|μ,Λ,fi,m) | = | μ | + | Λ | fi | + | εi , |
| (p x 1) | (p x 1) | (p x m) | (m x 1) | (p x 1) |
| p(xi|μ,Λ,f,Ψ,m) | = | (2π)-p/2 |Ψ|-1/2exp[-1/2(xi - μ - Λ fi)'Ψ-1 (xi - μ - Λ fi)] . |
| p(x|μ,Λ,f,Ψ,m) | = | (2π)-np/2|Ψ|-n/2exp[-1/2 Σi=1n(xi - μ - Λ fi)' Ψ-1 (xi - μ - Λ fi)]. |
| p(fi|R,m) | = | (2π)-m/2 |R|-1/2 exp[-1/2fi'R-1fi] . |
| p(fi,xi|μ,Λ,Ψ,R,m) | exp[-1/2 (fi- | |
| x | exp[-1/2(xi-μ)' (Ψ+ΛRΛ ')-1 (xi-μ) ] |
| = | (R-1+Λ' Ψ-1Λ)-1Λ' Ψ-1(xi-μ). |
| cov(xi,fi|μ,Λ,R,Ψ,m) | = | cov(μ +Λfi+ εi,fi|μ,Λ,R,Ψ,m) |
| = | cov(μ,fi|μ,R,m) +Λcov(fi,fi|R,m)+ cov(εi,fi|R,Ψ,m) | |
| = | ΛR |
| E(xi|μ,Λ,Ψ,m) | = | E(μ +Λfi+ εi|μ,Λ,Ψ,m) |
| = | μ +ΛE(fi|R,m)+ E(εi|Ψ) | |
| = | μ |
| Var(xi|μ,Λ,Ψ,m) | = | Var(μ +Λfi+ εi|μ,Λ,Ψ,m) |
| = | ΛVar(fi|R,m)Λ'+ Var(εi|Ψ) | |
| = | ΛRΛ'+Ψ |
| p(xi|μ,Λ,Ψ,R,m) | = | |
| = | (2π)-p/2 |ΛRΛ' + Ψ| -½ exp[ -1/2(xi-μ)'( ΛRΛ' + Ψ)-1(xi-μ) ] |
| p(xi|μ,Λ,Ψ,R,m) | = | (2π)-p/2 |Σ| -1/2 exp[ -1/2 (xi-μ)'Σ -1(xi-μ) ]. |
| L | = | p(x1, ..., xn| μ,Λ,Ψ,R,m) |
| = | (2π)-np/2 | Σ| -n/2 exp[ -1/2Σi=1n(xi-μ)' Σ-1(xi-μ) ] | |
| = | (2π)-np/2 | Σ| -n/2 exp[ -1/2 tr S Σ-1 ] |
| S | = | 1/nΣi=1n(xi-μ)(xi-μ)'. |
| LL | = | -n/2 ( log |Σ| + tr S Σ>-1 ) . |
| LL* | = | -2/n LL -log |S| -p |
| = | tr S Σ-1 + log |S Σ-1| - p. |
| (S- |
| = | diag(S - |
| p(fi|xi,Λ,Ψ,R,m) | exp[-1/2 (fi- |
| = | (R-1+Λ 'Ψ-1Λ)-1 Λ' Ψ-1(xi- |
| Cxx | = | Σi=1n
(xi- |
| Cxf | = | Σi=1n
(xi- |
| Cff | = | Σi=1n fifi'/n |
| E(fi|xi,Ψ,Λ,m) | = | δ(xi- |
| Var(fi|xi,Ψ,Λ,m) | = | Δ. |
| δ | = | (R-1+Λ' Ψ-1Λ)-1 Λ'Ψ-1, |
| Δ | = | (R-1+Λ' Ψ-1 Λ)-1. |
| E(Cxx|X,Ψ,Λ,m) | = | Cxx, |
| E(Cxf|X,Ψ,Λ,m) | = | Cxxδ, |
| E(Cff|X,Ψ,Λ,m) | = | δCxxδ'+ Δ. |
| Λ | = | (F'F)-1F'X |
| Ψ | = | diag{ (X - en |
| (xi|μ,Λ,fi,m) | = | μ | + | Λ | fi | + | εi , |
| (p x 1) | (p x 1) | (p x m) | (m x 1) | (p x 1) |
| p(xi|μ,Λ,f,Ψ,m) | = | (2π)-p/2 |Ψ|-1/2exp[-1/2(xi - μ - Λ fi)'Ψ-1 (xi - μ - Λ fi)] . |
| p(X|μ,Λ,F,Ψ,m) | = | (2π)-np/2| Ψ|-n/2exp[-1/2 tr (X - en
|
| p(μ,Λ,F,Ψ) | = | p(μ)p(Λ|Ψ)p(F)p(Ψ) |
| p(μ,Λ,F,Ψ|X,m) | p(μ)p(Λ|Ψ)p(F)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
| p(μ,Λ,F,Ψ) | = | p(μ)p(Λ|Ψ)p(F)p(Ψ) |
| p(μ,Λ,F,Ψ|X,m) | p(μ)p(Λ|Ψ)p(F)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
| p(μ,Λ,F,Ψ) | = | p(μ|Ψ)p(Λ|Ψ)p(F)p(Ψ) |
| p(μ,Λ,F,Ψ|X,m) | p(μ|Ψ)p(Λ|Ψ) p(F)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
| p(μ,Λ,F,Ψ) | = | p(μ)p(λ)p(F)p(Ψ) |
| p(μ,λ,F,Ψ|X,m) | p(μ)p(λ)p(F)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
| p(C,F,Ψ) | = | p(C|Ψ)p(F)p(Ψ) |
| p(C,F,Ψ|X,m) | p(C|Ψ)p(F)p(Ψ) p(X|C,F,Ψ,m) |
| p(c,F,Ψ) | = | p(c)p(F)p(Ψ) |
| p(c,F,Ψ|X,m) | p(c)p(F)p(Ψ) p(X|c,F,Ψ,m) |
| (1) | Form of letter application | (9) | Experience |
| (2) | Appearance | (10) | Drive |
| (3) | Academic ability | (11) | Ambition |
| (4) | Likeabiliy | (12) | Grasp |
| (5) | Self-confidence | (13) | Potential |
| (6) | Lucidity | (14) | Keenness to join |
| (7) | Honesty | (15) | Suitability |
| (8) | Salesmanship |
| 1 | 2 | 3 | 4 | |
| 5 | 0.779 | -0.038 | -0.159 | -0.004 |
| 6 | 0.733 | -0.018 | -0.014 | 0.085 |
| 8 | 0.765 | -0.049 | 0.037 | -0.068 |
| 10 | 0.672 | -0.023 | 0.148 | 0.024 |
| 11 | 0.774 | -0.051 | -0.008 | -0.083 |
| 12 | 0.684 | 0.032 | 0.092 | 0.108 |
| 13 | 0.629 | 0.085 | 0.138 | 0.192 |
| 3 | 0.008 | 0.738 | 0.052 | 0.020 |
| 1 | 0.016 | -0.061 | 0.706 | 0.036 |
| 9 | -0.020 | 0.059 | 0.745 | -0.005 |
| 15 | 0.201 | -0.042 | 0.662 | 0.020 |
| 4 | 0.102 | -0.060 | 0.156 | 0.722 |
| 7 | 0.113 | -0.025 | -0.142 | 0.728 |
| 2 | 0.296 | -0.015 | 0.049 | 0.099 |
| 14 | 0.303 | -0.271 | 0.205 | 0.302 |
| corr(xi,fi|μ,Λ,Ψ,m) | = | Λ |
| 1 | 2 | 3 | 4 | |
| 1 | 0.747 | -3.280 | 0.258 | -0.542 |
| 2 | 1.345 | -1.468 | 0.917 | 0.218 |
| 3 | 0.964 | -2.667 | 0.521 | -0.130 |
| 4 | 0.319 | 0.491 | 0.345 | 0.172 |
| 5 | -0.517 | 0.190 | 0.620 | 0.717 |
| 6 | 0.258 | -0.088 | 0.936 | 0.562 |
| 7 | 1.029 | 0.390 | 1.728 | 0.164 |
| 8 | 1.290 | 1.117 | 1.701 | 0.095 |
| 9 | 0.711 | -0.266 | 1.594 | 0.162 |
| 10 | 1.982 | 1.981 | -0.025 | -1.333 |
| 11 | 1.678 | 1.871 | -0.304 | -2.722 |
| 12 | 1.606 | 1.904 | -0.528 | -0.745 |
| 13 | -0.726 | 0.322 | 0.072 | 1.051 |
| 14 | -0.723 | 0.337 | 0.396 | 0.640 |
| 15 | -0.750 | 0.271 | 0.056 | 0.878 |
| 16 | 0.828 | -0.972 | 0.919 | -0.030 |
| 17 | 0.415 | 0.071 | 0.851 | 0.090 |
| 18 | -0.161 | 0.788 | -0.509 | -1.278 |
| 19 | -0.168 | 0.698 | -0.269 | -1.357 |
| 20 | 0.592 | -0.144 | -0.479 | 0.671 |
| 21 | 0.558 | -0.921 | -0.556 | 0.887 |
| 22 | 1.425 | 0.057 | 0.450 | 0.597 |
| 23 | 1.354 | -0.186 | -0.074 | 0.659 |
| 24 | 1.156 | -0.029 | 0.297 | 1.119 |
| 25 | -0.988 | -0.213 | -0.669 | 0.383 |
| 26 | -0.762 | -0.219 | -0.026 | 0.447 |
| 27 | 0.288 | -0.351 | -1.220 | 1.047 |
| 28 | -1.606 | -0.842 | -1.076 | -1.189 |
| 29 | -1.894 | -1.786 | -1.490 | -2.517 |
| 30 | -0.870 | -0.961 | -1.189 | 0.427 |
| 31 | -0.530 | -1.693 | -0.811 | 0.786 |
| 32 | -0.024 | -1.138 | -1.090 | 1.205 |
| 33 | -0.334 | -1.085 | -1.296 | 1.155 |
| 34 | -1.485 | -0.514 | -1.316 | -0.191 |
| 35 | -2.141 | -1.968 | -0.789 | -0.466 |
| 36 | -0.747 | -1.379 | -0.157 | -0.348 |
| 37 | 0.819 | -0.622 | -1.437 | -0.693 |
| 38 | 0.772 | -0.680 | -1.513 | -0.574 |
| 39 | 1.560 | 1.319 | 2.067 | 1.396 |
| 40 | 1.714 | 1.345 | 2.054 | 1.381 |
| 41 | -2.142 | 0.399 | 2.326 | -2.779 |
| 42 | -2.453 | 0.684 | 2.561 | -2.972 |
| 43 | -1.574 | 1.134 | 0.192 | 0.115 |
| 44 | 1.094 | -0.072 | 0.630 | 0.002 |
| 45 | 0.001 | 2.039 | 0.102 | 1.503 |
| 46 | 0.455 | 1.838 | -0.160 | 1.591 |
| 47 | -1.886 | 2.092 | -2.340 | 0.083 |
| 48 | -1.841 | 2.207 | -2.269 | -0.340 |
| p(μ,Λ,F,Ψ,m) | = | p(μ)p(Λ|Ψ,m)p(F|m)p(Ψ) p(m) |
| p(μ,Λ,F,Ψ,m|X) | p(μ)p(Λ|Ψ,m)p(F|m)p(Ψ) p(m)p(X|μ,Λ,F,Ψ,m) |
| p(μ,Λ,F,Ψ|m,X) | p(μ)p(Λ|Ψ,m)p(F|m)p(Ψ) p(X|μ,Λ,F,Ψ,m) , |
| p(m|μ,Λ,F,Ψ,X) | p(m)p(μ)p(Λ|Ψ,m)p(F|m)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
| ν | = | 2p+4+2[E(Ψj)]2/[var(Ψj)] |
| g | = | (ν-2p-2)E(Ψj) |
| (x|μ,Λ,f,m) | = | μ | + | (In |
f | + | ε |
| (np x 1) | (np x 1) | (np x nm) | (nm x 1) | (np x 1) |
| p(x|μ,Λ,f,Ω,m) | = | (2π)-np/2 |Ω|-1/2exp{-1/2[x- μ - (In
|
| p(f|Θ,m) | = | (2π)-nm/2 |Θ|-1/2 exp[-1/2 f'Θ-1f] . |
| Ω | = | Ξ |
and | Ω | = | Φ |
| p(X|μ,Λ,f,Ξ,Ψ,m) | = | (2π)-np/2 |Ξ|-p/2|Ψ|-n/2 exp[-1/2Ξ-1(X- M- FΛ')Ψ-1 (X - M - FΛ' )'], |
| p(F|Φ,R,m) | = | (2π)-nm/2 |Φ|-n/2|R|-m/2 exp[-1/2Φ-1 FR-1F'], |