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A Statistical Analysis of Brain Morphology
Using Wild Bootstrapping

Hongtu Zhu*, Joseph G. Ibrahim, Niansheng Tang, Daniel B. Rowe, Xuejun Hao, Ravi Bansal, and
Bradley S. Peterson

Abstract—Methods for the analysis of brain morphology,
including voxel-based morphology and surface-based morphome-
tries, have been used to detect associations between brain structure
and covariates of interest, such as diagnosis, severity of disease,
age, IQ, and genotype. The statistical analysis of morphometric
measures usually involves two statistical procedures: 1) invoking a
statistical model at each voxel (or point) on the surface of the brain
or brain subregion, followed by mapping test statistics (e.g., test)
or their associated values at each of those voxels; 2) correction
for the multiple statistical tests conducted across all voxels on the
surface of the brain region under investigation. We propose the
use of new statistical methods for each of these procedures. We
first use a heteroscedastic linear model to test the associations
between the morphological measures at each voxel on the surface
of the specified subregion (e.g., cortical or subcortical surfaces)
and the covariates of interest. Moreover, we develop a robust
test procedure that is based on a resampling method, called wild
bootstrapping. This procedure assesses the statistical significance
of the associations between a measure of given brain structure and
the covariates of interest. The value of this robust test procedure
lies in its computationally simplicity and in its applicability to a
wide range of imaging data, including data from both anatomical
and functional magnetic resonance imaging (fMRI). Simulation
studies demonstrate that this robust test procedure can accurately
control the family-wise error rate. We demonstrate the applica-
tion of this robust test procedure to the detection of statistically
significant differences in the morphology of the hippocampus over
time across gender groups in a large sample of healthy subjects.
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I. INTRODUCTION

VARIOUS methods for modeling the morphology of
the brain, including voxel-based, surface-based, and

tensor-based morphometries, provide invaluable tools for
understanding neuroanatomical differences in brain structure
across subjects [1]–[7]. Statistical analysis of these morphome-
tric measures can subsequently be used to understand normal
brain development, the neural bases of neuropsychiatric dis-
orders, and how environmental and genetic factors interact to
determine brain structure and function. For instance, a joint
analysis of brain morphometry and genotype may reveal brain
regions with strong heritability in healthy subjects [8], [9].
Moreover, some measures of brain structure may be used as
an endophenotypic marker for a disease if statistical analyses
show that they are associated with behavioral, cognitive, or
clinical outcomes [6], [10]–[14]. Studies of brain morphology
have been conducted widely to characterize differences in brain
structure across differing populations, such as patients with
schizophrenia and healthy subjects [7], [15]–[19].

The statistical analysis of morphometric measures usually in-
volves two procedures executed in sequence. The first procedure
entails fitting a general linear model (LM) to the morphome-
tric data from all subjects at each voxel and generating a sta-
tistical parametric map that contains a statistic (or a value)
at each voxel [20]. The second procedure entails using various
statistical methods (e.g., random field theory, false discovery
rate, permutation method) to calculate adjusted values that ac-
count for the multiple statistical tests that are conducted across
the many voxels of the brain region [21], [22]. All these statis-
tical methods are implemented in existing neuroimaging soft-
ware platforms, such as SPM, FSL, and SnPM.

The existing methods for these two procedures, however,
have at least three limitations. First, the general linear model
used in the neuroimaging literature usually involves two key
assumptions: that the variance of the imaging data are homoge-
neous across subjects and that the data conform to a Gaussian
distribution at each voxel. These two assumptions are critically
important for the valid calculation of parametric distributions
(e.g., , , and ) in conventional tests (e.g., test) that assess
the statistical significance of parameter estimates in the gen-
eral linear model [3], [23]. Diagnostic procedures have been
proposed to test these assumptions of the general linear model
[24], [25], yet few statistical methods have been developed
to analyze imaging data when these two assumptions are not
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satisfied. Second, the methods of random field theory that
account for multiple statistical comparisons depend strongly
on these assumptions of the general linear model, as well as
several additional assumptions (e.g., smoothness of autocor-
relation function) [21]. Third, permutation methods require
the so-called “complete exchangeability” [26]–[28]. Complete
exchangeability, however, is in fact a very strong assumption.
For instance, consider two diagnostic groups (healthy controls
and a disease group) and suppose that the null hypothesis is that
the morphometric measures in all voxels from the two groups
have the same mean. A permutation null distribution actually
enforces equal distributions in the two groups in all voxels,
which is a much stronger assumption than that of equal means
across groups [26], [28].

The aim of this paper is to use new statistical methods to
address these three limitations of extant methods for mor-
phometric analyses. Specifically, we propose to apply two
statistical techniques to the analysis of brain morphology: a
heteroscedastic linear model, which avoids the two key assump-
tions of the general linear model, and a robust test procedure to
correct for multiple statistical tests.

First, we use a heteroscedastic linear model together with a
Wald-type statistical test to test linear hypotheses of brain mor-
phology. The heteroscedastic linear model does not assume the
presence of homogeneous variance across subjects, and it allows
for a large class of distributions in the imaging data. These ex-
tensions are desirable for the analysis of real-world imaging data
(e.g., anatomical and functional magnetic resonance imaging
(fMRI) data, positron emission tomography measures), because
between-subject and between-voxel variability in the imaging
measures can be substantial [29]–[31]. Moreover, the distribu-
tion of the imaging data often deviates from the Gaussian distri-
bution (see example in Sections III and IV) [2], [6], [23]. Under
the heteroscedastic linear model, we calculate the ordinary least
squares (OLS) estimator (denoted by ) to estimate the asso-
ciations (denoted by ) between the measures of a brain re-
gion and the covariates of interest. We then use a Wald-type test
statistic based on a consistent estimator of the covariance matrix
(CECM) for under the null hypothesis [32], [33]. Although the
Wald-type test statistic does not have a simple parametric distri-
bution, we can use a wild bootstrap method to improve the finite
performance of the Wald-type test statistic. The wild bootstrap
method has been shown to have good theoretical properties and
excellent performance in practice [34], [35].

To test multiple hypotheses across all voxels of a brain region,
we propose a robust test procedure to control the family-wise
error rate. Specially, we perform the Wald-type test statistic
using the wild bootstrap method simultaneously at all voxels
of the brain region, while preserving the dependence structure
among the test statistics. In addition, the wild bootstrap method
does not involve repeated analyses of simulated datasets and
therefore is not computationally intensive. Specifically, the wild
bootstrap method requires neither complete exchangeability nor
a Gaussian distribution for the imaging data. The robust test
procedure is, thus, widely applicable to other imaging modal-
ities, including fMRI and positron emission tomography (PET)
data.

II. METHODS

Here, we formally introduce the heteroscedastic linear model
and use a Wald-type test statistic for testing linear hypotheses
of . We then present a robust test procedure based on the wild
bootstrap as a method for correcting values for multiple sta-
tistical comparisons.

A. Heteroscedastic Linear Model and a Wald-Type Test
Statistic

In a particular voxel on the brain structure, we consider the
following heteroscedastic linear model:

(1)

for , where represents the th subject, repre-
sents a measure of brain morphology (e.g., signed Euclidean
distance, grey matter density), is an exogenous
vector (e.g., age, gender, and genotype), is a vector
of unknown parameters, and is a random error term. Let

, , ,
and , where the superscript represents
transpose. Then, (1) can be rewritten as

(2)

Here, without loss of generality, we assume that is a column
full rank matrix, i.e. . The ordinary least squares
estimate of parameter , given by , has
been implemented in SPM and widely used in many neu-
roimaging studies, because of its computational simplicity. In
contrast, if were known, we could use the generalized least
squares estimate of , which is more efficient than [36].
However, except for a few special cases (e.g., fMRI), we rarely
have prior information to consistently estimate [32], [34].

Let be an identity matrix, ,
and for . The covariance
matrix of is given by

while a consistent estimator of the covariance matrix (CECM)
of in model (2) has the following form:

(3)

where , , and is
the th component of [34]. It should
be noted that is not a consistent estimate of , whereas be-
cause converges to zero, is a CECM
[32].

Ignoring heteroscedasticity in model (1) leads to using
as an estimate of the covariance matrix for the

1Available: http://www.fil.ion.ucl.ac.uk/spm/
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OLS estimator , where . How-
ever, failure to account for interindividual variance can lead to
the following consequences: 1) may be inconsis-
tent; 2) conventional statistics for testing linear hypotheses of
do not follow and distributions; 3) invalid inferences based
on lead to large Type I and/or Type II error rates
for testing linear hypotheses of [32], [34], [37].

We consider testing the linear hypotheses

versus (4)

where is an matrix of full row rank and is an
specified vector. We test the null hypothesis
using a Wald-type test statistic

(5)

where is a consistent estimate of the covariance matrix of
under . Explicitly, is given by

(6)

where and is the th component
of as given in (8). Various simulation studies have shown that
the use of leads to a better control of Type I error rates [34],
[38].

Under , a restricted least squares (RLS) estimate of , de-
noted by , is given by (Appendix I)

(7)

and a restricted residual vector is calculated to be

(8)

Because is asymptotically distributed as , a chi-
square distribution with degrees-of-freedom, under the null
hypothesis , an asymptotically valid test can be obtained by
comparing sample values of test statistic with the critical value
of the right-hand tail of distribution at a prespecified sig-
nificance level [32]. That is, we reject if

, and do not reject otherwise, where is the upper
-percentile of the distribution. However, for small , nu-

merical results have shown that may yield misleading re-
sults (large Type I and/or Type II error rates) [34], [35], [37],
[39].

B. Wild Bootstrap

We present a wild bootstrap method to improve the finite per-
formance of in testing the null hypothesis . This wild
bootstrap method has been extensively studied in the literature
[34], [35]. To use wild bootstrapping to test , we
generates bootstrap samples that conform to the null hypothesis.
Thus, we estimate the unknown parameters of under the con-
straint , which is exactly the RLS estimator of , .
Then, a value can be calculated based on the generated boot-
strap samples.

To produce a bootstrap sample , we
use the following data-generating process (DGP):

(9)

where and are, respectively, defined in (7) and (8), and
are independently and identically distributed as a distribution .
Following Flachaire [34], is chosen as

with probability 0.5
with probability 0.5

(10)

Thus, a bootstrap sample can
be obtained using the data-generating process (9). Let

, and . Equation
(9) can be rewritten as

(11)

We now calculate the Wald-type test statistic for the bootstrap
sample. It follows from (11) that the ordinary and restricted least
squares estimates of are, respectively, given by

(12)

Thus, the ordinary residual vector of model (11) is given by

Furthermore, the restricted residual vector of model (11), de-
noted by , is given by

(13)

where . Let
, where is the th element of

. Since , the Wald-type
test statistic based on the bootstrap sample is given by

(14)

where .
We can approximate the value of as follows:

Step 1) Independently generate bootstrap samples
for

using the bootstrap DGP (11).
Step 2) Calculate for each bootstrap sample.
Step 3) Approximate the value of by

where is an indicator function.
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We may consider other bootstrap methods, such as the pairs
bootstrap, and other distributions , such as the two-point dis-
tribution of Mammen [34], [40], [41]. For instance, we may use
the pairs bootstrap method, but bootstrap samples generated by
the pairs bootstrap method may not come from model (2) con-
forming to the null hypothesis . Thus, some appro-
priate modifications of the pair bootstrap are needed and these
modifications lead to the use of the wild boostrap [34]. In ad-
dition, the use of the pair bootstrap can lead to a loss of power
[34]. Various simulation studies have clearly shown that the wild
bootstrap outperforms the pairs bootstrap in the literature [34],
[42], [43]. The noise distribution (10) is justified by theoretical
underpinnings and numerical simulations [34], [35].

The above heteroscedastic linear model and the wild boot-
strap method can be used to analyze
in each voxel of the brain region. Henceforth, we use in our
notation if necessary, such as .

C. Robust Test Procedure

To test whether holds in all voxels of the brain
region under investigation, we consider a maximum statistic, the
maximum of the Wald-type test statistics, as

(15)

The maximum statistic plays a crucial role in controlling
the family-wise error rate. In order to use as a test statistic,
we need to approximate the distribution of under the null
hypotheses in all voxels of the brain structure. We may apply
random field theory for processes to approximate the upper
tail of , because converges to a distribution
under certain conditions as the number of subject is suffi-
ciently large [44]–[46]. However, the random field theory for

processes may be conservative because the asymptotic test
of leads to large Type I (and/or Type II) error rates in a
single voxel [37].

We propose a robust test procedure based on the wild boot-
strap method to approximate the distribution of . This pro-
cedure is implemented as follows.
Step 1) In each voxel of the brain structure, calculate the

Wald-type test statistic given in (5) based
on the observed data .
Compute .

Step 2) Generate a random sample
from the distribution . In all voxels , generate
observations from model
(11) using the same sample .

Step 3) Calculate the Wald-type test statistic based
on the bootstrap sample

and .
Step 4) Repeated Steps 2–3 times and calculate

. Finally, the value is approximated
by

(16)

We reject that the null hypothesis
is true in all voxels of the brain structure if is
smaller than a prespecified value .

Step 5) Calculate adjusted value in each voxel according
to

(17)

We note here at least four important advantages of this test
procedure compared with existing procedures:

i) the wild bootstrap method performs well at each point
even for relatively small (e.g., );

ii) the above test procedure asymptotically preserves the de-
pendence structure among the ;

iii) the above test procedure is not computationally intensive,
because it does not involve the repeated analysis of sim-
ulated datasets;

iv) the above test procedure does not require complete ex-
changeability.

We can show that the robust test procedure asymptotically
preserves the dependence structure among the . Ac-
cording to in (14), the correlation between and

is primarily determined by the correlation between
and . We can show that

holds for any two points and . Similarly, the correlation be-
tween and is primarily determined by the corre-
lation between and , which is given by

Thus, under some conditions [32]

converges to zero in probability, and thus we have proved the
advantage (ii).

III. SIMULATION STUDIES AND REAL-WORLD STUDIES

We conducted two sets of Monte Carlo simulations. The first
examined the finite performance of the wild bootstrap method
for at the single-voxel level. In particular, we compared its
performance to the test, the asymptotic test for , and the
permutation method based on the test statistic. The second
set of Monte Carlo simulations was to evaluate the family-wise
error rate and power of the robust test procedure at the level
of the whole surface (or brain). Then, we compared its perfor-
mance to the permutation method based on the test statistic
and random field theory for and fields.
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A. Monte Carlo Simulations: Set I

1) Design: For the first set of Monte Carlo simulations, we
simulated data from the heteroscedastic linear model

(18)

for , where is a random error with zero mean,
is a vector of unknown parameters, and is a vector
of covariates of interest. Because of prior extensive simulations
reported in the literature [34], [35], [37], [39], we chose a simple

as follows: for and
for , where denotes the largest

integer smaller than . We set , 20, and 40.
2) Random Errors: We considered the effects of three dif-

fering distributions of to examine the effects of these dis-
tributions on the finite performance of the four test statistics
at the single-voxel level, including the wild bootstrap method
for , the test, the asymptotic test for , and the per-
mutation method based on the test statistic, at the single-voxel
level. First, is a Gaussian error from , where
denotes a Gaussian distribution having a mean and standard
deviation . The Gaussian errors with unit variance were gen-
erated to meet the assumptions of the general linear model.
Second, we assumed , in which repre-
sents a chi-squared random variable with 2 degrees-of-freedom.
The skewed distribution differs substantially from
any Gaussian distribution. Third, we assumed that
and were independently generated from a distribu-
tion. Moreover, when and

when , where were independently gener-
ated from a distribution. Conditional on , the variances
of were highly heterogeneous.

3) Hypothesis: We assumed and
set the null hypothesis to assess the Type I error
rates for the four test statistics. Furthermore, we assumed

and test the hypothesis
against . Then, we examined the Type II errors for
the four test statistics (e.g., test). In both cases,
and .

For each simulation, the significance level was set at ,
and 20 000 replications were used to estimate the rejection rates.
For a fixed , if the Type I rejection rate is smaller than , then
the test is conservative, whereas if the Type I rejection rate is
greater than , then the test is anticonservative, or liberal [57].

B. Monte Carlo Simulations: Set II

1) Basic Design: We used a heteroscedastic linear model to
generate data in all points on the surface of a refer-
ence sphere for all subjects (or objects) (Fig. 1). For the th
subject, denotes an vector that contains all morpho-
metric measures (e.g., signed Euclidean distance, grey matter
density) in all points, denotes an matrix of unknown
parameters, and is a vector of covariates of interest.
The heteroscedastic linear model can be written as

(19)

for , where is an vector of independent
Gaussian errors with zero mean and unit variance and is an

Fig. 1. Simulation study ROI. ROI is highlighted in red on the surface of a
reference sphere: (a) anterior and (b) right lateral views.

correlation matrix. In addition, , , and are
specified below.

2) Covariates of Interest: Our choice of statistical covariates
was motivated by two scientific aims. The first was to compare
brain structure across diagnostic groups (e.g., healthy controls
(HC) and persons with schizophrenia) [8], [50]. To compare the
performance of our robust test procedure with that of the per-
mutation test, we choose a simple given by

(20)

where HC denotes the healthy control group. Moreover, the first
subjects were assumed to be healthy controls, and the rest

were assumed to be patients.
The second scientific aim was to understand differences in

brain structure across genders in the sample of healthy controls
[19]. We choose as

(21)

where Gender equals 0 for males and 1 for females. We assumed
that the first subjects were males, and the rest were fe-
males. The Age variable was uniformly generated from the in-
terval .

3) Variance Structure: We considered two types of variance
structures: a homogeneous case and a heterogeneous case. For
the homogeneous case, we assumed that for all

. However, for the heterogeneous case, we assumed that
we observed larger variability from the male group as compared
with the female group. Thus, for the covariates of interest in (20)
and (21), we set and generate from a
distribution for each man, and from a distribution for
woman.

4) Correlation Structure: We considered a stationary and ex-
ponential correlation matrix , in which the correlation between
any two points and on the surface was given by ,
where and represents Euclidean distance
between and [51]. We denote such an exponential correla-
tion matrix by . We simulated images based on using

, 0.25, 0.5, and 0.75 in order to mimic the differing de-
grees of smoothness in the simulated images [52].

5) Hypotheses: For in (20), we first assumed
in all points on the reference

sphere to assess the family-wise error rate. In addition, to
assess both the power and family-wise error rate, we selected a
region-of-interest (ROI) with 64 points on the reference sphere
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and set for any point in ROI [Fig. 1(a) and (b)]. In this
case, , the dimension of , was 2. We were interested in testing
the null hypothesis at all points on the surface of
the reference sphere. In this case, and .

For in (21), we first assumed
in all points on the surface of the reference sphere

to assess the family-wise error rate. Furthermore, we used the
same ROI on the reference sphere and set for any point

in ROI [Fig. 1(a) and (b)]. In this case, the dimension of
was 3. We were interested in testing whether any differences
of morphology changes existed across gender groups, that is,

. In this case, and .
6) Type I Error Rate and Average Power: For each simula-

tion study, we calculated the family-wise error rate
for the Type I error rates [26], [55]. The significance

level was set at , and 1000 replications were used to es-
timate the FWER. For a fixed , if the FWER is smaller than

, then the test is conservative, whereas if the FWER is greater
than , then the test is anticonservative, or liberal [57]. We also
calculated an average power, that is, the average of the proba-
bilities of rejecting each of the 64 vertices in ROI.

7) Test Procedures: We evaluated the family-wise error rate
of the four test procedures as follows. First, we considered
the robust test procedure based on the maximum statistic
(Section II-C), in which boostrap samples were gen-
erated to calculate the adjusted value. Second, we also used
the Wald-type test statistics and , but we calculated
the value of and the corrected values of using
the theoretical results of field [21], [22], [56]. Third, we
calculated the statistic for the general linear model at each
voxel and the maximum of the statistics across those voxels.
Then, we approximated the adjusted values of all statistics
using the results of the field [22], [56]. Finally, we only
applied the permutation test based on the maximum of absolute
values of the statistics with 699 permutations to model (19)
with given in (20), because the permutation method based
on the statistic may not be applicable when given in (21)
has multiple covariates.

8) Random Field Theory: We applied the results for the
and fields to the calculation of the corrected value of the
local maxima of the statistics (or ) and the adjusted
value in each point of the reference sphere. Explicitly, for the
second test procedure, the corrected value of in a 2-D
search region is well approximated by

(22)

where and , respectively, represent the resels of the
search region and the Euler characteristic density of the
field in dimension. Equation (22) can be used to calculated the
adjusted value for large in each vertex of the reference
sphere. For the triangular mesh on the reference sphere (2-D),
we have , , and

(23)

Moreover, let , , and be three vectors of the nor-
malized residuals at each vertex of a triangular of the reference
sphere, we define [56]. Expressions
of the Euler characteristic densities for the field and
can be found in [22]. Similarly, we used (23) to calculate the re-
sels of the search region and then applied the expected Euler
characteristic for the field to calculate the corrected value
of the local maxima of the statistics [22], [56].

C. Real-World Example

The robust test procedure was used to model morphological
changes in the hippocampus over time across gender groups.

1) Subjects: All 123 healthy subjects were recruited from
a telemarketing list of families in southern Connecticut. The
ages of all subjects range from 7 to 62 years (mean 20.14, SD:
13.2 years). The sample was similarly distributed across gender
(males: 67; female: 56). Subjects were predominantly right
handed (93.5%).

2) Image Acquisition Protocol: Head positioning in the
head coil of the magnetic resonance imaging (MRI) scanner
was standardized using cantho-meatal landmarks. We acquired
high-resolution T1-weighted MRIs on a single 1.5-T scanner
(GE Signa; General Electric, Milwaukee, WI) using a sagittal
3-D volume spoiled gradient echo sequence. Parameters in-
cluded repetition time msec, echo time msec, 45 flip
angle, frequency encoding superior/inferior, no wrap, 256 192
matrix, FOV cm, 2 excitations, slice thickness mm,
and 124 contiguous slices encoded for sagittal slice reconstruc-
tion, voxel dimensions mm .

3) Selection of the Reference Structure: We first selected a
preliminary brain of one subject (a 32.5 year-old right-handed,
Caucasian male). Then, we registered the brains of other sub-
jects in this study to this preliminary reference brain. We deter-
mined the point correspondences across their surfaces according
to the methods described below and calculated the distances of
those points from the corresponding points on the preliminary
reference. Finally, we selected the brain for which all points
across its surface were closest (in the least squares sense) to the
average of the distances across those points for the entire sample
as the final reference.

4) Morphological Descriptions of the Surface of the Hip-
pocampus Surface: A four-step procedure described below
was developed to obtain the morphological descriptions of
the hippocampus surface. First, we registered the brains of
all subjects to the cerebrum of the selected reference subject
by using a rigid-body similarity transformation. The method
of mutual information [58] was employed to calculate seven
parameters (three translations, three rotations, and a global
scale). Second, we rigidly coregistered to one another the
hippocampus within the coregistered brains using a rigid-body
transformation. Third, we identified correspondences between
the points on the surfaces of the hippocampus by deforming
these structures into the hippocampus of the reference brain
using an algorithm based on fluid dynamics [59], [60]. Fourth,
we calculated signed Euclidean distances of each point in the
hippocampus of each subject from the corresponding point in
the reference hippocampus. Distances of the points on the un-
deformed surface of the hippocampus of each subject that were
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Fig. 2. Simulation study: Type I and Type II error rates. Rejection rates of the wild bootstrap method (WB), the permutation method (PM), the F test, and the
� test for W are calculated for sample sizes of 10, 20, 40 subjects and for differing error distributions at the 5% significance level. (a)–(c) The estimated Type
I error rates under the null hypothesis. (d)–(f) The estimated Type II error rates under the alternative hypothesis. Three distributions of error terms are Gaussian
N(0; 1) [(a) and (d)], � (2)� 2 [(b) and (e)], and Gaussian with heterogeneous variances [(c) and (f)].

positioned inside the boundary of the reference structure were
labeled as negative, whereas distances for points positioned
outside of the reference structure were labeled as positive.

5) Heteroscedastic Linear Model: To control the effects
of covariates (age and gender) on our models of surface mor-
phology, we considered a heteroscedastic linear model in each
point on the reference surface

(24)
where and denote the and gender of the th sub-
ject, respectively, and is the signed Euclidean distance for
the th subject in the th point. In model (24), we do not include
an adjustment term for overall intracranial volume, because the
effects of brain size already have been taken into account by first
coregistering the cerebrums of different subjects to the cerebrum
of a reference subject (see Section III-C-4).

We are primarily interested in testing the morphological
changes of the hippocampus over time across gender groups,
i.e., we are testing the null hypotheses at all
points on the surface of the hippocampus. Thus, we have

and

6) Smoothing the Surface of Hippocampus: We smoothed
the signed Euclidean distance measures of all 123 subjects using
the heat kernel smoothing with parameters and 16 itera-
tions, which gave an effective smoothness of about 4 mm [53].

IV. RESULTS

A. Simulation Studies: Set I

1) Type I Error Rates: Overall, the rejection rates for the per-
mutation test and wild bootstrap method were accurate for all
sample sizes ( , 20, or 40) and for the three differing dis-
tributions of error terms [Fig. 2(a)–(c)]. In particular, the wild
bootstrap performed well even when the data were Gaussian
distributed with heterogeneous variances, because in the
wild bootstrap accounted for inhomogeneity of variance across
subjects. Although the test was accurate in the presence of
Gaussian (0, 1) errors Fig. 2(a), Type I error rates associated
with application of the test declined for error terms that fol-
lowed either the skewed distribution Fig. 2(b) or the
Gaussian distribution with heterogeneous variances Fig. 2(c).
This decline in Type I error was caused by applying the upper
percentile of the distribution to the test, whereas when not
assuming that the data were Gaussian distributed with homo-
geneous variance, the distribution of the test was not in fact

distributed. Moreover, in all cases, the asymptotic test for
was highly conservative because it was applied in the con-

text of a small sample size.
2) Type II Error Rates: We observed that Type II error

rates for the test, the permutation test, and the wild boot-
strap method were similar under (0, 1) errors and for all
sample sizes [Fig. 2(d)–(f)]. Compared with the rates of Type
II error during application of the permutation test and the wild
bootstrap method, however, the power of the test to reject
the null hypothesis declined modestly when the distributions
of errors either were skewed Fig. 2(e) or were Gaussian with
heterogeneous variance Fig. 2(f); this increase in Type II
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Fig. 3. Family-wise error rates with two covariates: family-wise error rates of the robust test procedure (WB), the permutation method (PM), random field F tests
(RF-F), and the � field based onW (d) (RF-C) under the linear model (19) with two covariates (Covs) (20). We consider sample sizes of 10, 20, and 40 subjects,
four differing correlations � = 0, 0.25, 0.5, and 0.75, and two differing distributions, including homogeneous variance (HMV) and heterogeneous variance (HTV),
at the 5% significance level. (a) n = 10, 2 Covs, and HMV; (b) n = 20, 2 Covs, and HMV; (c) n = 40, 2 Covs, and HMV; (d) n = 10, 2 Covs, and HTV;
(e) n = 20, 2 Covs, and HTV; (f) n = 40, 2 Covs, and HTV.

error when noise was not Gaussian distributed reflected the
consequence of applying the test when the test was not
distributed. Under all sample sizes and distributions of errors,
the asymptotic test for produced the highest rates of Type
II error, because the upper 95th percentile of the -distribution
was much higher than the upper 95th percentile of the sample
distribution of when the sample size was small. Consistent
with our expectations, the statistical power for rejecting the null
hypothesis increased with the sample size .

B. Simulation Studies: Set II

1) Family-Wise Error Rates: In the presence of random
errors with homogeneous variance, the permutation test based
on the statistic performed very well for all sample sizes
[Fig. 3(a)–(c)]. In the presence of random errors with heteroge-
neous variance, in contrast, the permutation test was excessively
liberal under all sample sizes [Fig. 3(d)–(f)], though less so as

increased [Fig. 3(d)–(f)]. In the presence of random errors
with heterogeneous variance, the distributions of data in the
two groups differed substantially from one another, invalidating
the assumption of complete exchangeability, and causing the
inflation of family-wise error rates during application of the
permutation test.

For model (19) with two covariates, our robust test proce-
dure worked well for relatively small sample sizes ( ,
20, and 40) and in the presence of random errors with either
homogeneous or heterogeneous variance [Fig. 3(a)–(f)]. Under
model (19) with three covariates, however, the family-wise error
rates for our robust test procedure were not particularly accu-
rate in the presence of random errors with either homogeneous

or heterogeneous variance for the smallest sample size,
[Fig. 4(a) and (d)]; in contrast, they approximated the 5% signif-
icance level at the larger sample sizes of and 40. Thus,
sample size and the number of covariates can influence some-
what the finite performance of our robust test procedure.

The field for the statistic and the field for were
highly conservative for relatively small sample sizes ( ,
20, and 40), when including two or three covariates, and in
the presence of random errors with either homogeneous or
heterogeneous variance (Figs. 3 and 4). Differing distributions
of random errors significantly influenced the family-wise error
rates of the field for the statistic and the field for .
Larger correlations (or heavier smoothing) improved the perfor-
mance of the field for the statistic when we compared its
family-wise error rates with the 5% significance level. Overall,
the field for the statistic yielded a highly conservative test,
even with sample sizes as high as 40 and when the correlation
of errors across two neighboring voxels on the reference sphere
was as high as 0.75.

2) Average Power: For model (19) with two covariates, com-
pared with our robust test procedure, the permutation test based
on the statistic had slightly larger average power in detecting
statistically significant vertices in an ROI [Fig. 5(a) and (d)–(f)],
and both the permutation test and our test procedure had much
larger average power than did the field for the statistic and
the field for [Fig. 5(a), (b), and (d)–(f)].

For model (19) with three covariates, the robust test proce-
dure had larger average power than did the field for the
statistic and the field for under heterogeneous variances
[Fig. 6(d)–(f)]. However, under homogeneous variance, large
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Fig. 4. Family-wise error rates with three covariates: family-wise error rates of the robust test procedure (WB), random field F test (RF-F), and the � field for
the Wald-type test statistics (RF-C) under the linear model (19) with three covariates (Covs) in (21). We consider sample sizes of 10, 20, and 40 subjects, four
differing correlations � = 0, 0.25, 0.5, and 0.75, and two differing distributions, including homogeneous variance (HMV) and heterogeneous variance (HTV),
at the 5% significance level. (a) n = 10, 3 Covs, and HMV; (b) n = 20, 3 Covs, and HMV; (c) n = 40, 3 Covs, and HMV; (d) n = 10, 3 Covs, and HTV;
(e) n = 20, 3 Covs, and HTV; (f) n = 40, 3 Covs, and HTV.

Fig. 5. Statistical power with two covariates: average powers of the robust test procedure (WB), the permutation method (PM), the F field F test (RF-F), and
the � field for W (d) (RF-C) under the linear model (19) with two covariates (Covs) (20). We consider sample sizes of 10, 20, and 40 subjects, four differing
correlations � = 0, 0.25, 0.5, and 0.75, and two differing distributions, including homogeneous variance (HMV) and heterogeneous variance (HTV), at the 5%
significance level. In (b), the lines for PM, WB, and RF-F overlay one other, while in (c), all four lines overlay one other. (a) n = 10, 2 Covs, and HMV; (b) n = 20,
2 Covs, and HMV; (c) n = 40, 2 Covs, and HMV; (d) n = 10, 2 Covs, and HTV; (e) n = 20, 2 Covs, and HTV; (f) n = 40, 2 Covs, and HTV.

correlations (e.g., ), and , the field for the
statistics was more sensitive than was the robust test proce-

dure Fig. 6(a).

C. Real-World Example

1) Assessing Assumptions of the Model: We investigated
whether the general linear model was appropriate for this
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Fig. 6. Statistical power with three covariates: average powers of the robust test procedure, the F field F test (RF-F), and the � field for W (d) (RF-C) under
the linear model (19) with three covariates (Covs) (21). We consider sample sizes of 10, 20, and 40 subjects, four different correlations � = 0, 0.25, 0.5, and 0.75,
and two differing distributions, including homogeneous variance (HMV) and heterogeneous variance (HTV), at the 5% significance level. In (b), the lines for RF-F
and WB overlay one other, while in (c), all lines overlay one other. (a) n = 10, 3 Covs, and HMV; (b) n = 20, 3 Covs, and HMV; (c) n = 40, 3 Covs, and HMV;
(d) n = 10, 3 Covs, and HTV; (e) n = 20, 3 Covs, and HTV; (f) n = 40, 3 Covs, and HTV.

study. We calculated test statistics for assessing the validity
of the two assumptions of the general linear model: normality
and homogeneous constant variance of the data. Based on the
residuals after fitting the general linear model, we calculated
the Shapiro–Wilk and Cook–Weisberg statistics to test the
assumptions of a Gaussian distribution and the homogeneous
variance for the error terms [61], [62]. These statistics rejected
the assumptions of normality (Fig. 7) and homogeneous vari-
ance (not presented here) at many points on the surfaces of the
both left and right hippocampus for both the original distance
measures [Fig. 7(a)–(d)] as well as the smoothed distance
measures [Fig. 7(e)–(h)]. The application of smoothing tech-
niques, however, improved the normality of the random errors
[Fig. 7(e)–(h)].

Because the assumptions of the general linear model are in-
valid, the use of random field theory to analyze these imaging
data is inappropriate, at least without prior spatial smoothing of
the data [2], [6], [23]. Moreover, the permutation method based
on the statistic cannot be applied directly to the model (24),
which contains multiple covariates.

2) Analysis of Hippocampal Surface: We used the signed
Euclidean distances to detect and localize statistically sig-
nificant differences in the morphology of the hippocampus
over time across gender groups. We tested these differences
using gender-by- and gender-by- inter-
actions in model (24) at each point of the surface of the
hippocampus. The -values based on the asymptotic test
were color-coded in each point of the reference hippocampus
[Fig. 8(a), (b), (f) and (g)]. To correct for multiple compar-
isons, we applied our robust test procedure to calculate the
adjusted value at each point on the surface of the reference
hippocampus [Fig. 8(c), (d), (h), and (i)]. Color-coded maps of

Fig. 7. Assessing normality at the surface of the hippocampus. Color-coded
maps display the uncorrected p values for the Shapiro–Wilk test of normality
at the surface of the hippocampus in data from 123 healthy children and adults
registered to a template surface. Top row shows the unsmoothed images. Bottom
row shows the images after smoothing with a heat kernel. Panels (a and e) right
hippocampus dorsal view, with the anterior portion of the hippocampus located
at the top of the figure; (b and f) right hippocampus ventral view, with the anterior
portion of the hippocampus located at the bottom of the figure; (c and g) left
hippocampus dorsal view, with the anterior hippocampus located at the top; (d
and h) left hippocampus ventral view, with the posterior hippocampus located at
the bottom. Smoothing reduces substantially the number of voxels at the surface
of the hippocampus that violate assumptions of the normality of distribution of
signed Euclidean distances of points on the surface of the hippocampus of each
subject in the dataset from corresponding points on the surface of the reference
hippocampus.

value maps using either the uncorrected test alone or the
corrected resampling method indicated large-scale differences
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Fig. 8. Significance testing at the surface of the hippocampus: color-coded maps of p values and adjusted p values for the Wald-type test statistics. Row 1: right
hippocampus. Row 2: left hippocampus. Columns 1 and 2: raw p values of the Wald-type test statistics based on a � distribution. Columns 3 and 4: adjusted p
values of the Wald-type test statistics based on our robust test procedure for the correction of multiple comparisons. Panels (e and j): histograms of W based
on the bootstrap samples. Spatial orientations of the hippocampus are the same as the corresponding views in Fig. 7. After correction for multiple comparisons,
statistically significant interactions of gender-by-log(age) and gender-by-[log(age)] remain in the head of both the right (c) and left (i) hippocampus.

Fig. 9. Distribution functions of � log (p) values of test statistics at the surface of the Hippocampus. Empirical distribution functions of � log (p) values of
the F statistic and� log (p) values of W based on the wild bootstrap method are shown. Combining the heteroscedastic linear model with the wild bootstrap
increases the number of significant points (� log (p) > 1:3) on the surface of the hippocampus in each hemisphere: (a) left hippocampus; (b) right hippocampus.

in surface morphology across gender groups. The resampling
method, however, captured far fewer points of differences in
morphology of the hippocampus mainly in the head portion of
the hippocampus (Fig. 8) [63].

We compared findings using the linear model and our
heteroscedastic linear model for these data. When testing
gender-by- and gender-by- interactions,
we calculated the value of the statistic and the

value of based on the wild bootstrap method
at each point of the surface of the reference hippocampus. We
observed that combining the heteroscedastic linear model with
the wild bootstrap method increased the number of statistically
significant points on the surface of the
hippocampus in each hemisphere [Fig. 9(a) and (b)].

V. CONCLUSION AND DISCUSSION

We have developed a method for the analysis of anatomical
imaging data based on a heteroscedastic linear model and a wild
bootstrap method. The use of the heteroscedastic linear model
avoids the assumptions of homogeneous variance across sub-
jects and the Gaussian distribution of imaging data, that we have
shown to be invalid in one real-world imaging dataset. The ro-
bust test procedure not only accounts for multiple comparisons

across all voxels of the brain region under investigation, but it
also asymptotically preserves the dependence structure among
the Wald-type test statistics. We have used simulation studies
to show that the robust test procedure provides accurate control
of the family-wise error rate for relatively small to moderate
sample sizes. Our analysis of a real-world dataset demonstrates
the applicability of our test procedure to anatomical imaging
data, as well as fMRI and PET data.

Our robust test procedure differs from other multiple com-
parison procedures for controlling the Type I error, including
random field theory methods, permutation methods, and the
false discovery rate. Computationally simple methods that
employ random field theory depend on the validity of several
stringent assumptions, including a Gaussian distribution for the
imaging data and the smoothness of the spatial autocorrelation
function [21]. Without formally assessing the validity of these
assumptions, the application of random field theory can yield a
very conservative statistical test (Figs. 3–6) [21]. Permutation
methods outperform those of random field theory methods in
various settings, even when the small sample size is small, al-
though when not accounting for the presence of heterogeneous
variances across subjects, permutation methods can be anticon-
servative (see the simulation results in Section IV). Moreover,



ZHU et al.: A STATISTICAL ANALYSIS OF BRAIN MORPHOLOGY USING WILD BOOTSTRAPPING 965

the permutation methods may not be widely applicable to
neuroimaging studies that require the statistical control of
multiple covariates (e.g., age, gender, diagnoses, or genotype)
without invoking stringent assumptions about the data, such as
the presence of identical and independently distributed random
errors. However, when the assumption of complete exchange-
ability is valid, the permutation test is almost the best. Methods
of statistical analysis based on the false discovery rate can
accurately control the false discovery rate, whereas the robust
test procedure can accurately control the family-wise error
rate. Moreover, the false discovery rate requires an accurate
estimation of the value for each hypothesis at each voxel,
and under the heteroscedastic linear model, calculating the
value accurately for each hypothesis requires a large number of
bootstrap samples in the wild bootstrap method.

We also note several advantages and limitations of our robust
test procedure for controlling Type I error. Type I error rates
when using the wild boostrap method are reasonably small in the
presence of either heterogeneous variances across subjects or
skewed distributions of error terms (Fig. 2). The robust test pro-
cedure can accurately control the family-wise error rate under
various scenarios examined (Section IV), and it can increase
the sensitivity of detecting statistically significant differences in
brain structure when the variances across subjects vary signif-
icantly across voxels. However, when the homogeneous vari-
ance and Gaussian assumptions underlying the general linear
model are truly valid, the use of the wild bootstrap method yield
slightly reduced statistical power (Section IV) [37]. Moreover,
for small significance level, say , the number of replica-
tions in the robust test procedure must be increased in order
to accurately estimate and . Running the robust test
procedure for large can be computationally intensive [42].

Many aspects of this work merit further research. One is to
examine the performance of our robust test procedure in the
analysis of data from other imaging modalities, including PET
and fMRI. Another is to extend our robust test procedure to the
inclusion of cluster size inference in controlling the rate of Type
I errors [22], [57], [64]–[66]. Our robust test procedure may
lead to a simple test of cluster size in assessing the significance
of all numbers of interconnected voxels greater than a given
threshold (e.g., ). We will formally study the cluster size
test elsewhere. Finally, we may use the generalized least squares
estimator of instead of , when prior information concerning

is available.

APPENDIX I
PROOF OF THE RESTRICTED LEAST SQUARES ESTIMATE

The restricted least squares estimate of under
can be obtained by minimizing the following objective

function:

(A.1)

where . Taking the first derivative of
with respect to and , respectively, yields

Then, and satisfy

(A.2)

(A.3)
It follows from (A.2) that

(A.4)

Substituting the above into (A.3) yields

(A.5)

Substituting into (A.4), we have

APPENDIX II
PROOF OF EQUATION (13)

Following the arguments of Appendix I, the restricted least
squares estimate of in model (11) can be expressed by

Because , we have

where . From the above, we can easily
prove (13).
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