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Stochastic noise, susceptibility artifacts, magnetic field and radiofrequency inhomogeneities, and other noise components in magnetic

resonance images (MRIs) can introduce serious bias into any measurements made with those images. We formally introduce three regression

models including a Rician regression model and two associated normal models to characterize stochastic noise in various magnetic res-

onance imaging modalities, including diffusion-weighted imaging (DWI) and functional MRI (fMRI). Estimation algorithms are introduced

to maximize the likelihood function of the three regression models. We also develop a diagnostic procedure for systematically exploring MR

images to identify noise components other than simple stochastic noise, and to detect discrepancies between the fitted regression models and

MRI data. The diagnostic procedure includes goodness-of-fit statistics, measures of influence, and tools for graphical display. The goodness-

of-fit statistics can assess the key assumptions of the three regression models, whereas measures of influence can isolate outliers caused by

certain noise components, including motion artifacts. The tools for graphical display permit graphical visualization of the values for the

goodness-of-fit statistic and influence measures. Finally, we conduct simulation studies to evaluate performance of these methods, and we

analyze a real dataset to illustrate how our diagnostic procedure localizes subtle image artifacts by detecting intravoxel variability that is not

captured by the regression models.
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1. INTRODUCTION

Magnetic resonance image (MRI) is an noninvasive imaging
technique used extensively for clinical diagnosis and medical
research. MRIs, however, contain varying amounts of noise of
diverse origins, including noise from stochastic variation, nu-
merous physiological processes, eddy currents, artifacts from
the differing magnetic field susceptibilities of neighboring tis-
sues, rigid body motion, nonrigid motion, and many others
(Huettel, Song, and McCarthy 2004). Some noise components,
including bulk motion from cardiac pulsation and head or body
movement, generate unusual observations, or statistical ‘‘out-
liers,’’ that differ substantially from most MR data that do not
contain those noise sources (at least, not to the same degree).
Previous studies have shown that those noise components can
introduce substantial bias into measurements and estimation made

from those images, such as indices for the principle direction of
fiber tracts in diffusion tensor images (Skare, Li, Nordell, and
Ingvar 2000; Luo and Nicholas 2003; Nowark 1999). Identifying
and reducing these noise components in MR images is essential
to improving the validity and accuracy of studies designed to
map the structure and function of the human body.

The raw data obtained during MRI scanning are complex
values that represent the Fourier transformation of a magnet-
ization distribution of a volume of tissue at a certain point in
time. An inverse Fourier transform converts these raw data into
magnitude, frequency, and phase components that more
directly represent the physiological and morphological features
of interest in the person being scanned. The magnetic sus-
ceptibility, chemical shift, and perfusion of tissues, for exam-
ple, can be represented using either the magnitude or the phase
angle of these Fourier-transformed data.

The electronic noise in the real and imaginary parts of the
raw MR data are usually assumed to be independently Gaus-
sian distributed (Henkelman 1985; Gudbjartsson and Patz
1995; Macorski 1996). Then, it can be shown theoretically that
the Rician distribution is the model for characterizing the
stochastic noise in the magnitude of MR data. Moreover, in
practice, the Rician noise distribution of MR data has been
experimentally validated using MR data (Haacke, Brown,
Thompson, and Venkatesan 1999). Furthermore, the Rician
distribution can be reasonably approximated by normal dis-
tributions at high signal-to-noise (SNR) ratios (Gudbjartsson
and Patz 1995; Rowe and Logan 2004). Despite the extensive
use of Rician and normal distributions in analyzing MR images
(Kristoffersen 2007; Rowe 2005; Sijbers and den Dekker 2004;
Sijbers, den Dekker, Scheunders, and Van Dyck 1998a; Sijbers,
den Dekker, Verhoye, Van Audekerke, and Van Dyck 1998b), a
formal statistical framework for characterizing stochastic noise
in various MR imaging modalities has not yet been developed.
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Formal assessment of the quality of MR images should
include identification of nonstochastic noise components, such
as those from susceptibility artifacts and rigid body motion.
These nonstochastic noise sources usually introduce statistical
outliers in some or all of the volume elements, called ‘‘voxels,’’
of the image, the elemental units from which an image is
constructed. Diagnostic procedures, such as an analysis of
residuals, can be useful tools for detecting discrepancies
between those outliers and other observations at all voxels.
Moreover, even under the sole presence of stochastic noise,
diagnostic methods are valuable for detecting discrepancies
between MR data and fitted models at the voxel level. Such
discrepancies can be caused by partial volume effects in the
MR image (i.e., the presence of multiple tissues in the same
volume element). In diffusion tensor images (DTIs), for
instance, modeling these effects in voxels having multiple tis-
sue compartments can be vitally important for reconstructing
complex tissue structure in the human brain in vivo (Tuch et al.
2002; Alexander, Barker, and Arridge 2002).

The aim of this article is to introduce a Rician regression
model and its related normal models to characterize noise
contributions in various MRI modalities and to develop its
associated estimation methods and diagnostic tools. We
develop the estimation algorithms for calculating the maximum
likelihood (ML) estimates of three regression models for MRI
data. We develop a procedure to systematically assess the
quality of MR images using a variety of diagnostic techniques,
including an analysis of residuals, Cook’s distance, goodness-
of-fit test statistics, influence measures, and graphical analyses.
We use the p-values of test statistics to evaluate directly the
goodness of fit of the fitted regression models to the MRI data.
Two diagnostic measures, standardized residuals and Cook’s
distance, identify in each voxel of the image outliers that can be
caused by motion artifacts and other noise components.
Graphical tools include three-dimensional (3D) images of
statistical measures that can isolate problematic voxels, as well
as two-dimensional (2D) plots for assessing the compatibility
of the fitted regression model with data in individual voxels.
Finally, we apply these diagnostic techniques to diffusion
tensor images and demonstrate that the techniques are able to
identify subtle artifacts and experimental variation not captured
by the Rician model.

We will next present the Rician regression model and its two
related normal models and discuss some of their statistical
properties. Estimation algorithms will be used to maximize the
likelihood function of the regression models proposed. Then,
we will develop diagnostic procedures consisting of goodness-
of-fit statistics, influence measures, and graphical analyses.
Simulation studies will assess the empirical performance of the
estimation algorithms and goodness-of-fit statistics under dif-
ferent experimental conditions. Finally, we will analyze a real
dataset to illustrate an application of these methods, before
offering some concluding remarks.

2. THE REGRESSION MODELS FOR MR IMAGES

2.1 Model Formulation

We usually acquire n MR images for each subject. Each MRI
contains N voxels, and thus each voxel contains n measure-

ments. We use fðSi; xiÞ: i ¼ 1; � � � ; ng to denote the n measure-
ments at a single voxel, where Si denotes the MRI signal
intensity and xi includes all the covariates of interest, such as
the gradient directions and gradient strengths for acquiring

diffusion tensor images. In MR images, Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i þ I2
i

q
and fi

are, respectively, the magnitude and phase of a complex
number (Ri, Ii) from data in the imaging domain such that Ri ¼
Si sin(fi) and Ii ¼ Si cos(fi) for i ¼ 1; � � � ; n:

The MR signal Si is assumed to follow a Rician distribution
with parameters mi and s2, denoted by Si ; R(mi, s2), under the
presence solely of stochastic noise (Rice 1945). Suppose that
Ri and Ii are independent and follow normal distributions with
the same variance s2, and with means mR,i and mI,i, respectively.
Thus, the joint density function of (Si, fi) can be written as

pðSi;fiÞ ¼
Si

2ps2
expf�0:5s�2ðSi sinðfiÞ � mR;iÞ

2 � 0:5s�2

3 ðSi cosðfiÞ � mI;iÞ
2g:

Integrating out fi, we obtain the density function of the Rician
distribution as follows:

pðSijmi;s
2Þ ¼ Si

s2
expf�0:5s�2ðS2

i þ m2
i ÞgI0

miSi

s2

� �
1

3 ðSi $ 0Þ; ð1Þ

where mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

R;i þ m2
I;i

q
; 1(�) is an indicator function, and

I0ðzÞ ¼
Ð 2p

0 expðz cos fÞdf=ð2pÞ denotes the 0th order modi-
fied Bessel function of the first kind (Abramowitz and Stegun
1965).

We formally define a Rician regression model by assuming
that

Si;RðmiðbÞ;s2Þ and miðbÞ ¼ f ðxi;bÞ; ð2Þ

where b is a p 3 1 vector in Rp and f(�, �) is a known link
function, which depends on the particular MR imaging
modalities (e.g., anatomical, functional, DTI, and so on).
Because the density in (1) does not belong to the exponential
family, the Rician regression model is not a special case of a
generalized linear model (McCullagh and Nelder 1989).

We calculate the kth moment of Si given xi as follows. Let
Ik(z) be the kth modified Bessel function of the first kind
(Abramowitz and Stegun 1965) defined by IkðzÞ ¼Ð 2p

0 cosðkfÞez cos fdf=ð2pÞ: It can be shown that the kth
moment of Si given xi (Sijbers, den Dekker, Scheunders, and
Van Dyck 1998a) is calculated as

EðSk
i jxiÞ ¼ ð2s2Þk=2

Gð1þ k

2
ÞM � k

2
; 1;�miðbÞ

2

2s2

 !
; ð3Þ

where G(�) is the Gamma function and M(�) is the Kummer
function (or confluent hypergeometric function) (Abramowitz
and Stegun, 1965). The even moments of Si given xi are simple
polynomials. For instance,

EðS2
i jxiÞ ¼ miðbÞ

2 þ 2s2 and

EðS4
i jxiÞ ¼ miðbÞ

4 þ 8s2miðbÞ
2 þ 8s4: ð4Þ

However, the odd moments of Si given xi are much more
complex; for instance,
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EðSijxiÞ ¼s

ffiffiffiffi
p

2

r
expf�miðbÞ

2

4s2
g

3

" 
1þ miðbÞ

2

2s2

!
I0

 
miðbÞ

2

4s2

!

þmiðbÞ
2

2s2
I1

 
miðbÞ

2

4s2

!#
: ð5Þ

The Rician distribution can be well approximated by a
normal distribution at high SNR, defined by mi(b)/s. When
SNR # 1, the Rician distribution is far from being Gaussian.
When SNR $ 2, R(mi(b), s2) can be closely approximated by
a normal regression model (Gudbjartsson and Patz 1995)
[Fig. 1(a)], which is given by

Si ; Nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miðbÞ

2 þ s2

q
;s2Þ and miðbÞ ¼ f ðxi;bÞ: ð6Þ

Moreover, the second moment of R(mi(b), s2) equals that of

Nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miðbÞ

2 þ s2

q
;s2Þ;whereas E(Si|xi) in (5) can be accurately

approximated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miðbÞ

2 þ s2

q
even when SNR is close to 1

[Fig. 1(b)]. Furthermore, if SNR is greater than 5, thenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miðbÞ

2 þ s2

q
¼ miðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=SNR2

p
� miðbÞ: Thus, R(mi(b),

s2) can be approximated by another normal regression model
given by

Si ; NðmiðbÞ;s2Þ and miðbÞ ¼ f ðxi;bÞ: ð7Þ

2.2 Examples

The regression models proposed here include statistical
models for various MRI modalities, including DTI and func-
tional MRI. For the purposes of illustration, we consider the
following five examples.

Example 1. Stochastic noise in MRI data follows a R(0, s2)
distribution, which is a highly skewed Rayleigh distribution. The
first two moments of R(0, s2) are given by EðSijxiÞ ¼ s

ffiffiffiffiffiffiffiffiffiffi
0:5p
p

and EðS2
i jxiÞ ¼ 2s2: Without any other noise components

present, such as ghosting artifacts, we can use the MR data in the
background of the image to estimate s2. However, under the
presence of nonstochastic noise components, such as ghosting
artifacts, the background MR signals do not follow a Rician
distribution, and the estimate of s2 is usually a biased estimate of
s2. Therefore, testing whether the MR signal in a single voxel
truly follows a Rician model is useful for detecting the presence
of nonstochastic noise components.

Example 2. If we apply an inversion snapshot FLASH
imaging sequence to measure T1 relaxation times, then we have
miðbÞ ¼ rð1� 2 expð�tiT

�1
1 ÞÞ; where xi is time ti and b

includes a pseudo proton density r and spin-lattice or longi-
tudinal relaxation constant T1 (Karlsen, Verhagen, and Bovee
1999). It has been shown that the use of the Rician model leads
to a substantial increase in precision of the estimated T1

(Karlsen et al. 1999).
If the decay of transverse magnetization is monoexponential

and conventional spin-echo imaging is used, then f(xi, b) is
given by miðbÞ ¼ r expð�TEi 3 T�1

2 Þ; where xi is the echo
time TEi and b¼ (r, T2), in which T2 is the spin-spin relaxation
constant.

Example 3. In a functional MRI (fMRI) session, fMRI
volumes are acquired repeatedly over time while a subject
performs a cognitive or behavioral task. Over the course of the
experiment, n fMRI volumes are typically recorded at acquis-
ition times t1; . . . ; tn: The standard method for computing the
statistical significance of task-related activations is to use only
the magnitude MR image at time ti for i ¼ 1; . . . ; n: The
magnitude image at time ti follows a Rician distribution with
miðbÞ ¼ xT

i b; the superscript T denotes transpose and xi may
include responses to differing stimulus types, the rest status,
and various reference functions (Rowe and Logan 2005; den
Dekker and Sijbers 2005).

Example 4. DTIs have been widely used to reconstruct
the pathways of white matter fibers in the human brain in
vivo (Basser, Mattiello, and LeBihan 1994a,b; Xu, Mori,
Solaiyappan, Zijl, and Davatzikos 2002). A single shot echo-
planar imaging (EPI) technique is often used to acquire

Figure 1. Rician distribution: (a) R(m, 1) and Nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
; 1Þ for m ¼ 0, 1, 2, 3, 4; (b) the mean functions of R(m, 1) (red), Nð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
; 1Þ

(blue), and N(m, 1) (green) for m 2 [0, 5].

Zhu et al.: Noise Sources in Magnetic Resonance Images 625



diffusion-weighted imagings (DWI) with moderate resolution
(e.g., 2.5 mm 3 2.5 mm 3 2.5 mm), and then diffusion tensors
can be estimated using DWI data. In voxels with a single fiber
population, a simple diffusion model assumes that

miðbÞ ¼ S0 expð�bir
T
i DriÞ ð8Þ

for i ¼ 1; � � � ; n; where xi ¼ (bi, ri, ti), in which ti is the
acquisition time for the ith image, ri ¼ (ri,1, ri,2, ri,3)T is an
applied gradient direction and bi is the corresponding gradient
strength. In addition, S0 is the signal intensity in the absence of
any diffusion-weighted gradient and the diffusion tensor D ¼
(Di, j) is a 3 3 3 positive definite matrix. The three eigenvectors
of D constitute the three diffusion directions and the corre-
sponding eigenvalues define the degrees of diffusivity along
each of the three spatial directions. Many tractography algo-
rithms attempt to reconstruct fiber tracts by connecting spa-
tially consecutive eigenvectors corresponding to the largest
eigenvalues of the diffusion tensors (DTs) across adjacent
voxels.

The SNRs in diffusion-weighted (DW) images are relatively
low. The DW imaging acquisition scheme usually consists
of few baseline images with b ¼ 0s/mm2 and many DW
images with b–values greater than zero. As an illustration, we
selected a representative subject from an existing DTI dataset
and calculated the estimates of S0 /s and eigenvalues of D,
denoted by l1 $ l2 $ l3, in all voxels containing anisotropic
tensors (l1 was much larger than l3) [Figs.2(a) and 2(b)]. For
these anisotropic tensors, the SNR ¼ S0/s in baseline images
varied from 0 to 15 with a mean close to 6 [Fig. 2(c)], whereas

l1 varied from 0.5 (10�3 mm2/s) to 2.0 (10�3mm2/s) with a
mean close to 1.0 (10�3 mm2/s). For a moderate gradient
strength bi � 1000s/mm2, the SNR ¼ expð�bir

T
i DriÞ 3

ðS0=sÞ in DWIs varied from 0 to 8 with a mean close to 2.5
[Fig. 2(d)].

To account for the presence of multiple fibers within a single
voxel, a diffusion model with M compartments may be written
as

miðbÞ ¼ S0

XM

k¼1

pk expð�bir
T
i DkriÞ; ð9Þ

where pk denotes the proportion of each compartment such thatPM
k¼1 pk ¼ 1 and pk $ 0 and where Dk is the diffusion tensor

for the kth compartment. Recent studies have shown that elu-
cidating multiple fibers require large b values (Tuch et al. 2002;
Alexander et al. 2002; Jones and Basser 2004). For instance,
Alexander and Barker (2005) have shown that the optimal
values of b for recovering two fibers are in the range [2200,
2800]s/mm2. For large b values, the SNR in DWIs can be very
close to zero [Fig. 2(d)].

Example 5. If we are only interested in the apparent dif-
fusion coefficient (ADC) normal to the fiber direction in white
matter, then we can use a single EPI technique to acquire MR
images based on multiple bi factors in the absence of a dif-
fusion-weighted gradient (Kristoffersen 2007). A simple
monoexponential diffusion model assumes that mi(b) ¼ S0

exp(�bid) for i ¼ 1; � � � ; n: The values of ADC are in the range
of [0.2, 3] (310�3mm2/s) for the human brain. Furthermore,

Figure 2. Maps of (a) FA; (b) S0 /s; (c) the kernel density of S0 / s values for anisotropic tensors having FA $ 0.5 at a selective slice from a
single subject; and (d) the signal-to-noise ratio S0 exp(–bi)/s as a function of bi (3 1,000 s/mm2) at each S0/s 2 {5, 10, 15, 20, 25, 30}.
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a diffusion model with M compartments may be written as
miðbÞ ¼ S0

PM
k¼1 pk expð�bidkÞ:

2.3 Estimation Methods

We consider estimation algorithms for the two normal
models (6) and (7). Because the normal model (7) is a standard
nonlinear regression model, we can directly use the standard
Levenberg-Marquardt method to calculate the ML estimate of
u. For the normal model (6), we propose an iterative procedure
to maximize its log-likelihood function given by

‘ðb;s2Þ¼�0:5n log s2�0:5
Xn

i¼1

fSi�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miðbÞ

2 þ s2

q
g2=ðs2Þ:

We use the Levenberg-Marquardt method to minimize
Pn

i¼1

fSi � miðbÞg
2; which yields an initial estimator b(0), and we

subsequently calculate ðs2Þð0Þ ¼
Pn

i¼1fSi � miðbð0ÞÞg
2=n:

Given (s2)(r), we use the Levenberg-Marquardt method to calculate

the b(rþ1) that minimizes
Pn

i¼1fSi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miðbÞ

2 þ ðs2ÞðrÞ
q

g2:

Conditional on b(rþ1), we use the Newton-Raphson algo-
rithm to calculate s(rþ1) by maximizing ‘(b(rþ1), s2). This
iterative algorithm stops when the absolute difference between
consecutive u(t)s is smaller than a predefined small number,
say 10�4.

We introduce an efficient expectation-maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977) for maximizing
the likelihood function of the Rician model (2). The key idea is
to introduce a latent phase variable fi 2 [0, 2p] for each Si such
that the joint density of (Si, fi) is given by

pðSi;fijxiÞ ¼
1

2ps2
Si

3 exp �miðbÞ
2 þ S2

i � 2SimiðbÞ cosðfiÞ
2s2

 !
:

Let Yo ¼ ðS1; x1; . . . ; Sn; xnÞ denote the observed data and
Ym ¼ ðf1; . . . ;fnÞ denotes the missing data. The log-like-
lihood function of Yc ¼ (Yo, Ym), defined by Lc(u|Yc), can be
written as

�n logð2ps2Þ þ
Xn

i¼1

log Si � 0:5s�2
Xn

i¼1

fm2
i ðbÞ þ S2

i

� 2SimiðbÞ cosðfiÞg: ð10Þ

A standard EM algorithm consists of two steps: the
expectation (E) step and the maximization (M) step as follows.
The E-step evaluates Q(u|u(r)) ¼ E{Lc(u|Yc)|Yo, u(r)}, where
the expectation is taken with respect to the conditional dis-
tribution pðYmjYo; u

ðrÞÞ ¼
Qn

i¼1 pðfijSi; u
ðrÞÞ: We can show

that

pðfijSi; uÞ ¼
1

2pI0ðs�2SimiðbÞÞ
expfs�2SimiðbÞ cosðfiÞg

3 1ðfi 2 ½0; 2p�Þ:

Thus, Q(u|u(r) ) is given by

�n logðs2Þ � 0:5s�2

3
Xn

i¼1

m2
i ðbÞ þ S2

i � 2SimiðbÞWiðuðrÞÞ
n o

; ð11Þ

where Wi(u) ¼ I1(s�2f(xi, b)Si)/I0(s�2f(xi, b)Si).
The M-step is to determine the u(rþ1) that maximizes

Q(u|u(r)). However, because the M-step does not have a closed
form, u(rþ1) is obtained via two conditional maximization steps
(Meng and Rubin 1993). Given b(r), we can derive

ðs2Þðrþ1Þ ¼ 0:5n�1
Xn

i¼1

m2
i ðuðrÞÞ þ S2

i � 2SimiðuðrÞÞWiðuðrÞÞ
n o

:

Conditional on (s2)(rþ1), we can determine b(rþ1) by minimizing
GðbjbðrÞÞ ¼

Pn
i¼1fmiðbÞ �WiðuðrÞÞSig2: This is a standard

nonlinear least squares problem, to which the Levenberg-
Marquardt method can be applied. Furthermore, we may
employ a generalized EM algorithm, in which the E-step is
unchanged, but we replace the M-step with a generalized
M-step to identify a b(rþ1) such that G(b(rþ1)|b(r)) # G(b(r)|b(r)).
Under mild conditions, the sequence {u(r)} obtained from the
EM algorithm converges to the ML estimate, denoted by û (Meng
and Rubin 1993).

The next important issue is to evaluate the covariance matrix
of û; which can be obtained by inverting either the Hessian
matrix or the Fisher information matrix of the observed-data
log-likelihood function. For instance, for the normal model (6),
it is straightforward to calculate the second derivative of ‘(b,
s2). For the Rician model (2), we use the missing information
principle (Louis 1982). Calculation of the first and second
derivatives of Lc(u|Yc) with respect to u is straightforward and
hence is omitted here for brevity.

3. A DIAGNOSTIC PROCEDURE

We propose a diagnostic procedure to identify noise com-
ponents in MR images at all levels of the SNR. Our diagnostic
procedure has three major components: (1) the use of good-
ness-of-fit test statistics to test the assumptions of the Rician
model across all voxels of the image; (2) the use of influence
measures to identify outliers; (3) the use of 2D and 3D graphs
to search for various artifacts and to detect intravoxel varia-
bility. At a high SNR, these diagnostic measures of the Rician
model reduce to those of the normal models (6) and (7). Thus,
we will not specifically develop diagnostic measures of the two
normal models.

3.1 Goodness-of-Fit Test Statistics

We develop test statistics to check model misspecification in
the Rician model (2). These test statistics are valuable for
revealing two kinds of challenges in working with MR images.
The first is to identify those voxels in which the MR signal
contains substantial noise components that are different from
stochastic noise. The second challenge is to identify those
voxels in which the signal is affected strongly by partial vol-
ume effects.

Thus, we are interested in testing whether f(xi, b) is cor-
rectly specified. In most statistical models, including generalized

Zhu et al.: Noise Sources in Magnetic Resonance Images 627



linear models, testing the specification of the link function is
equivalent to testing the mean structure of the response variable
(Stute 1997). However, in the Rician model (2), E(Si|xi) does
not have a simple form, and so direct testing the mean structure
of the response is likely to be tedious and difficult. Let W(u) ¼
I1(B(u))/I0(B(u)), where B(u) ¼ s�2f(x, b)S. We also note the
simple equality E[W(u)S|x] ¼ f(x, b), when the Rician model
(2) is correctly specified. Thus, we suggest testing h(u) ¼
E[W(u)S|x] – f(x, b) ¼ 0, for which the null and alternative
hypotheses are stated as follows:

H
ð1Þ
0 : hðuÞ ¼ 0 for some u 2 Q versus

H
ð1Þ
1 : hðuÞ 6¼ 0 for all u 2 Q: ð12Þ

Because W(u) is close to one at a high SNR, testing H
ð1Þ
0 is

essentially testing whether E(S|x)¼ f(x, b) in the normal model
(7).

To test H
ð1Þ
0 ; we develop two test statistics as follows. The

first of these, the conditional Kolmogorov test (CK), is

CK1 ¼ sup
u
jT1ðu; ûÞj; ð13Þ

where T1ðu; ûÞ is defined as

T1ðu; ûÞ ¼ n�1=2
Xn

i¼1

1ðxT
i b̂ # uÞ½WiðûÞSi � miðxi; b̂Þ�: ð14Þ

Under the null hypothesis, E[T1(u;u*)] should be close to zero,
where u� ¼ ðb�;s2

�Þ is the true value of u. Therefore, a large
value of CK1 leads to rejection of the null hypothesis H

ð1Þ
0 :

We must derive the asymptotic null distribution of CK1 to
test rigorously whether H

ð1Þ
0 is true. We regard T1ðu; ûÞ as a

stochastic process indexed by u 2 R. We can show that under
H
ð1Þ
0 ; as n! ‘,

T1ðu; ûÞ ¼ T1ðu; u�Þ þ @uT1ðu; u�Þðû� u�Þ þ opð1Þ
¼ T1ðu; u�Þ þ D1ðuÞ

ffiffiffi
n
p
ðû� u�Þ þ opð1Þ;

where D1(u) is defined by

D1ðuÞ ¼
ð
@uWðu�ÞS� @u f ðx;b�Þ½ �1

3 ðxT b� # uÞpðSjx; u�ÞpðxÞdS dx:

Moreover, using the central limit theorem (van der Vaart and
Wellner 1996), we can show that

ffiffiffi
n
p
ðû� u�Þ ¼ n�1=2

Xn

i¼1

cðSi; xi; u�Þ þ opð1Þ; ð15Þ

where c(�, �;u*) is a known influence function depending on the
likelihood function of the Rician model (2). Finally, using
empirical process theory (van der Vaart and Wellner 1996), we
can show that the asymptotic null distribution of CK1 depends
on the asymptotic distribution of ðT1ð�; u�Þ;

ffiffiffi
n
p
ðû� u�ÞTÞT ;

which is given in Theorem 1.
The second test statistic that we propose is based on

T2ða; u; ûÞ ¼ n�1=2
Xn

i¼1

½WiðûÞSi � miðb̂Þ� 1ðxT
i a # uÞ; ð16Þ

where P ¼ {a 2 Rd:aTa ¼ 1} 3 [�‘, ‘]. Following the
reasoning in Escanciano (2006), we can show that H

ð1Þ
0 is

equivalent to testing

Ef½WiðuÞSi � miðbÞ�1ðxT a # uÞg ¼ 0 ð17Þ
for almost every (a, u) 2P for some u* 2Q. Let Fn,a (u) be the
empirical distribution function of faT xi : i ¼ 1; . . . ; ng: Then,
we define the Cramer-von Mises test statistic as follows:

CM1 ¼
ð

P

T2ða; u; ûÞ2Fn;aðduÞda; ð18Þ

where da is taken with respect to the uniform density on the
unit sphere. A simple algorithm for computing CM1 can be
found in Escanciano (2006). A large value of CM1 leads to
rejection of H

ð1Þ
0 : Similar to CK1, we can show that T2ða; u; ûÞ

is approximated as

T2ða; u; ûÞ ¼ T2ða; u; u�Þ þ D2ða; uÞ
ffiffiffi
n
p
ðû� u�Þ þ opð1Þ;

where D2ða; uÞ ¼
Ð
@uWðu�ÞS� @u f ðx;b�Þ½ � 1ðaT x # uÞ

pðSjx; u�ÞpðxÞdSdx: Therefore, the asymptotic null distribution
of CM1 depends on the asymptotic distribution of
ðT2ða; u; u�Þ;

ffiffiffi
n
p
ðû� u�ÞTÞT ; which is also given in Theorem

1. The detailed proof of Theorem 1 can be found in a supple-
mentary report and is available at www.amstat.org/pub-
lications/jasa/supplementalmaterials. We are now led to the
following theorem.

Theorem 1. Under the null hypothesis H
ð1Þ
0 ; we have the

following results:

(1)
ffiffiffi
n
p
ðû� u�Þ ¼ n�1=2

Pn
i¼1 cn;i þ opð1Þ:

(2) ðT1ð�; u�Þ;
ffiffiffi
n
p
ðû� u�ÞTÞT converges in distribution to

ðG1ð�; u�Þ; nT
1 Þ

T ; where ðG1ð�; u�Þ; nT
1 Þ is a Gaussian

process with mean zero and covariance function C1(u1,
u2), which is given by

C1ðu1; u2Þ ¼
ð ð ½Wðu�ÞSi � f ðx;b�Þ� 1ðxT b� # u1Þ

cðS; x; u�Þ

� �

3
½Wðu�ÞS� f ðx;b�Þ� 1ðxT b� # u2Þ

cðS; x; u�Þ

� �T

3 pðSjx; u�ÞdSdpðxÞ:
ð19Þ

(3) CK1 converges in distribution to supu|T1(u;u*) þ
D1(u)Tn1|.

(4) ðT2ð�; �; u�Þ;
ffiffiffi
n
p
ðû� u�ÞTÞT converges in distribution to

ðG2ð�; �; u�Þ; nT
1 Þ

T ; where ðG2ð�; �; u�Þ; nT
1 Þ is a Gaussian

process with mean zero and covariance function C2((a1,
u1), (a2, u2)), which is given by

C2ðða1; u1Þ; ða2; u2ÞÞ ¼
ð ð ½Wðu�ÞS� f ðx;b�Þ�

3 1ðxT a1 # u1Þ
cðS; x; u�Þ

0
B@

1
CA

3

½Wðu�ÞS� f ðx;b�Þ�
3 1ðxT a2 # u2Þ

cðS; x; u�Þ

0
B@

1
CA

T

3 pðSjx; u�ÞdSdpðxÞ: ð20Þ

(5) CM1 converges in distribution to
Ð

P
jT2ða; u; u�Þþ

D2ða; uÞn1j2FaðduÞda; where Fa(u) is the true cumu-
lative distribution function of aTx.
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Theorem 1 characterizes the limiting distributions of CK1

and CM1 under the null hypotheses.
Because EðS2

i jxiÞ has a simple form, we further use the
second moment of Si given xi to test the specification of the link
function. Specifically, the null and alternative hypotheses are
given by

H
ð2Þ
0 : EðS2jxÞ ¼ f ðx;bÞ2 þ 2s2 for some u 2 Q;

H
ð2Þ
0 : EðS2jxÞ 6¼ f ðx;bÞ2 þ 2s2 for all u 2 Q:

Similar to testing H
ð1Þ
0 against H

ð1Þ
1 ; we introduce two other

stochastic processes given by

T3ðu; uÞ ¼ n�1=2
Xn

i¼1

1ðxT
i b # uÞ½S2

i � miðbÞ
2 � 2s2� and

T4ða; u; uÞ ¼ n�1=2
Xn

i¼1

½S2
i � miðbÞ

2 � 2s2� 1ðxT
i a # uÞ:

Based on T3(u;u) and T4(a, u;u), we can develop two additional
test statistics:

CK2 ¼ sup
u
jT3ðu; ûÞj and

CM2 ¼
ð
P

T4ða; u; ûÞ2Fn;aðduÞda: ð21Þ

Similar to the reasoning in Theorem 1, we can establish the
asymptotic null distributions of CK2 and CM2, which we
therefore omit here. Because the normal model (6) has the
same second moment as the Rician model (2), the test statistics
CK2 and CM2 are valid for model (6) at all levels of the SNR.
So far, we have introduced four test statistics CK1, CK2, CM1,
and CM2, each of which may have different sensitivities in
detecting the misspecification of a Rician model in various
circumstances, which we will investigate with the simulation
studies of Section 4.

We note two types of correlation existing in CK1, CK2, CM1,
and CM2 at the local and global levels. At the local level, there
may be strong correlations among these four test statistics in
each voxel, because the same MRI data within the voxel are
used to calculate them. At the global level, we calculate these
four test statistics across multiple brain regions or across the
many voxels of the imaging volume. MRI data in small spatial
neighborhoods show strong similarity, whereas MRI data in
voxels more distant from one another show less similarity.
Thus, the same test statistics CK1(d) [or CK2(d), CM1(d), and
CM2(d)] are likely to be positively correlated in small spatial
neighborhoods, where d denotes a particular voxel in an MRI.
Finally, we need to compute the uncorrected and corrected
p-values of these four test statistics at the local and global
levels.

3.2 Resampling Method

Although the asymptotic distributions of CK1(d), CK2(d),
CM1(d), and CM2(d) have been derived in Theorem 1, these
limiting distributions usually have complicated analytic forms.
To alleviate this difficulty, we develop a resampling method to
estimate the null distribution of the statistic CK1(d) in each of
the voxels in the MRI data. The next issue is to solve the

problem of multiple testing. Because it is difficult to compute
an accurate p-value of CK1(d) at each voxel, we avoid use of
the false discovery rate and choose to control the family-wise
error rate based on the maxima of the CK1(d) statistics defined
by CK1,D ¼ maxd2DCK1(d), where D denotes the brain region.
Specifically, we can easily extend the proposed resampling
method to approximate the null distribution of the statistic
CK1,D. In the following, we will introduce voxel d into all of the
notation, if necessary. Because we can develop similar methods
for CK2, CM1, and CM2, we avoid such repetition and simply
present the six key steps in generating the stochastic processes
that have the same asymptotic distribution as CK1(d) and
CK1,D.

Step 1. Generate independent and identically distributed
random variables, fyðqÞi : i ¼ 1; . . . ; ng; from a N(0, 1) dis-
tribution for q ¼ 1; . . . ;Q; where Q is the number of repli-
cations, say Q ¼ 1,000.

Step 2. Calculate

T1ðu; ûðdÞÞðqÞ ¼ n�1=2
Xn

i¼1

y
ðqÞ
i fEiðûðdÞÞ1ðx0ib̂ðdÞ # uÞ

� D̂1ðd; uÞcniðdÞg;

where EiðûðdÞÞ ¼ WiðûðdÞÞSi � mðxi; b̂ðdÞÞ and D̂1ðd; uÞ ¼
n�1

Pn
i¼1 @uEiðûðdÞÞ1ðx0ib̂ðdÞ # uÞ: Note that conditional on

the observed data, T1ðu; ûðdÞÞðqÞ converges weakly to the
desired Gaussian process in Theorem 1 as n! ‘ (van der Vaart
& Wellner, 1996).

Step 3. Calculate the test statistics CK
ðqÞ
1 ðdÞ ¼

supu jT1ðu; ûðdÞÞðqÞj and CK
ðqÞ
1;D ¼ supd2D CK

ðqÞ
1 ðdÞ and obtain

fCK
ðqÞ
1 ðdÞ : q ¼ 1; . . . ;Qg and fCK

ðqÞ
1;D : q ¼ 1; . . . ;Qg:

Step 4. Calculate the p-value of CK1(d) using

fCK
ðqÞ
1 ðdÞ : q ¼ 1; . . . ;Qg:

Step 5. Calculate the p-value of CK1(d) at each voxel d of the
region according to pðdÞ � Q�1

PQ
q¼1 1ðCK

ðqÞ
1 ðdÞ $ CK1ðdÞÞ:

Step 6. Calculate the corrected p-value of CK1(d) at each
voxel d of the region using pDðdÞ � Q�1

PQ
q¼1 1ðCK

ðqÞ
1;D $

CK1ðdÞÞ:
Finally, we present a plot of the uncorrected and corrected –

log10(p) values for our various test statistics, such as CM1.
Because the previous procedure only requires the computation
of all components of T1ðu; ûðdÞÞ once and the repeated cal-
culation of CK

ðqÞ
1 ðdÞ; it is computationally efficient. To identify

the precise source of noise that is responsible for mis-
specification of the model, we need to develop influence
measures to quantify the influence of each data point at each
voxel.

3.3 Influence Measures

Next, we develop two influence measures that identify in
each voxel of an MR image statistical ‘‘outliers,’’ which exert
undue influence on the estimation of the parameters and fitted
values of the model. These influence measures are based on
case-deletion diagnostics, which have been studied exten-
sively in regression models (Cook and Weisberg 1982; Wei
1998). Influence measures for the Rician regression model,
however, have not been developed previously. Therefore, we
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now discuss how to develop case-deletion measures for the
Rician model.

Henceforth, we assume that s2 is a nuisance parameter and
define UðbÞ ¼ ðm1ðbÞ; . . . ;mnðbÞÞ

T ; VðuÞ ¼ diagðV1ðuÞ; . . . ;
VnðuÞÞ; and SWðuÞ ¼ ðW1ðuÞS1; . . . ;WnðuÞSnÞT ; where
ViðuÞ ¼ s�2VarðSiWiðuÞÞ ¼ �s�2miðbÞ

2 þ E½s�2S2
i WiðuÞ2�:

Thus, the score function for b is given by SCn(b) ¼
s�2D(b)TV(u)e(b), where D(b) ¼ @U(b)/@bT is an n 3 p
matrix with the ith row @mi(b)/@bT and e(u) ¼ V(u)�1[SW(u) �
U(b)]. Furthermore, the Fisher information matrix for b takes
the form

FnðbÞ ¼ s�2
Xn

i¼1

@miðbÞ
@b

ViðuÞ
@miðbÞ
@bT

¼ s�2DðbÞT VðuÞDðbÞ:
To develop influence measures, we can write the ML estimate
of b as b̂ ¼ ½Dðb̂ÞT VðûÞDðb̂Þ��1Dðb̂ÞT VðûÞẐ;where Ẑ ¼ Zðb̂Þ
and Z(b) ¼ D(b)b þ e(b) (Jorgensen 1992). Thus, b̂ can be
regarded as the generalized least-squares estimate of the fol-
lowing linear model:

Ẑ ¼ Dðb̂Þbþ e and VarðeÞ ¼ s2VðûÞ�1: ð22Þ
We can extend the existing diagnostics for linear regression to
Rician regression (Cook and Weisberg 1982; Jorgensen 1992;
Wei 1998). Because VðûÞ�1 reduces to an identity matrix at a
high SNR, model (22) just reduces to a standard linear
regression model.

We introduce two influence measures based on the repre-
sentation of the linear model (22) as follows.

(1) The residuals and standardized residuals are given by

r̂i ¼ uT
i V̂ðûÞ1=2fẐ � Dðb̂Þb̂g and

t̂i ¼ s�1r̂i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hi;i

p
; ð23Þ

where ui is an n 3 1 vector with ith element and all others zero,
and where {hi,i:i # n} are the diagonal elements of the hat
matrix H defined by

H ¼ VðûÞ1=2Dðb̂Þ Dðb̂ÞT VðûÞDðb̂Þ
� ��1

Dðb̂ÞT VðûÞ1=2: ð24Þ
Residuals are highly informative about the compatibility of a
postulated model with the observed data. If a Rician model is
correct, residuals should be centered around zero, and plots of
the residuals should exhibit no systematic tendencies. Explor-
ing residual plots may reveal nonconstant variance, curvature,
and the need for transformation in the regression, and therefore
the analysis of residuals has been among the most widely used
tools for assessing the validity of model specification (Cook
and Weisberg 1982). To assess the magnitudes of the residuals,
we compare the standardized residuals with the conventional
benchmark 2.5. In other words, we regard the ith data point (Si,
xi) as having excess influence if jt̂ij is larger than 2.5. We will
plot the number of outliers at each voxel of the MR image.
Voxels with many outliers need some further exploration.

(2) Cook’s distance (Cook and Weisberg 1982) can be
defined as

Ci ¼ ðb̂� b̂ðiÞÞT ½Dðb̂ÞT VðûÞDðb̂Þ�ðb̂� b̂ðiÞÞ=s2; ð25Þ
where b̂ðiÞ denotes the ML estimate of b based on a sample size
of n � 1 with the ith case deleted. Instead of calculating b̂ðiÞ

directly, we compute the first order approximation of b̂ðiÞ;
denoted by b̂

I

ðiÞ; which is given by

b̂
I

ðiÞ � b̂� ½Dðb̂ÞT VðûÞDðb̂Þ��1ViðûÞ1=2Diðb̂Þr̂i=ð1� hi;iÞ;

where Diðb̂ÞT is the ith row of Dðb̂Þ: Therefore, we get the first-
order approximation of Ci, denoted by CI

i ; as CI
i ¼ hi;it̂

2
i =

ð1� hi;iÞ: Following Zhu and Zhang (2004), we compare nCI
i

with 3p to reveal the level of influence of (Si, xi) for each i at
each voxel.

3.4 3D and 2D Graphics

We use 3D images of our various statistical measures to
isolate all voxels in the image where specification of a Rician
model is problematic. After computing the p-value of each test
statistic (CM1, CM2, CK1, or CK2) at each voxel of the image,
we create a 3D image of the – log 10(p) values for each statistic
and then explore these values efficiently across all voxels. In
addition, we calculate ti and CI

i ; compute the number of outliers
at each voxel, and create a 3D image for each of these influence
measures (Luo and Nichols 2003). For instance, if the p-value
of CK1 in a specific voxel is smaller than a given significance
level, then we have strong evidence that the noise characteristics
at that voxel are non-Rician and are likely to derive from non-
physiological sources that may obscure valid statistical testing in
those regions. Moreover, a large number of outliers appearing in
several images taken sequentially, as they are in fMRI, may
indicate a problematic noise source spanning the duration over
which those images are obtained, as is often true of head motion,
signal drift, and other similar artifacts. In addition, we also
inspect the spatial clustering behavior of the voxels, which have
large values of influence measures and test statistics, such as the
cluster sizes of groups of outliers. More detailed examination of
the 2D graphs for these voxels is indicated. These graphs include
maps of the number of outliers per slice and per image, index
plots of influcence measures, and various plots of residuals that
can reveal anomalies, such as nonconstant variance, curvature,
transformations, and outliers in the data (Cook and Weisberg
1982; Luo and Nichols 2003). Thus, these 2D graphs of our
diagnostic measures are used to help identify the nature and
source of the disagreement between the Rician model and the
observed MR signals at a particular voxel.

4. SIMULATION STUDIES

We conducted three sets of Monte Carlo simulations to
examine the accuracy of using the Rician model, the two normal
models and test statistics under differing experimental settings.
The first set illustrated the performance of the Rician model and
the two normal models for ADC imaging. The second set of
simulations evaluated the sensitivity of the goodness-of-fit test
statistics in detecting multiple tensor compartments within
individual voxels of a DTI dataset. The third set of Monte Carlo
simulations evaluated the sensitivity of the goodness-of-fit sta-
tistics in detecting head motion in MR images.

4.1 Apparent Diffusion Coefficient Mapping

The first set of Monte Carlo simulations was to compare the
estimated ADC using the Rician model (2) and the two normal
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models (6) and (7). We set d ¼ 2 3 10�3 mm2/s, S0 ¼ 500,
b ¼ ½0; 50; 100; . . . ; 1100�s=mm2; and five different S0/s {2,
4, 6, 10, 15} for all Monte Carlo simulations. For S0/s ¼ 2, the
values of the SNR were in the range of [0.366, 2]. At each S0/s,
4,000 diffusion-weighted datasets were generated. Under each
model, we calculated the parameter estimates û ¼ ðd̂; Ŝ0; ŝ

2Þ:
We finally calculated the biases, the empirical standard errors
(SE), and the mean of the standard error estimates (SEE) based
on the results from the 4,000 simulated ADC datasets (Table 1).
At all S0/s, the estimates from model (2) had smaller biases,
but larger SEs, whereas models (6) and (7) had larger biases,
but smaller SEs. When S0/s $ 15, models (2), (6), and (7) had
comparable biases and SEs in the parameter estimates. In
addition, the SE and its corresponding SEE are relatively close
to each other when S0/s $ 4.

4.2 Evaluating the Test Statistics for DTI Data Assuming
the Presence of Fiber Crossings

We assessed the empirical performance of CKi and CMi for
i ¼ 1, 2 as our test statistics for detecting the misspecified
single diffusion model (8) when two diffusion compartments
were actually present in the same voxel. Simulated data were
drawn from the diffusion model (9) with 2 diffusion compart-
ments, in which p1 ¼ 1 � p2 was set at either 0.0 or 0.5, D1 ¼
diag(1.7, 0.2, 0.2) (310�3 mm2/s), and D2¼ diag(0.2, 1.7, 0.2)
(3 10�3 mm2/s). In particular, p1 ¼ 0.0 corresponded to a
single diffusion compartment, whereas p1 ¼ 0.5 corresponded
to two diffusion compartments. The principal directions of D1

and D2 were, respectively, at (1, 0, 0) and (0, 1, 0). The mean
diffusivity trace(D)/3 for both D1 and D2 was set equal to 1 3

10�3 mm2/s, which is typical of values for normal cerebral

tissue (Skare et al. 2000). We generated the Rician noise with
S0 ¼ 150 and selected S0/s to be 5, 10, 15, 20, and 25,
respectively. Our DTI scheme included 6 baselines, 30 dif-
fusion weighted uniformly arranged directions at b1, and the
same set of gradient directions at b2. We chose three combi-
nations of (b1, b2): (1,000, 1,000), (1,000, 3,000), and (3,000,
3,000) s/mm2 to examine the sensitivity of differing b factors in
detecting multiple fiber directions. For each simulation, 1,000
simulated datasets were used to estimate the nominal sig-
nificance level (i.e., rejection levels for the null hypothesis).
Finally, for each simulated dataset, we applied the resampling
method with Q ¼ 1,000 replications to calculate the four p-
values of CKi and CMi for i ¼ 1, 2 and then applied the false
discovery rate procedure to correct for multiple comparisons at
a significance level of 5% as suggested by a reviewer (Benja-
mini and Hochberg 1995).

Table 2 presents estimates for the rejection rates of the four
test statistics after correction for multiple comparions based on
the false discovery rate procedure. We observed that in a single
compartment, the rejection rates of CKi and CMi for i ¼ 1, 2
were smaller than the nominal level. Overall, the rejection rates
in all cases were relatively accurate, and the Type I errors were
not excessive. These findings suggested that the resampling
method worked reasonably well under the null hypothesis.
Differing (b1, b2) combinations strongly influenced the finite
performance of the four test statistics in detecting the presence
of two compartments. Specifically, compared with other (b1,
b2) combinations, (b1, b2)¼ (1,000, 3,000) s/mm2 provided the
best performance. Under (b1, b2) ¼ (1,000, 3,000) s/mm2, CK1

and CM1 provided substantial power to detect the presence of
two diffusion compartments. Compared with the other three
statistics, CK1 performed well; moreover, consistent with our

Table 1. ADC imaging: bias and SD of three components of û.

R(mi, s2) Nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ s2
p

;s2Þ N(mi, s2)

S0/s s2 S0 d s2 S0 d s2 S0 d

TRUE 2 62,500 500.00 2.000 62,500 500.00 2.000 62,500 500.00 2.000
BIAS 2 �13,413 14.31 0.249 �23,715 18.87 �0.749 �29,683 15.73 �1.403
SE 2 19,023 168.52 1.960 15,494 139.40 1.241 10,719 102.62 0.364
SEE 2 24,123 255.12 2.460 16,320 175.54 1.419 13,009 88.91 0.378
TRUE 4 15,625 500.00 2.000 15,625 500.00 2.000 15,625 500.00 2.000
BIAS 4 �1,938 �5.46 0.080 �4,542 �6.32 �0.284 �5,014 �19.73 �0.711
SE 4 5,218 82.05 0.909 3,658 76.92 0.637 3,488 65.95 0.332
SEE 4 6,106 108.88 0.998 4,285 79.48 0.611 4,040 60.23 0.343
TRUE 6 6,944 500.00 2.000 6,944 500.00 2.000 6,944 500.00 2.000
BIAS 6 �718 �2.26 0.016 �1,680 �4.55 �0.127 �1,746 �12.39 �0.371
SE 6 2,409 51.99 0.469 1,710 50.02 0.353 1,702 65.95 0.332
SEE 6 2,708 66.86 0.500 1,998 55.36 0.392 1,972 60.23 0.343
TRUE 10 2,500 500.00 2.000 2,500 500.00 2.000 2,500 500.00 2.000
BIAS 10 �230 0.43 �0.025 �414 �1.08 �0.033 �422 �4.20 �0.138
SE 10 893 31.45 0.218 651 30.68 0.204 661 29.32 181.80
SEE 10 938 37.34 0.242 683 34.65 0.228 786 32.62 196.24
TRUE 15 1,111 500.00 2.000 1,111 500.00 2.000 1,111 500.00 2.000
BIAS 15 �109 �0.23 0.008 �141 �0.60 �0.015 �143 �2.03 �0.065
SE 15 339 20.20 0.136 303 20.18 0.135 307 19.94 0.127
SEE 15 396 24.24 0.149 365 23.68 0.148 366 23.04 0.138

NOTE: TRUE denotes the true value of the regression parameters; BIAS denotes the bias of the mean of the regression estimates; SE denotes the empirical standard errors; SEE denotes
the mean of the standard error estimates. Five different S0/s {2, 4, 6, 10, 15} and 10,000 simulated datasets were used for each case.
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expectations, increasing S0/s reduced the Type II errors and
improved the power of the statistic CK1 to detect the presence
of two compartments. Therefore, these simulations suggested
that the choice of b strongly influenced the performance of these
test statistics and the test CK1 was a useful tool for detecting the
presence of multiple compartments. The selection of optimal
b values in detecting multiple compartments warrants further
research (Alexander et al. 2002; Jones, Horsfield, and Simmons
1999).

4.3 Evaluating the Test Statistics in the Presence of
Head Motion

We also assessed the empirical performances of CKi and
CMi for i ¼ 1, 2 as test statistics for detecting the misspecified
single diffusion model (8) at a single voxel in the presence of
head motion. We simulated data contaminating head motion in
the image as follows. We used a DTI scheme starting with 5
baselines and followed with 45 diffusion weighted uniformly
arranged directions at b1 ¼ 1,000 s/mm2. We simulated data
from the diffusion model (8) with D1 ¼ diag(0.2, 1.7, 0.2)
(310�3 mm2/s) in the first [50 3 p1] acquisitions, and then
generated data from the diffusion model (8) with D2 ¼
diag(0.7, 0.7, 0.7) (310�3 mm2/s) from the last 50 – [50 3 p1]
acquisitions, where [�] denoted the largest integer smaller than
50 3 p1. In addition, the probability p1 was selected to be 0.5
and 0.7, which reflected the different degrees of head motion.
We also generated Rician noise from (1) with S0 ¼ 150 and set
S0/s to be 5, 10, 15, 20, and 25, respectively. For each simu-
lation, 1,000 simulated datasets were used to estimate the
nominal significance level (i.e., rejection levels for the null
hypothesis). Finally, for each simulated dataset, we applied the
resampling method with Q¼ 1,000 replications to calculate the
four p-values of CKi and CMi for i ¼ 1, 2, and then applied the
false discovery rate procedure to correct for multiple compar-
isons at a significance level of 5% as suggested by a reviewer.

Table 3 presented estimates for the rejection rates of our four
statistics after correction for multiple comparions based on the

false discovery rate procedure. Compared with the other three
statistics, CM2 was the most sensitive statistic in detecting head
motion. Moreover, consistent with our expectations, increasing
S0/s reduced the Type II errors and improved the power of the
statistic CM2 for detecting the presence of two compartments.
However, the other three statistics CK1, CM1, and CK2 were
not particularly sensitive in detecting head motion.

5. HEAD MOTION DIFFUSION-WEIGHTED IMAGES

We acquired DWIs of the brain of a healthy adult male
subject (right-handed; age 34 years). The imaging acquisition
scheme {(bi, ri): i ¼ 1, . . ., 38} consisted of 3 baseline images
with b ¼ 0 s/mm2 and 35 directions of diffusion gradients that
were arranged uniformly in the 3D space at b ¼ 1,000 s/mm2

(Hardin, Sloane, and Smith 1994). Each DWI contained 256 3

256 3 65 voxels. The subject was instructed to move his head
deliberately during acquisition of images from the 28th to the
38th direction. Head motion varied from 2 to 6 degrees of

Table 2. Comparison of the rejection rates for the test statistics CK1, CM1, CK2, and CM2 under the two-DT model, in which
f ðxi;bÞ ¼ S0½ p1 expð�bir

T
i D1riÞ þ ð1� p1Þ expð�bir

T
i D2riÞ� at a significance level the 0.05 after correction for multiple comparisons based on

the false discovery rate.

(b1, b2) 3 1,000 s/mm2

(1, 1) (1, 3) (3, 3)

SNR p1 CK1 CK2 CM1 CM2 CK1 CK2 CM1 CM2 CK1 CK2 CM1 CM2

5 1 0.02 0.01 0.03 0.04 0.05 0.03 0.04 0.04 0.07 0.07 0.05 0.06
10 1 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04
15 1 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.02 0.03 0.03 0.04
20 1 0.02 0.02 0.03 0.04 0.03 0.04 0.03 0.04 0.02 0.03 0.03 0.04
25 1 0.01 0.02 0.02 0.02 0.04 0.03 0.05 0.04 0.02 0.02 0.026 0.02
5 1 0.01 0.02 0.03 0.03 0.05 0.05 0.08 0.07 0.08 0.09 0.05 0.06

10 1 0.05 0.04 0.02 0.02 0.23 0.08 0.22 0.12 0.04 0.02 0.01 0.02
15 1 0.09 0.05 0.02 0.02 0.43 0.11 0.39 0.15 0.08 0.01 0.01 0.01
20 1 0.16 0.09 0.03 0.03 0.61 0.11 0.59 0.22 0.09 0 0 0
25 1 0.26 0.18 0.02 0.02 0.75 0.14 0.71 0.19 0.12 0 0 0

NOTE: The first DT compartment is D1 ¼ diag(1.7, 0.2, 0.2) and the second DT compartment is D2 ¼ diag(0.2, 1.7, 0.2). Five different S0 /s values {5, 10, 15, 20, 25} and 1,000
simulated datasets were used for each case.

Table 3. Comparison of the rejection rates for the test statistics CK1,
CK2, CM1, and CM2, under the presence of head motion at a

significance level of 0.05 after correction for multiple comparisons
based on the false discovery rate.

p1

0.7 0.5

SNR CK1 CK2 CM1 CM2 CK1 CK2 CM1 CM2

5 0.02 0.02 0.05 0.05 0.03 0.01 0.05 0.05
10 0.04 0.08 0.09 0.16 0.07 0.06 0.11 0.16
15 0.09 0.14 0.10 0.23 0.08 0.09 0.10 0.23
20 0.11 0.19 0.09 0.31 0.12 0.13 0.12 0.31
25 0.12 0.23 0.08 0.32 0.13 0.13 0.10 0.31

NOTE: The first [50 3 p1] acquisitions were generated from a single diffusion model with
D1 ¼ diag(0.2, 1.7, 0.2) and the last 50 – [50 3 p1] acquisitions were generated from a
single diffusion model with D2 ¼ diag(0.7, 0.7, 0.7). Five different S0/s values {5, 10, 15,
20, 25} and 1,000 simulated datasets were used for each case.
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rotation and 0 to 10 millimetres of translation, causing the

diffusion-weighted images to be moderately misaligned.
We used the Rician DTI model (8) for this analysis. We

subsequently calculated at each voxel the ML estimate

ðD̂; Ŝ0; ŝÞ; three eigenvalue-eigenvector pairs of D̂; denoted by

{(mi, ei): i ¼ 1, 2, 3}, and the invariant measures including

CL ¼ (m1 � m2)/M1, Cp ¼ 2(m2 � m3)/M1, RA ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M2M�2

1

q
; and FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2ðM2

1 � 2M2Þ�1
q

; where

m1 $ m2 $ m3, M1 ¼ trðD̂Þ; M2 ¼ m1m2 þ m1m3 þ m2m3, and

M3 ¼ m1m2m3. We also calculated three test statistics Ta ¼ FA,

Tb ¼ SðD̂Þ þWðD̂Þ1:5; and Tc ¼ SðD̂Þ �WðD̂Þ1:5; and their as-

sociated p-values, where SðD̂Þ ¼ ðM1=3Þ3 �M1M2=6þ M3=2

and WðD̂Þ ¼ ðM1=3Þ2 �M2=3: We further set the significance

level at 1% and used the p-values of Ta, Tb, and Tc to classify

the morphology of the tensor at each voxel (Zhu et al. 2006).
We then assessed the quality of these diffusion-weighted

images using our diagnostic methods. We searched for arti-
facts, scanner instability problems, and voxels that contained

outliers; in addition, we obtained diagnostic measures, gen-
erated scan summaries, and applied graphical tools. We esti-
mated the p-values of the four test statistics CK1, CK2, CM1,
and CM2 using the resampling method in Section 3 of this
article.

We plotted maps of scan summaries to identify possible
artifacts and acquisition problems in the DW images. Trans-
lational and rotational parameters (Fig. 3), obtained from
FLIRT in FSL (http://www.fmrib.ox.ac.uk), detected rightward
rotation of 2 to 6 degrees and 0–10 mm translation beginning in
the 28th acquisition (Jenkinson and Smith 2001; Jenkinson,
Bannister, and Smith 2002). Outlier statistics detected these
head motions as well. The outlier count per slice and per
direction showed clearly that a large batch of outliers appeared
in almost all of the slices along the last 10 directions (red to
white on the color spectrum in Fig. 4). Furthermore, we used
GIFT sofware (http://icatb.sourceforge.net) to perform a spa-
tial independent component analysis (ICA) on the 16 slices
covering the middle part of each directional DWI (baseline
images excluded) (Calhoun, Adali, Pearlson, and Pekar 2001).

Figure 3. Scan summaries for a set of DWIs from a single subject: (a) maps of translational parameters; (b) maps of rotational parameters.

Figure 4. Assessing the effect of applying a coregistration algorithm to diffusion-weighted images from a single subject: outlier count per slice
and per direction (a) before coregistration and (c) after coregistration; percentages of outliers per slice and per direction (b) before coregistration
and (d) after coregistration.
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Using the Bayesian information criterion (BIC), we selected 8
independent components (ICs) and plotted the associated time
series from the spatial ICA. Similar to the 2D maps of scan
summaries, the time series associated with the fourth, seventh,
and eighth components revealed the deliberate rotation and
translation from the 28th to 33rd acquisitions. The detailed
information about the ICA results can be found in the sup-
plementary report. However, the ICA cannot be used to detect
nonstochastic noise components at the voxel level as detailed
later.

To reduce or eliminate motion artifacts, we used the rigid-
body transformation method to coregister all other DWIs to the
first DWI while properly reorienting the diffusion gradients
(Rohde, Barnett, Basser, Marenco, and Pierpaoli 2004). Par-
ticularly, we applied the translational and rotational parameters
obtained from FLIRT and used a seventh order interpolation
method to resample the DW images. After coregistration, new
translational and rotational parameters (not shown here)
revealed that the DW images were properly aligned. We then
assessed the realigned DW images using our diagnostic pro-
cedure and used the Rician model (8) to process the reoriented
DW images.

Our diagnostic procedure can be used to quantify the effi-
cacy of the coregistration and reslicing algorithms, and to
identify potential problems that remain in the DW images after
registration and reslicing. We observed a substantial decline in
the number of outlier counts per slice and per direction com-
pared with the nonrealigned images, as well as a decline in the
percentage of outliers per slice and per direction after cor-
egistration [Figs. 4(a)–4(d)]. Furthermore, we examined voxels
having 0–10 outliers and found that motion correction using
coregistration significantly decreased the percentage of voxels
having 4–10 outliers from 2.85% to 1.41%. However, despite
the efficacy of this method for correcting motion artifacts,
5.7% of the voxels still contained at least three outliers after
coregistration, and the 28th to 33rd acquisitions (red to white

on the color spectrum) contained a number of outliers [Fig.
4(c), red to white on the color spectrum]. This may indicate that
the rigid-body transformation and the interpolation method
cannot completely remove the effect of moderate and large
head motions in MRIs.

The 3D images of the � log10(p) values for the test statistics
CK1, CK2, CM1, and CM2 were more sensitive and specific in
assessing the quality of the DW images (Fig. 5). A p-value of
0.001 corresponded to a � log10(p) value of 3; thus a voxel
having a � log10(p) value greater than or equal to 3.0 was
conventionally regarded as statistically significant and in need
of further investigation. In all maps of � log10(p) values of the
test statistics, we focused on voxels having significant p-values
(white) and then searched for systematic patterns of these
voxels in the brain. We found several notable changes after
coregistration as follows. The number of voxels having large�
log10(p) values for the CK1, CK2, CM1, and CM2 statistics
declined dramatically following coregistration (Fig. 5). We
also used the resampling methods in Section 3.2 to calculate
the corrected � log10(p) values, but no significant voxel was
detected for all four test statistics at the 5% significance level
before and after coregistration. Moreover, compared with CK1

and CK2, CM1 and CM2 were more sensitive measures for
detecting head motion.

Assessing the quality of DW images was crucial for further
processing images. As shown previously (Fig. 5), the maps of
the � log10(p) values of the test statistics not only provided
detailed information about the goodness of fit of the fitted
Rician model with the DW images (Fig. 5), but also these
maps indicated possible artifacts existing in the DWIs. Those
artifacts strongly influenced the estimation of the diffusion
tensors, the classification of tensor morphologies, the recon-
struction of fiber tracts, and the quantification of uncertainty in
tensor estimation and tractography. Therefore, we also assessed
the prevalence of the four morphological classes of DTs (non-
degenerate, oblate, prolate, and isotropic) in a single slice before

Figure 5. (a–e) Maps of 3D images before coregistration and (f–j) after coregistration in a single slice from a single subject. Before coregistration:
(a) FA value; (b) – log10(p) values of CK1; (c) – log10(p) values of CK2; (d) – log10(p) values of CM1; (e) – log10(p) values of CM2. After
coregistration: (f) FA value; (g) – log10(p) values of CK1; (h) – log10(p) values of CK2; ( i) – log10(p) values of CM1; ( j) – log10(p) values of CM2.
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and after coregistration. Before coregistration, we found that
59.97% were isotropic, 9.37% were oblate, 23.06% were pro-
late, and 7.61% were nondegenerate. Following coregistration,
we found that 48.09% were isotropic, 11.35% were oblate,
28.11% were prolate, and 12.45% were nondegenerate. Most
tractography algorithms can only track fibers across voxels con-
taining either nondegenerate or prolate DTs, which accounted for
40.56% of the total number of voxels on this slice after cor-
egistration, compared with 30.67% before coregistration. More-
over, we also found moderate discrepancy between the estimated
principal directions before and after coregistration (not presented
here).

To assess these DWIs before and after coregistration, we also
examined 3D images of standardized residuals and Cook’s
distances. Specifically, we searched the standardized residuals
(or Cook’s distance) in all voxels across all slices and direc-
tions to identify voxels having large numbers of large positive
and negative outliers (i.e., data points of excessive influence).
For illustration, we compared the standardized residuals at the
30th slice from the 32nd acquisition before and after coregis-
tration (Fig. 6). Before coregistration, this slice contained many
large positive and negative residuals [Figs. 6(a) and 6(b)]. After
coregistration, the number of large positive and negative

residuals dramatically declined [Figs. 6(c) and 6(d)]. However,
even after coregistration, some motion artifacts or other
unspecified problems remained in the resliced DWIs. Devel-
oping methods for identifying the precise sources of non-
Rician noise and correcting for them in the resliced DWIs will
require further research.

For voxels having either many outliers or substantial mis-
specification of the Rician model, we examined multiple 2D
graphs to try to identify the causes of the outliers and of model
misspecifications. To illustrate this process, we considered the
data at a single voxel [at location (100, 69, 30)] before cor-
egistration. The p-values for CK1, CK2, CM1, and CM2 were
0.21, 0.13, 0.03, and 0.01, respectively. It appears that cor-
egistration slightly improved the goodness of fit of the Rician
model to the MRI signal within this voxel. The index plots of
the standardized residuals and Cook’s distances [Figs. 7(a) and
7(b)] revealed that the fourth, eighth, and 34th observations
were likely outliers. A plot of the standardized residuals against
the raw MRI values [Fig. 7(c)] revealed a strong linear rela-
tionship between residuals and the raw MRI values (Cook and
Weisberg 1982). Furthermore, we observed a nonlinear rela-
tionship [Fig. 7(d)] of Cook’s distances against raw MRI val-
ues. Together these plots [Figs. 7(c) and 7(d)] indicated that a

Figure 6. Plots of standardized residuals at the 30th slice of the 32nd acquisition before and after coregistration from a single subject:
standardized residuals (a) before coregistration and (c) after coregistration; histograms of standardized residuals (b) before coregistration and (d)
after coregistration. Voxels in the black-to-blue range have large negative standardized residuals (< –2.5), whereas yellow to white voxels have
large positive standardized residuals (>2.5).

Zhu et al.: Noise Sources in Magnetic Resonance Images 635



Rician model (8) did not fit the MRI data satisfactorily. Further
improvements in model specification or postacquisition pro-
cessing are needed to identify and address the non-Rician
sources of noise in the images.

Our diagnostic procedure effectively identified head motion
artifacts in DWIs. Coregistration improved image quality, but
substantial nonstochastic noise sources remained in the 28th to
33rd acquisitions. One solution is to remove these slices from
the subsequent analysis; alternatively, we may resort to a robust
estimate of DTs to reduce the deleterious statistical effects of
these outliers. The 3D images of the test statistics further
detected additional physiological noise, such as cardiac pul-
sation, in DWIs. Additional 2D statistical maps may identify
the causes of statistically significant voxels and the location of
outliers.

6. CONCLUDING REMARKS

We have developed estimation algorithms for fitting a Rician
regression model and the associated two normal models, and
proposed a diagnostic procedure for systematically assessing
the quality of MR images at all levels of the SNR. The key
features of our procedures include calculating test statistics that
assess the validity of the assumptions of the statistical models
for stochastic noise in MR images; use of influence measures to
identify artifacts and problems with image acquisition; and
multiple graphical tools for visual evaluation of the appropri-
ateness of the model assumptions. Simulations showed the
effectiveness of our test statistics in detecting the presence of
multiple compartments. Moreover, an in vivo study demon-

strated the effectiveness of our procedures in locating voxels
that contain unreliable data due to motion artifacts or to
problems with imaging acquisition. Our findings suggest that
our approach to assessing the quality of MR images is both
rigorous and computationally practical.

Our diagnostic procedure differs substantially from previous
model-free methods, such as ICA analysis and motion cor-
rection algorithms, for detecting noise components in MRI.
Most of those model-free methods cannot be used to detect
nonstochastic noise components at the voxel level, because
they can only provide information about MRI at the whole
volume level. In addition, some of those model-free methods
are limited to a specific imaging modality. For instance,
although an ICA method was recently proposed to identify ICs
associated with task-related motion, and then discard those ICs
to reduce motion effects on realigned fMRI data (Kochiyama
et al. 2005), this ICA method cannot be directly applied to
other imaging modalities, such as DWI. Particularly, for DWI,
we cannot discard the ICs corresponding to head motion
without changing the gradient directions, which requires fur-
ther research. In contrast, as shown in Section 5, our diagnostic
procedure is a model-based method that uses goodness-of-fit
statistics and diagnostic measures to systematically detect
nonstochastic noise components at each voxel of the MRI data.
Subsequently, our diagnostic procedure can combine the
information from all voxels of the brain volume to identify
large nonstochastic noise sources, such as head motion at the
whole volume level.

Our procedure takes a further step by studying how to use
existing information in the MRI data to check model assumptions

Figure 7. Multiple 2D graphs for a selected voxel (110, 69, 30) before coregistration from a single subject: (a) index plot of standardized
residuals; (b) index plot of Cook’s distances; (c) standardized residuals against raw data; (d) Cook’s distances against raw data.
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and to identify imaging artifacts that may undermine applica-
tions or interpretations of the MR images. Our diagnostic
procedure can also be applied to systematically check the MRI
data even after these MRI data have been processed by existing
noise removal methods, such as rigid-motion correction and
ICA. Moreover, our diagnostic procedure can be used to detect
the presence of the partial volume effect, whereas those
existing methods, such as the motion correction method, can-
not. However, a potential drawback of our model-based diag-
nostic method is that the validity of our test statistics depends
on the correct specification of model assumptions. For
instance, if the model proposed is misspecified, then the maps
of our diagnostic measures can reflect the confounding effects
from the misspecified model. Nevertheless, our procedure
assesses the quality of MRI statistically and cannot replace
various preprocessing techniques, such as registration and
smoothing methods.

[Received November 2007. Revised June 2008.]
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