Bayesian Factor Analysis
by Daniel B. Rowe
p(B|A) | = | p(AB)/p(A) |
(xi|μ,Λ,fi,m) | = | μ | + | Λ | fi | + | εi |
(p x 1) | (p x 1) | (p x m) | (m x 1) | (p x 1) |
(xi|μ,Λ,fi,m) | = | μ | + | Λ | fi | + | εi , |
(p x 1) | (p x 1) | (p x m) | (m x 1) | (p x 1) |
p(xi|μ,Λ,f,Ψ,m) | = | (2π)-p/2 |Ψ|-1/2exp[-1/2(xi - μ - Λ fi)'Ψ-1 (xi - μ - Λ fi)] . |
p(x|μ,Λ,f,Ψ,m) | = | (2π)-np/2|Ψ|-n/2exp[-1/2 Σi=1n(xi - μ - Λ fi)' Ψ-1 (xi - μ - Λ fi)]. |
p(fi|R,m) | = | (2π)-m/2 |R|-1/2 exp[-1/2fi'R-1fi] . |
p(fi,xi|μ,Λ,Ψ,R,m) | exp[-1/2 (fi-i)' (R-1+Λ 'Ψ-1 Λ )-1 (fi-i) ] | |
x | exp[-1/2(xi-μ)' (Ψ+ΛRΛ ')-1 (xi-μ) ] |
i | = | (R-1+Λ' Ψ-1Λ)-1Λ' Ψ-1(xi-μ). |
cov(xi,fi|μ,Λ,R,Ψ,m) | = | cov(μ +Λfi+ εi,fi|μ,Λ,R,Ψ,m) |
= | cov(μ,fi|μ,R,m) +Λcov(fi,fi|R,m)+ cov(εi,fi|R,Ψ,m) | |
= | ΛR |
E(xi|μ,Λ,Ψ,m) | = | E(μ +Λfi+ εi|μ,Λ,Ψ,m) |
= | μ +ΛE(fi|R,m)+ E(εi|Ψ) | |
= | μ |
Var(xi|μ,Λ,Ψ,m) | = | Var(μ +Λfi+ εi|μ,Λ,Ψ,m) |
= | ΛVar(fi|R,m)Λ'+ Var(εi|Ψ) | |
= | ΛRΛ'+Ψ |
p(xi|μ,Λ,Ψ,R,m) | = | p(fi,xi|μ,Λ,Ψ,R,m) dfi |
= | (2π)-p/2 |ΛRΛ' + Ψ| -½ exp[ -1/2(xi-μ)'( ΛRΛ' + Ψ)-1(xi-μ) ] |
p(xi|μ,Λ,Ψ,R,m) | = | (2π)-p/2 |Σ| -1/2 exp[ -1/2 (xi-μ)'Σ -1(xi-μ) ]. |
L | = | p(x1, ..., xn| μ,Λ,Ψ,R,m) |
= | (2π)-np/2 | Σ| -n/2 exp[ -1/2Σi=1n(xi-μ)' Σ-1(xi-μ) ] | |
= | (2π)-np/2 | Σ| -n/2 exp[ -1/2 tr S Σ-1 ] |
S | = | 1/nΣi=1n(xi-μ)(xi-μ)'. |
LL | = | -n/2 ( log |Σ| + tr S Σ>-1 ) . |
LL* | = | -2/n LL -log |S| -p |
= | tr S Σ-1 + log |S Σ-1| - p. |
(S-)-1 = 0 |
= | diag(S - R'). |
p(fi|xi,Λ,Ψ,R,m) | exp[-1/2 (fi-i)' (R-1+Λ 'Ψ-1Λ ) (fi-i) ] |
i | = | (R-1+Λ 'Ψ-1Λ)-1 Λ' Ψ-1(xi-) |
Cxx | = | Σi=1n (xi-)(xi-)'/n |
Cxf | = | Σi=1n (xi-)fi'/n |
Cff | = | Σi=1n fifi'/n |
E(fi|xi,Ψ,Λ,m) | = | δ(xi-) |
Var(fi|xi,Ψ,Λ,m) | = | Δ. |
δ | = | (R-1+Λ' Ψ-1Λ)-1 Λ'Ψ-1, |
Δ | = | (R-1+Λ' Ψ-1 Λ)-1. |
E(Cxx|X,Ψ,Λ,m) | = | Cxx, |
E(Cxf|X,Ψ,Λ,m) | = | Cxxδ, |
E(Cff|X,Ψ,Λ,m) | = | δCxxδ'+ Δ. |
Λ | = | (F'F)-1F'X |
Ψ | = | diag{ (X - en ' - FΛ')'(X - en ' - FΛ')/n }, |
(xi|μ,Λ,fi,m) | = | μ | + | Λ | fi | + | εi , |
(p x 1) | (p x 1) | (p x m) | (m x 1) | (p x 1) |
p(xi|μ,Λ,f,Ψ,m) | = | (2π)-p/2 |Ψ|-1/2exp[-1/2(xi - μ - Λ fi)'Ψ-1 (xi - μ - Λ fi)] . |
p(X|μ,Λ,F,Ψ,m) | = | (2π)-np/2| Ψ|-n/2exp[-1/2 tr (X - en μ' - F Λ' ) Ψ-1 (X - en μ' - F Λ' )']. |
p(μ,Λ,F,Ψ) | = | p(μ)p(Λ|Ψ)p(F)p(Ψ) |
p(μ,Λ,F,Ψ|X,m) | p(μ)p(Λ|Ψ)p(F)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
p(μ,Λ,F,Ψ) | = | p(μ)p(Λ|Ψ)p(F)p(Ψ) |
p(μ,Λ,F,Ψ|X,m) | p(μ)p(Λ|Ψ)p(F)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
p(μ,Λ,F,Ψ) | = | p(μ|Ψ)p(Λ|Ψ)p(F)p(Ψ) |
p(μ,Λ,F,Ψ|X,m) | p(μ|Ψ)p(Λ|Ψ) p(F)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
p(μ,Λ,F,Ψ) | = | p(μ)p(λ)p(F)p(Ψ) |
p(μ,λ,F,Ψ|X,m) | p(μ)p(λ)p(F)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
p(C,F,Ψ) | = | p(C|Ψ)p(F)p(Ψ) |
p(C,F,Ψ|X,m) | p(C|Ψ)p(F)p(Ψ) p(X|C,F,Ψ,m) |
p(c,F,Ψ) | = | p(c)p(F)p(Ψ) |
p(c,F,Ψ|X,m) | p(c)p(F)p(Ψ) p(X|c,F,Ψ,m) |
(1) | Form of letter application | (9) | Experience |
(2) | Appearance | (10) | Drive |
(3) | Academic ability | (11) | Ambition |
(4) | Likeabiliy | (12) | Grasp |
(5) | Self-confidence | (13) | Potential |
(6) | Lucidity | (14) | Keenness to join |
(7) | Honesty | (15) | Suitability |
(8) | Salesmanship |
1 | 2 | 3 | 4 | |
5 | 0.779 | -0.038 | -0.159 | -0.004 |
6 | 0.733 | -0.018 | -0.014 | 0.085 |
8 | 0.765 | -0.049 | 0.037 | -0.068 |
10 | 0.672 | -0.023 | 0.148 | 0.024 |
11 | 0.774 | -0.051 | -0.008 | -0.083 |
12 | 0.684 | 0.032 | 0.092 | 0.108 |
13 | 0.629 | 0.085 | 0.138 | 0.192 |
3 | 0.008 | 0.738 | 0.052 | 0.020 |
1 | 0.016 | -0.061 | 0.706 | 0.036 |
9 | -0.020 | 0.059 | 0.745 | -0.005 |
15 | 0.201 | -0.042 | 0.662 | 0.020 |
4 | 0.102 | -0.060 | 0.156 | 0.722 |
7 | 0.113 | -0.025 | -0.142 | 0.728 |
2 | 0.296 | -0.015 | 0.049 | 0.099 |
14 | 0.303 | -0.271 | 0.205 | 0.302 |
corr(xi,fi|μ,Λ,Ψ,m) | = | Λ |
1 | 2 | 3 | 4 | |
1 | 0.747 | -3.280 | 0.258 | -0.542 |
2 | 1.345 | -1.468 | 0.917 | 0.218 |
3 | 0.964 | -2.667 | 0.521 | -0.130 |
4 | 0.319 | 0.491 | 0.345 | 0.172 |
5 | -0.517 | 0.190 | 0.620 | 0.717 |
6 | 0.258 | -0.088 | 0.936 | 0.562 |
7 | 1.029 | 0.390 | 1.728 | 0.164 |
8 | 1.290 | 1.117 | 1.701 | 0.095 |
9 | 0.711 | -0.266 | 1.594 | 0.162 |
10 | 1.982 | 1.981 | -0.025 | -1.333 |
11 | 1.678 | 1.871 | -0.304 | -2.722 |
12 | 1.606 | 1.904 | -0.528 | -0.745 |
13 | -0.726 | 0.322 | 0.072 | 1.051 |
14 | -0.723 | 0.337 | 0.396 | 0.640 |
15 | -0.750 | 0.271 | 0.056 | 0.878 |
16 | 0.828 | -0.972 | 0.919 | -0.030 |
17 | 0.415 | 0.071 | 0.851 | 0.090 |
18 | -0.161 | 0.788 | -0.509 | -1.278 |
19 | -0.168 | 0.698 | -0.269 | -1.357 |
20 | 0.592 | -0.144 | -0.479 | 0.671 |
21 | 0.558 | -0.921 | -0.556 | 0.887 |
22 | 1.425 | 0.057 | 0.450 | 0.597 |
23 | 1.354 | -0.186 | -0.074 | 0.659 |
24 | 1.156 | -0.029 | 0.297 | 1.119 |
25 | -0.988 | -0.213 | -0.669 | 0.383 |
26 | -0.762 | -0.219 | -0.026 | 0.447 |
27 | 0.288 | -0.351 | -1.220 | 1.047 |
28 | -1.606 | -0.842 | -1.076 | -1.189 |
29 | -1.894 | -1.786 | -1.490 | -2.517 |
30 | -0.870 | -0.961 | -1.189 | 0.427 |
31 | -0.530 | -1.693 | -0.811 | 0.786 |
32 | -0.024 | -1.138 | -1.090 | 1.205 |
33 | -0.334 | -1.085 | -1.296 | 1.155 |
34 | -1.485 | -0.514 | -1.316 | -0.191 |
35 | -2.141 | -1.968 | -0.789 | -0.466 |
36 | -0.747 | -1.379 | -0.157 | -0.348 |
37 | 0.819 | -0.622 | -1.437 | -0.693 |
38 | 0.772 | -0.680 | -1.513 | -0.574 |
39 | 1.560 | 1.319 | 2.067 | 1.396 |
40 | 1.714 | 1.345 | 2.054 | 1.381 |
41 | -2.142 | 0.399 | 2.326 | -2.779 |
42 | -2.453 | 0.684 | 2.561 | -2.972 |
43 | -1.574 | 1.134 | 0.192 | 0.115 |
44 | 1.094 | -0.072 | 0.630 | 0.002 |
45 | 0.001 | 2.039 | 0.102 | 1.503 |
46 | 0.455 | 1.838 | -0.160 | 1.591 |
47 | -1.886 | 2.092 | -2.340 | 0.083 |
48 | -1.841 | 2.207 | -2.269 | -0.340 |
p(μ,Λ,F,Ψ,m) | = | p(μ)p(Λ|Ψ,m)p(F|m)p(Ψ) p(m) |
p(μ,Λ,F,Ψ,m|X) | p(μ)p(Λ|Ψ,m)p(F|m)p(Ψ) p(m)p(X|μ,Λ,F,Ψ,m) |
p(μ,Λ,F,Ψ|m,X) | p(μ)p(Λ|Ψ,m)p(F|m)p(Ψ) p(X|μ,Λ,F,Ψ,m) , |
p(m|μ,Λ,F,Ψ,X) | p(m)p(μ)p(Λ|Ψ,m)p(F|m)p(Ψ) p(X|μ,Λ,F,Ψ,m) |
ν | = | 2p+4+2[E(Ψj)]2/[var(Ψj)] |
g | = | (ν-2p-2)E(Ψj) |
(x|μ,Λ,f,m) | = | μ | + | (In Λ) | f | + | ε |
(np x 1) | (np x 1) | (np x nm) | (nm x 1) | (np x 1) |
p(x|μ,Λ,f,Ω,m) | = | (2π)-np/2 |Ω|-1/2exp{-1/2[x- μ - (In Λ)]'Ω-1 [x- μ - (In Λ)]} . |
p(f|Θ,m) | = | (2π)-nm/2 |Θ|-1/2 exp[-1/2 f'Θ-1f] . |
Ω | = | Ξ Ψ | and | Ω | = | ΦR |
p(X|μ,Λ,f,Ξ,Ψ,m) | = | (2π)-np/2 |Ξ|-p/2|Ψ|-n/2 exp[-1/2Ξ-1(X- M- FΛ')Ψ-1 (X - M - FΛ' )'], |
p(F|Φ,R,m) | = | (2π)-nm/2 |Φ|-n/2|R|-m/2 exp[-1/2Φ-1 FR-1F'], |