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ABSTRACT
Voxel functional magnetic resonance imaging (fMRI) time courses are complex-valued signals giving rise to
magnitude andphase data. Nevertheless,most studies use only themagnitude signals and thus discard half
of the data that could potentially contain important information.Methods thatmakeuse of complex-valued
fMRI (CV-fMRI) data have been shown to lead to superior power in detecting active voxels when compared
to magnitude-only methods, particularly for small signal-to-noise ratios (SNRs). We present a new Bayesian
variable selection approach for detecting brain activation at the voxel level from CV-fMRI data. We develop
models with complex-valued spike-and-slab priors on the activation parameters that are able to combine
the magnitude and phase information. We present a complex-valued EM variable selection algorithm that
leads to fast detection at the voxel level inCV-fMRI slices andalso consider full posterior inference viaMarkov
chain Monte Carlo (MCMC). Model performance is illustrated through extensive simulation studies, includ-
ing the analysis of physically based simulated CV-fMRI slices. Finally, we use the complex-valued Bayesian
approach to detect active voxels in human CV-fMRI from a healthy individual who performed unilateral fin-
ger tapping in a designed experiment. The proposed approach leads to improved detection of activation in
the expected motor-related brain regions and produces fewer false positive results than other methods for
CV-fMRI. Supplementary materials for this article are available online.

1. Introduction

As an imagingmodality, fMRI is able to indirectly measure neu-
ronal activity by detecting changes in the blood oxygen level
dependent (BOLD) signal. In a typical task-related fMRI exper-
iment, hemodynamic activity over the entire brain volume is
observed at T time points while a subject performs a series of
tasks, leading to a set of T large-dimensional fMRI scans, typi-
cally T rectangular lattices with about 5K–10K voxels.

In MRI and fMRI, images or voxel measurements are
complex-valued due to phase imperfections after Fourier
encoding and inverse Fourier image reconstruction. Thus in
fMRI, voxel time course measurements consist of real and
imaginary components (Bernstein, Thomasson, and Perman
1989;Macovski 1996; Haacke et al. 1999) and these are generally
converted tomagnitude and phase voxel time courses. However,
most fMRI brain activation studies discard the phase informa-
tion and rely onmagnitude-only image time courses. When this
is done, the original complex-valued data are unrecoverable as
operations that involve magnitude-only reconstruction are not
unique. Some attempts have been made to avoid working with
complex-valued voxel time courses or standard magnitude-
based reconstruction algorithms. For instance, Bernstein,
Thomasson, and Perman (1989) and Prah et al. (2010) showed
that detectability in low signal-to-noise (SNR) regions of mag-
netic resonance images is improved by using a phase-corrected
real reconstruction instead of magnitude-only reconstructions.
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In this article, we develop a Bayesian model for detecting
activation that uses both the real and imaginary components in
CV-fMRI data, leading to more accurate activation results.

Bandettini et al. (1992) demonstrated that voxel time courses
can be used as effective tools for localizing brain function in
humans. Early common model-based approaches to the anal-
ysis of magnitude fMRI data relied on the general linear model
(GLM), as first proposed by Friston, Jezzard, and Turner (1994).
In thismodel, the observedmagnitude-only fMRI signal ismod-
eled as the underlying expected BOLD response plus a noise
component. In other words, for each voxel v = 1, . . . ,V , the
voxel-wise GLM can be written as

yv = Xvβv + εv , (1)

where yv is the T × 1 response vector of magnitude-only fMRI
time course for voxel v , Xv is the T × q design matrix whose
components include the expected BOLD responses for each of p
experimental tasks or input stimuli and possibly other regres-
sors such as trends (and so, p ≤ q), βv is a q × 1 vector of
regression coefficients and εv is a T × 1 error vector, which cap-
tures random noises due to scanner artifacts and any additional
subject-related physiological noise. In the absence of intercepts,
trends, or any other covariates that are not task-specific, that is,
when q = p, each of the p BOLD responses in Xv is the dis-
cretized convolution of a stimulus on-and-off signal with the so-
called hemodynamic response function (HRF) that models the
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hemodynamic delay in the magnetic resonance signal (Friston
et al. 2007). In addition, theHRF is often assumed to be the same
across voxels, resulting in Xv = X for all v .

Sophisticated Bayesian models, including spatial and spatio-
temporal approaches, have been developed for magnitude-only
fMRI data. For instance, Bowman et al. (2008) considered a two-
stage Bayesian hierarchical model with temporal correlations
at the first stage and spatial correlations at the second stage.
In Lee et al. (2014), temporal dependence is characterized via
autoregressive models, Zellner’s g-priors are assumed for the
regression coefficients, and a binary spatial Ising prior is used to
specify anatomical information and spatial interaction between
voxels. In Zhang et al. (2014), a general error structure is used to
capture general dependence, and aMarkov random field (MRF)
prior is used to detect activations in a nonparametric way.
Alternative Bayesian approaches for magnitude-only data are
summarized in Zhang, Guindani, and Vannucci (2015), Zhang
et al. (2016), and Chiang et al. (2017). These sophisticated and
well-constructed models, however, are based only on the mag-
nitude information provided by the data and do not incorporate
the phase information. Furthermore, many of these magnitude-
only approaches also work under the assumption that the errors
are normally distributed whichmay be problematic, resulting in
incorrect standard errors that can produce inaccurate activation
results. In fact, if both the real and imaginary components of the
CV-fMRI signals have independent normally distributed errors
with the same variance, the magnitude-only signals actually
follow a Ricean distribution that is approximately normal only
in the case of large SNRs (Rice 1944; Gudbjartsson and Patz
1995; Rowe and Logan 2004). However, the SNRs may not be
large enough in practice for this approximate normality to hold.
This is increasingly true in cases with higher voxel resolutions
and for voxels with a large degree of signal drop-out, that is,
those for which the signal is not available or has small SNR,
such as voxels located near air/tissue boundaries. In particular,
Adrian, Maitra, and Rowe (2013) showed that with magnitude-
only models, tests derived using Ricean modeling are superior
to Gaussian-based activation tests for SNRs below 0.6. Rowe
(2005b) also showed that Gaussian-based activation parameter
estimates were biased for SNRs under 10. Our approach over-
comes these limitations of magnitude-only models by jointly
considering the real and imaginary components of CV-fMRI
data.

Complex-valued modeling has been widely used in several
applied areas allowing full utilization of real and imaginary,
or equivalently magnitude and phase, information in certain
signals and images, providing a general framework for the
analysis of several classes of processes (see, e.g., Mandic and
Goh, 2009). The incorporation of phase information has proven
key in communications and imaging (Oppenheim and Lim
1981), as complex-valued modeling simultaneously handles
the intensity and direction when dealing with radar, sonar,
and wind data. In the fMRI context, CV-fMRI data that jointly
consist of magnitude and phase images are not provided by
the scanners as the default output, but they are usually readily
available. For instance, GE scanners typically provide an output
file that contains the raw complex-valued k-space data and
other information, as well as the magnitude images. Magnitude
and phase images, or real and imaginary images, can be easily

obtained by simply changing a preset control variable in an
input file, making CV-fMRI data available to neuroimaging
researchers and practitioners.

A number of tools for CV-fMRI data analysis have been pro-
posed in the literature, including nonmodel-based exploratory
independent component analysis (ICA; Calhoun et al. 2002),
as well as direct modeling of the complex activation data
(Lai and Glover 1997; Rowe and Logan 2004, 2005; Rowe 2005a;
Lee et al. 2007; Rowe 2009; Lee, Shahram, and Pauly 2009).
Approaches such as those in Rowe and Logan (2004, 2005);
Rowe (2005a); and Rowe (2005b) model the phase to directly
estimate the phase angle using a polar coordinates representa-
tion, while the methods in Lee et al. (2007) and Lee, Shahram,
and Pauly (2009) are based on Cartesian representations. More
recently, complex-valued models with temporal correlations
(including autoregressive structures) have also been developed
(Kociuba and Rowe 2016; Adrian, Maitra, and Rowe 2017). In
particular, Rowe (2005a) specified the following structure for
the complex-valued image measurement at time t and voxel v ,
yv
t = yv

t,Re + iyv
t,Im ∈ C,

yv
t = ρv

t cos
(
φv
t
)+ iρv

t sin
(
φv
t
)+ ηv

t , (2)

where ρv
t = βv

0 + βv
1 x1,t + · · · + βv

p1xp1,t is the magnitude of
yv
t with p1 magnitude regressors, φv

t = αv
0 + αv

1u1,t + · · · +
αv
p2up2,t is the phase of yv

t with p2 regressors, and i = √−1.
All the regression coefficients βv

0 , . . . , β
v
p1 and α

v
0 , . . . , α

v
p2 are

real-valued. Here, aRe and aIm generically denote the real and
imaginary parts of any complex-valued quantity a = aRe + iaIm.
The noise term ηv

t is also assumed to be complex-valued,
that is, ηv

t = ηv
t,Re + iηv

t,Im. When αv
0 �= 0 and αv

j = 0 for all
j = 1, . . . , p2, we have the Rowe-Logan constant phase model.
Note that when no trends are included, the magnitude and
phase regressors could be chosen to be identical to the expected
bold responses associated with the p experimental tasks, that is,
p1 = p2 = p and x j,t = uj,t for all j = 1, . . . , p. Rowe (2005a)
identified active voxels using a generalized likelihood ratio test.

Lee et al. (2007) and Lee, Shahram, and Pauly (2009) pro-
posed a method based on a Cartesian model representation
which has the following matrix form:

yv = Xγv + ηv , (3)

with yv = (yv
1, . . . , yv

T )
′, γv = γv

Re + iγv
Im, γ

v
Re = (γ v

Re,1, . . . ,

γ v
Re,q)

′, γv
Im = (γ v

Im,1, . . . , γ
v
Im,q)

′, with q = p+ 1, X =
(x′

1, . . . , x′
T )

′, where xt = (1, x1,t , . . . , xp,t )′, t = 1, . . . ,T,
and complex-valued noise vector ηv = (ηv

1 , . . . , η
v
T ). Lee et al.

(2007) combined this general linear model representation in
Cartesian coordinates with a Hotelling’s T 2-test to detect active
sites. Model (3) is equivalent to the Rowe–Logan constant phase
complex-valued model (Rowe and Logan 2004) if p1 = p,
γv
Re = (βv

0 , . . . , β
v
p )

′ cos(αv
0 ) and γv

Im = (βv
0 , . . . , β

v
p )

′ sin(αv
0 ).

Model (3) is also equivalent to the complex-valued magnitude
and phase activation model in Rowe and Logan (2005) when
there is only a single regressor in both, magnitude and phase,
corresponding to a 0/1 vector representing a boxcar block
design.

The references cited above show that modeling the complete
CV-fMRI data leads to superior power in detecting active voxels
when compared to magnitude-only approaches, especially for
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situations in which the SNRs are relatively small. However, in
spite of their advantages, currently available methods for CV-
fMRI data rely onmechanisms that control some notion of error
to correct for multiple testing, such as Bonferroni corrections,
and therefore involve two-step procedures. The first step pro-
vides estimates of the potentially active voxels according to some
model, while the second step involves using one of the stan-
dardmethods to correct formultiple testing. Furthermore, avail-
able methods for CV-fMRI data assume that the voxels are inde-
pendent and do not offer a principled framework for parameter
learning through borrowing information across voxels.

Here, we present a Bayesian approach that allows us to
infer active voxels using both the real and imaginary infor-
mation provided by the CV-fMRI data. This approach builds
on Bayesian variable selection methods to detect active voxels
and hence does not suffer from the multiple comparison issues
that typically affect multiple hypothesis testing (Scott and
Berger 2006). Activation detection and parameter estimation
are achieved by a model-based framework that allows us to
borrow information across voxels. In addition to obtaining full
posterior inference via Markov chain Monte Carlo (MCMC),
we develop a complex-valued extension of the Expectation-
Maximization (EM) algorithm for Bayesian variable selection
of Rockova and George (2014) that allows for fast detection of
active voxels in large-dimensional CV-fMRI. The advantages
of our approach are illustrated in the analysis of simulated
data, including physically realistic simulated CV-fMRI data,
as well as human CV-fMRI data. We show that the proposed
methods lead to more accurate activation results than those
obtained from magnitude-only methods or from currently
available methods for CV-fMRI data. Section 2 presents the
models and algorithms for posterior estimation and inference.
Section 3 illustrates the performance of the Bayesian approach
for detecting active voxels in simulated datasets, including
physically realistic synthetic CV-fMRI data. Section 4 shows
and discusses the results obtained from analyzing a human
CV-fMRI dataset with the proposed Bayesian approach. Finally,
Section 5 presents a discussion and future extensions.

2. BayesianModels for Detecting Activation in
Complex-Valued fMRI Data

As mentioned above, we develop a model that makes use of
the complete magnitude and phase information provided by the
CV-fMRI data. However, unlike previous approaches (Rowe and
Logan 2004, 2005; Rowe 2005a, 2005b, 2009; Lee et al. 2007), we
use a fully Bayesian framework for identifying active voxels via
variable selection in the complex-valued domain.

We follow the Cartesian coordinates approach of Lee et al.
(2007) given in (3) and further assume independent and identi-
cally distributed complex-normal error vectors, that is,

yv = Xγv + ηv , ηv ∼ CNT (0,�v ,Cv ) , (4)

with CNL(μ,�,C) denoting a complex normal distribution
of dimension L with mean μ, complex-valued, Hermitian and
nonnegative definite covariance matrix �, and complex-valued
symmetric relation matrix C. As shown below, the linear struc-
ture in this representation is computationally relevant, as it

leads to fast Bayesian posterior estimation of active sites. Note
also that any complex-valued normal distribution of dimension
L has a real-valued normal representation of dimension 2L
(Wooding 1956; van den Bos 1995; Picinbono 1996). Thus,
letting �v

Re,Re = 1
2Re(�v + Cv ), �v

Im,Im = 1
2Re(�v − Cv ),

�v
Re,Im = 1

2 Im(−�v + Cv ), and �v
Im,Re = 1

2 Im(�v + Cv ),

model (4) also has a real-valued representation as(
yv
Re

yv
Im

)
=
(
X 0
0 X

)(
γv
Re
γv
Im

)
+
(
ηv
Re

ηv
Im,

)
, (5)

or equivalently,

yv
r = Xrγv

r + ηv
r , (6)

with yv
r = ((yv

Re)
′, (yv

Im)
′)′, Xr = blockdiag(X,X), γv

r =
((γv

Re)
′, (γv

Im)
′)′, and ηv

r = ((ηv
Re)

′, (ηv
Im)

′)′, where ηv
r ∼

N2T (0,�v ) with

�v =
(
�v

Re,Re �v
Re,Im

�v
Im,Re �v

Im,Im

)
.

The simplest possible structure for ηv is that obtained by taking
ηv ∼ CNT (0, 2σ 2

v IT , 0) or equivalently, setting �v = σ 2
v I2T

in the real-valued Gaussian representation. This implies that
there is no correlation within the real components and within
the imaginary components of ηv , and also that there is no
correlation between the real and imaginary components of
ηv . These assumptions can be relaxed to include correlations
within the real and imaginary components to capture temporal
structure (as illustrated in some of the analysis of synthetic
and human CV-fMRI data presented in Sections 3 and 4), or
correlations between the real and imaginary components for
more structured noise.

Belowwedescribe the priors and the corresponding posterior
inference for the simplest noise structure, focusing on complex-
valued priors for γv that lead to posterior inference of activation
in CV-fMRI at the voxel-specific level.

2.1. Priors

In the absence of any trends and intercepts, and without loss of
generality, that is, for the case in which X in (4) contains only
the expected BOLD signals for each of p stimuli/tasks with no
baselines or trends, activation can be viewed as a variable selec-
tion problem (Xia, Liang, and Wang 2009; Zhang, Guindani,
and Vannucci 2015). In other words, if γ v

j = γ v
Re, j + iγ v

Im, j �= 0
for voxel v and task j, such voxel is identified as active under
task j. Note that complex-valued priors must be considered for
γ v
j . Here we develop a complex-valued domain analogue of the

Bayesian variable selection methods of George and McCulloch
(1993, 1997) and Rockova and George (2014). If trends and/or
intercepts are needed, they can easily be included in the model
along with priors on their corresponding parameters and inte-
grated out, as done in the applications illustrated in Sections 3
and 4. Thus, we focus the discussion below to the case in which
X only consists of the expected BOLD signals associated with
each of the p experimental stimuli/tasks.

Our proposed complex-valued spike-and-slab priors for
γ v
j extend the widely used real-valued spike-and-slab priors
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by considering(
γ v
j |ψv

j

)
∼
(
1 − ψv

j

)
g0
(
γ v
j

)
+ ψv

j g
(
γ v
j

)
,

with g0(·) and g(·) complex-valued distributions with mean
zero, and ψv

j ∈ {0, 1}, where ψv
j = 1 indicates that voxel v is

active during task j. Therefore, this prior allows us to determine
if a voxel is active by jointly considering the real and imaginary
components of γ v

j . In general, we consider priors with g0(γ v
j ) =

CN1(0, σ 2
v ω0, σ

2
v λ0), and g(γ v

j ) = CN1(0, σ 2
v ω1, σ

2
v λ1), and

their corresponding vectorial representation given by

γv |ψv ∼ CNp
(
0, σ 2

v	v , σ
2
v
v

)
, (7)

with 	v = diag((1 − ψv
1 )ω0 + ψv

1ω1, . . . , (1 − ψv
p )ω0 + ψv

p
ω1), 
v = diag((1 − ψv

1 )λ0 + ψv
1 λ1, . . . , (1 − ψv

p )λ0 + ψv
p

λ1) and ψv = [ψv
1 , . . . , ψ

v
p ]. The real-valued represen-

tation of this prior is (
γv
Re
γv
Im
) ∼ N2p(0, σ 2

v�(ψ
v )), where

�(ψv ) = (
�Re,Re(ψ

v ) �Re,Im(ψ
v )

�Im,Re(ψ
v ) �Im,Im(ψ

v ) ). Given ψv , we obtain �(ψv )

from 	v and 
v via �Re,Re(ψ
v ) = 1

2Re(	v +
v ),
�Im,Im(ψ

v ) = 1
2Re(	v −
v ), �Re,Im(ψ

v ) = 1
2 Im(−	v +


v ), and �Im,Re(ψ
v ) = 1

2 Im(	v +
v ).

In the data analyses presented below, we take g0(γ v
j ) =

CN1(0, 2v0σ 2
v , 0) and g(γ v

j ) = CN1(0, 2v1σ 2
v , 0), with param-

eters 0 < v0 < v1, and with smaller values of v0 favoring the
detection of even weakly activated voxels. As shown in Section
2.2, this prior structure leads to a closed-form complex-valued
EMVS algorithm, referred to as C-EMVS here, that allows for
fast identification of active voxels. Once again, note that the real-
valued representation of this prior is given by

(γ j,Re, γ j,Im)
′ ∼

(
1 − ψv

j

)
gr0

((
γ v
j,Re, γ

v
j,Im

)′)

+ψv
j g

r
((
γ v
Re, j, γ

v
Im, j

)′)

with gr0((γ v
Re, j, γ

v
Im, j)

′) = N2(0, v0σ 2
v I2) and gr((γ v

Re, j, γ
v
Im,

j)′) = N2(0, v1σ 2
v I2).

We complete the prior specification taking σ 2
v ∼ IG(aσ , bσ ),

ψv
j ∼ Bernoulli(θ j), with θ j ∼ Beta(aθ , bθ ), for all

j = 1, . . . , p and aσ , bσ , aθ , bθ constants. In particular, as
discussed in the examples, we consider aσ = bσ = 1/2 and
values of v0, v1, aθ , and bθ selected following guidelines similar
to those provided in Rockova and George (2014) and Wang
et al. (2015). This prior structure relates voxels through the
common probability that the binary variables for a given task j
are equal to one, that is, Pr(ψv

j = 1|θ j) = θ j, for all the voxels
v = 1, . . . ,V.

2.2. Posterior Inference

We summarize the algorithms for posterior inference below.We
first describe a complex-valued EMVS algorithm, C-EMVS, that
leads to fast detection of active sites under the Bayesian model.
A similar EMVS algorithm can be derived for magnitude-only
models.We then provide aMarkov chainMonte Carlo (MCMC)
scheme that allows us to obtain full posterior inference. The
simulations and experimental data analyzed in Sections 3
and 4 focus on the performance of the complex-valued and
magnitude-only EMVS algorithms, as full MCMC is usually not

computationally efficient for the analysis of large-dimensional
voxel-level fMRI and CV-fMRI.

... A C-EMVS Algorithm for Fast Posterior Computations
Rockova and George (2014) proposed an expectation-
maximization approach to Bayesian variable selection (EMVS)
that takes advantage of the continuity of the spike distribution
to produce rapidly computable closed-form expressions. Here,
we develop an EMVS-based approach to posterior computa-
tion that combines the linear and complex-valued Gaussian
structure in (4), the complex-valued spike-and-slab prior for
γv in (7), and the priors for the remaining model parameters
described in Section 2.1 above. More specifically, we now
summarize the steps of the C-EMVS algorithm for the simplest
model specification considered in the simulation studies pre-
sented in Section 3 (algorithms for general models are detailed
in the online Appendices). This model is given by

yv = Xγv + ηv , ηv ∼ CNT
(
0, 2σ 2

v I, 0
)
,

γ v
j | ψv

j ∼
(
1 − ψv

j

)
CN1

(
0, 2v0σ 2

v , 0
)

+ψv
j CN1

(
0, 2v1σ 2

v , 0
)
, j = 1, . . . , p, (8)

σ 2
v ∼ IG (aσ , bσ ) , ψv

j | θ j ∼ Bernoulli
(
θ j
)
,

θ j ∼ Beta (aθ , bθ ) .

Note that, for each task j, model (8) relates voxels through
the common probability that the binary variables that spec-
ify the activation at the voxel-level for such task are equal to
one, that is, Pr(ψv

j = 1 | θ j) = θ j for all voxels v = 1, . . . ,V
and each task j = 1, . . . , p. Letting γ = [γ1, . . . , γV ], ψ =
[ψ1, . . . ,ψV ], with ψv = (ψv

1 , . . . , ψ
v
p )

′, θ = (θ1, . . . , θp)
′,

σ2 = [σ 2
1 , . . . , σ

2
V ], and y = [y1, . . . , yV ], we find that the full

posterior density is given by

π
(
γ,ψ, θ, σ2 | y) ∝

V∏
v=1

[
f
(
yvmidγv , σ 2

v

)
π
(
γv | ψv , σ 2

v

)
× π

(
ψv | θ)π (σ 2

v

)]
π (θ)

∝
V∏

v=1

[
CNT

(
yv | Xγv , 2σ 2

v I, 0
)

× CNp
(
γv | 0, σ 2

v	v , 0
)]

×
V∏

v=1

⎡
⎣π (σ 2

v

) p∏
j=1

Bernoulli
(
ψv

j | θ j
)⎤⎦

×
p∏

j=1

Beta
(
θ j | aθ , bθ

)
, (9)

where 	v = 2 × diag((1 − ψv
1 )v0 + ψv

1 v1, . . . , (1 − ψv
p )v0 +

ψv
pv1).
An EM algorithm for maximizing the full posterior

π(γ, θ, σ2 | y) for this complex-valued model, referred to
as C-EMVS, is derived by iteratively maximizing the objective
function

Q(γ, θ, σ2 | γ (l), θ(l), σ2,(l))
= Eψ|·[logπ(γ,ψ, θ, σ

2 | y)|γ (l), θ(l), σ2,(l), y],
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at iteration l + 1,where Eψ|·(·) = E
ψ|γ (l),θ(l),σ2,(l),y(·).Note that

at iteration l + 1, the function Q (·) uses the maxima found at
iteration l. Given the form of the log posterior in this case, we
can write

Q(γ, θ, σ2 | γ (l), θ(l), σ2,(l) )

= Q1(γ, σ
2 | γ (l), θ(l), σ2,(l) )+ Q2(θ | γ (l), θ(l), σ2,(l) )+ KQ, (10)

with Q1(γ, σ
2 | γ (l), θ(l), σ2,(l)) = ∑V

v=1 Q
v
1(γ

v , σ 2
v |

γv,(l), θ(l), σ 2,(l)
v ) andKQ a constant. For the E-step, we compute

the conditional expectations Eψv |·[ψv
j ] and Eψv |·[ 1

(1−ψv
j )v0+ψv

j v1
].

The M-step solves for (γ (l+1), σ2,(l+1)) and θ(l+1) by maximiz-
ing Qv

1 for v = 1, . . . ,V and Q2 in (10). The complete details
for this C-EMVS algorithm, as well as those for algorithms
under more general complex-valued priors (e.g., noncircular
priors) can be found in the online Appendices.

The C-EMVS algorithm is iterated until ‖γ (l) − γ (l−1)‖ <
ε, ‖θ(l) − θ(l−1)‖ < ε and ‖σ2,(l) − σ2,(l−1)‖ < ε, with ε small.
In the analyses of simulated and human experimental data
presented in Sections 3 and 4, we use ε = 10−3. We assess
convergence by monitoring that the log-posterior distribu-
tion increases at each step of the algorithm. Once the EM
algorithm converges, we obtain estimated posterior modes
γ̂ , σ̂2, and θ̂. Then, for each voxel we compute Pr(ψv

j =
1 | γ̂, θ̂, σ̂2, y), and we label a given voxel v active for
task j if Pr(ψv

j = 1 | γ̂, θ̂, σ̂2, y) > δ, where δ is a fixed
threshold value. This is equivalent to saying that a voxel
is active if its corresponding strength is greater than some
real-valued threshold γ ∗,v

j , that is, |γ̂ v
j | > γ ∗,v

j . A common
choice of δ is 0.5, which leads to a local version of the
median probability model of Barbieri and Berger (2004).
Some researchers in the fMRI community suggest using
δ = 0.8722 for magnitude-only models. Smith and Fahrmeir
(2007) gave a clear description of the motivation for this thresh-
old value in the context of a Bayesian spatial model. Given that
our models do not explicitly incorporate a spatial structure,
we use δ = 0.5 in the following analyses. A further alternative
that could be considered within a Bayesian decision-theoretical
framework is to choose the threshold by minimizing a well-
defined loss function, or via Bayesian false discovery rates (see,
e.g., Müeller, Parmigiani, and Rice, 2006 and Sun et al., 2015).

Finally note that, if desired, the algorithm can also be imple-
mented for the real-valued version of the model in (8) given by(

yv
Re

yv
Im

)
= Xrγv

r + ηv
r , ηv

r ∼ N2T
(
0, σ 2

v I2T
)
,

γv
r =

(
γv
Re

γv
Im

)
∼ N2p

(
0, σ 2

v

(
�Re,Re

(
ψv
)

0
0 �Im,Im

(
ψv
))) ,

and the same priors on σ 2
v , ψ

v
j , and θ j specified above.

... Posterior Inference viaMarkov ChainMonte Carlo
Full posterior inference can be obtained via MCMC. Similar to
the C-EMVS case described above, we generalize the Stochastic
Search Variable Selection algorithm (SSVS) proposed by George
and McCulloch (1993) to the complex-valued domain. Suppose
we have a simplified complex-valued model such as (8) except

that we now use a “nonconjugate” version of the spike-and-slab
prior on γv , that is, γ v

j | ψv
j ∼ (1 − ψv

j )CN1(0, 2v0, 0)+
ψv

j CN1(0, 2v1, 0), j = 1, . . . , p. The general vectorized form
of this prior can be written as γv | ψv ∼ CNp(0,	v , 0), with
	v = 2 × diag[(1 − ψv

1 )v0 + ψv
1 v1, . . . , (1 − ψv

p )v0 + ψv
pv1].

Then, the posterior full conditional distributions for a Gibbs
sampling scheme can be derived as follows:

� For each v, v = 1, . . . ,V , γv | yv , σ 2
v ,ψ

v ∼
CNp(μ

v
γ ,	

v
pos, 0), with 	v

pos = (2−1σ−2
v X′X +	−1

v )−1,

and μv
γ = 	v

posX
′yv/σ 2

v .
� σ 2

v | yv , γv ∼ IG(av,pos
σ , bv,pos

σ ), with av,pos
σ = T + aσ and

bv,pos
σ = ‖yv − Xγv‖2/2 + bσ .

� Pr(ψv
j = 1 | yv , γv , σ 2, θ,ψv

− j) = cvj
cvj+evj

, with cvj =
π(γv

j | yv , ψv
j = 1,ψv

− j)× θ j and evj = π(γv
j | yv ,

ψv
j = 0,ψv

− j)× (1 − θ j). Here π(γv
j | yv , ψv

j = 1,ψv
− j)

and π(γv
j | yv , ψv

j = 0,ψv
− j) are complex-normal densi-

ties (see online Appendices for details).
� For each j, j = 1, . . . , p, θ j | y,ψv ∼ Beta(

∑V
v=1 ψ

v
j +

aθ ,V −∑V
v=1 ψ

v
j + bθ ).

To decide whether a voxel v is active or not after MCMC
convergence is achieved, we look at the posterior probability
of ψv

j = 1, for each task-related BOLD signal j = 1, . . . , p. A
detailed derivation of general complex-valued SSVS algorithm
and the corresponding full conditional distributions above can
be found in the online Appendices.

3. Simulation Studies

We show the performance of the proposed complex-valued vari-
able selection methods for detecting activation in two simula-
tion studies. The first study compares the C-EMVS algorithm to
computationally fast alternatives that are often used in practice,
such as lasso and adaptive lasso (Tibshirani 1996; Zou 2006).
We also compare the results obtained by the proposed complex-
valued model and priors via the C-EMVS algorithm with those
obtained using a magnitude-only Bayesian model with the real-
valued priors in Rockova and George (2014). The magnitude-
only voxel time series courses are obtained by taking the
moduli of the CV-fMRI signals at each voxel. The second study
considers a physically realistic simulated CV-fMRI dataset.

3.1. Simulation Study I

We simulated 20 datasets consisting of 48 × 48 CV-fMRI slices
with a constant baseline signal and a single expected BOLD sig-
nal (i.e., p = 1) resulting from the convolution of a stimulus
indicator function and the canonical hemodynamic response
function. Three activation regions were simulated using the
function specifyregion in the R package neuRosim
(Welvaert et al. 2011). More specifically, for v = 1, . . . , 48 × 48,
and t = 1, . . . , 200, the time series for each voxel v were simu-
lated as follows:

yv
t,Re = (β0 + β1 fvzt ) cos(α0)+ ηv

t,Re, ηv
t,Re ∼ N(0, σ 2)

yv
t,Im = (β0 + β1 fvzt ) sin(α0)+ ηv

t,Im, ηv
t,Im ∼ N(0, σ 2),

(11)

where fv is the BOLD signal strength or intensity rate of voxel
v , with fv = 0 if voxel v is nonactive and fv �= 0 if voxel v is
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Figure . Left: Block experimental design (top); expected BOLD signal obtained from convolving the stimulus indicator signal with the canonical hemodynamic function
(bottom). Right: Activation regions and fv values for active voxels.

in an active region. The values of fv for active voxels were speci-
fied using the argumentfading in the functionspecifyre-
gion in neurosim. Here, the fading of the expected BOLD
signal decays exponentially depending on the distance of the
active voxel v with coordinates (i, j), to the center of the active
region with coordinates (i′, j′), that is, the fading for voxel v is
given by

fv (i, j) = 1
4
{2 · exp[−((i − i′)2 + ( j − j′)2) · �] + 2},

where � is the decay rate in [0, 1] with 0 and 1 corresponding,
respectively, to no decay and to the strongest decay. zt in (11)
is the BOLD signal given by the convolution of the canonical
HRF, denoted as ht , and the stimulus indicator function st , that
is, zt = ht ⊗ st .

Weused α0 = π/4 and different values of β0 and β1 to exam-
ine the performance of the proposed complex-valued models
using the C-EMVS algorithm for posterior computations. These
were chosen to set specific values of the SNR and the contrast-
to-noise ratio (CNR) as defined in Rowe and Logan (2004),
with SNR = β0/σ and CNR = β1/σ. Note that active voxels
have different CNRs given by CNRv = (β1 fv )/σ,with CNRv ≤
CNR for all v, as fv ∈ [0, 1]. Hence, the largest CNR for active
voxels is β1/σ , computed using no fading, while the smallest
CNR is β1 fmin/σ , where fmin = min{v∈A} fv and A is the set of
active voxels. The average CNR is

∑
{v∈A} β1 fv/|A|. In this sim-

ulation, we used fmin ≈ 0.50 and
∑

{v∈A} fv/|A| ≈ 0.71, with
|A| = 103 active voxels, which accounts for 4.47% of all voxels.

The top left plot in Figure 1 shows the experimental block
design, with st = 1 if the stimulus is on and st = 0 otherwise. It
consists of five epochs of 20 sec on and 20 sec off with an obser-
vation interval of 1. The resulting BOLD signal zt is shown in
the bottom left plot. The right plot displays the active regions
with the corresponding fv values. The three active regions are
centered at the coordinates (20, 20), (30, 30), and (40, 10), with
radius arguments 3, 2, 1, and fading arguments 0.5, 0.01, and 0.3,
respectively, for each region. The bottom-right region is a square
and the other two are circles.

Four different SNRs, 0.5, 1, 5, and 10, and three different
CNRs, 0.5, 1, and 1.5, were considered, resulting in 12 different
SNR-CNR data types. These are numbered as shown in Table 1.
We generated 20 simulated datasets for each SNR-CNRdata type
and computed classification performance measures (sensitivity,
specificity, precision, and accuracy) to examine how well our
algorithm and othermethods perform in the different scenarios.

Four methods are compared in this simulation study, the
proposed Bayesian complex-valued model using the C-EMVS
algorithm for posterior computations (referred to as CV in the
results below), the Bayesian magnitude-only model with the
EMVS algorithm (MO), and the lasso (LA) and adaptive lasso
(ALA), both for magnitude-only data.

The Bayesian complex-valuedmodel used here has the form

yv
t = γ ∗

1 + γ ∗,v
2 xt + ηv

t , η
v
t ∼ CN1

(
0, 2σ 2, 0

)
,

with γ ∗
1 a baseline parameter and γ ∗,v

2 the complex-valued acti-
vation parameters for each voxel and xt = zt . For the baseline
parameter, we use a prior of the formπ(γ ∗

1 ) ∝ 1. For the activa-
tion parameters and the remaining model parameters, we used
the following priors:

γ ∗,v
2 | ψv ∼ (1 − ψv )CN1

(
0, 2v0σ 2, 0

)+ ψvCN1
(
0, 2v1σ 2, 0

)
,

σ 2 ∼ IG (1/2, 1/2) , ψv | θ ∼ Bernoulli (θ ) ,
θ ∼ Beta(1, 1). (12)

The baseline parameter was integrated out before proceeding
with the C-EMVS or MCMC algorithms for posterior inference
and detection of active sites, so we used the algorithms outlined
in Section 2 and detailed in the online Appendices.

We also consider a Bayesian model for the magnitude-only
data. The magnitude-only time courses are obtained as yv

t,Mag =√
(yv

t,Re)
2+(yv

t,Im )
2. The MO model used to analyze these data is

Table . Twelve data types and their corresponding SNR and CNR.

SNR .   

CNR .  . .  . .  . .  .
Data type            
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Figure . Sensitivity (top-left), specificity (top-right), precision (bottom-left), and accuracy (bottom-right) for fourmodels: Complex-valued EM (CV; blue, solid),magnitude-
only EM (MO; red, dash), Lasso (LA; brown, dotted), and adaptive Lasso (ALA; green, dash-dotted).

essentially the same as the CV model used for the complex-
valued data, except that the linear model is now real-valued and
the priors on the regression coefficients are real-valuedGaussian
spike-and-slab priors. This is

yv
t,Mag = γ ∗

Mag,1 + γ ∗,v
Mag,2xt + ηv

t , η
v
t ∼ N

(
0, σ 2) ,

γ ∗,v
Mag,2|ψv

Mag ∼
(
1 − ψv

Mag

)
N1
(
0, v0σ 2)+ ψv

MagN1
(
0, v1σ 2) ,

σ 2 ∼ IG (1/2, 1/2) , ψv
Mag|θ ∼ Bernoulli (θ ) ,

θ ∼ Beta(1, 1),

and π(γ ∗
Mag,1) ∝ 1.

The tuning parameters in the Bayesian CV and MO mod-
els above, v0 and v1, are chosen as suggested in Rockova and
George (2014) and Wang et al. (2015). More specifically, we
fix v1, taking v1 = 1 and choose the optimal v0 in each case,
denoted as vCV

0 and vMO
0 , for the CV and MO models, respec-

tively, bymaximizing themarginal posteriorπ0(ψ | y) that eval-
uatesψ according to the submodel that contains only those vari-
ables for which ψv

j = 1. This marginal can be derived in closed
form up to a normalizing constant. From our experience with
the real and simulated datasets analyzed here, the optimal v0
takes values around 1/

√
100T p and usually lies in the interval

(1/
√
1000T p, 1/

√
10T p), where p is the number of tasks. In

this simulation, we only have one task so p = 1.

Finally, we also applied the lasso (LA) and adaptive lasso
(ALA) methods (Tibshirani 1996; Zou 2006) to the magnitude-
only data. Both LA and ALA use a regularization parameter
and ALA uses additional weights to allow for different penal-
izations in the regression coefficients (the γ ∗,v

Mag,2 parameters
in our case). The regularization parameter was chosen using a
five-fold cross-validation approach and the weights in the ALA
were set to 1/|γ̂ ∗,v

Mag,2|, where γ̂ ∗,v
Mag,2 is the ordinary least-square

estimator of γ ∗,v
Mag,2. LA and ALA were implemented using the

R package glmnet (Friedman, Hastie, and Tibshirani 2010).
The resulting average performancemeasures over the 20 sim-

ulated datasets for the four differentmethods are summarized in
Figure 2. Note that this simulation contains 2201 nonactive vox-
els out of a total 2304 voxels, so any model can achieve 95.53%
accuracy by simply classifying all voxels as nonactive. Hence, the
accuracy subfigure is plotted from 0.95 to 1 for clear compari-
son. Similarly, the specificity is plotted from 0.997 to 1.

First, we see that both Bayesian variable selection approaches,
the one for the CV-fMRI and the one for magnitude-only data
(MO), dominate the traditional lasso (LA) and adaptive lasso
(ALA) for magnitude-only data in terms of sensitivity (power),
precision, and accuracy. The Bayesian approaches are able to
eliminate most of the false positives by borrowing strength
across voxels via the common probability of activation param-
eter θ . The Bayesian CV and MO methods are comparable
to lasso and adaptive lasso in terms of specificity, while the
first provide a more complete inferential analysis. The main
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Figure . Activation and strength maps for a simulated dataset with SNR = . and CNR = . (a) Activation maps showing the true active sites, and the activation results
obtained from C-EMVS, MO-EMVS, Lasso, and Adaptive Lasso. Activated sites are colored in red. (b) Strength maps: true strength and estimated strengths from C-EMVS,
MO-EMVS, Lasso, and adaptive Lasso.

advantage of the Bayesian CV model with respect to the
Bayesian MO model is that the CV model significantly detects
more true positives than the MO when the SNR is small, which
leads to higher sensitivity, precision, and accuracy. When the
SNR is fairly large, using the information provided only by the
magnitude leads to good activation results in these simulated
scenarios. In fact, the MO model even has a slightly larger
sensitivity than the CV model when the SNR is 5 or 10. On
the other hand, the CV model leads to higher specificity and
precision than the MO model even when the SNR is 5 or 10.
Moreover, the performance of the CV model is very consistent
across different SNRs. Hence, when the CV-fMRI data are
recorded under small SNRs or when researchers are uncertain
about the magnitude of the SNR in their data, the CV model
stands out as the best option among the models considered
here. Given that improvedMRI technology allows for improved
spatial resolution and therefore reduces SNR, we would expect
that complex-valued models will become an essential tool for
detecting active sites in CV-fMRI data.

Figure 3 shows the true activation and strength maps
for one of the 20 simulated datasets with SNR = 0.5 and
CNR = 1 along with the estimated activation and strength
maps (only for sites labeled as active) obtained from the C-
EMVS (CV), the magnitude-only EMVS (MO), and adaptive
lasso (ALA). The strength maps for lasso are not shown, as lasso
detected no active sites. Both activation maps for the complex-
valued and magnitude-only EMVS display activation levels that
result from setting v1 = 1 and choosing the optimal values of v0
for each method as discussed above. For this dataset and with
our prior distribution settings, we found that the optimal values
were vCV

0 = 0.0071 and vMO
0 = 0.0056. The C-EMVS approach

clearly outperforms all the other approaches: it has higher power

for detecting active voxels while simultaneously controlling for
false positives, and also leads to more accurate estimation of the
activation strength (note that MO and ALA clearly underesti-
mate the strength). In relation to this point, we computed the
mean squared errors (MSEs) for this simulated dataset under the
C-EMVS, MO, and ALA approaches for voxels that are labeled
as active for at least one of the three methods and found that the
MSEs values were, respectively, 0.0080, 0.0084, and 0.1162. The
complex-valued model also leads to more accurate inference for
σ . Magnitude-only models underestimate σ when the SNR is
small as a consequence of the fact that the MO error distribu-
tion is truly Ricean at low SNRs. This can lead to an increase of
false positives when detecting activation (in fact, we can see that
the specificity values obtained with the complex-valued model
are generally higher than those obtained with magnitude-only
model as shown in Figure 2). For example, for a dataset gener-
ated under a true value of σ = 0.5, when SNR = 0.5, we found
σ̂CV = 0.497, while σ̂MO = 0.346. To obtain better estimates of
σ with MO models, we need to considerably increase the SNR.
For instance, for a simulated dataset with SNR= 10, we obtained
σ̂MO = 0.495 which is closer to the true value 0.5. These results
are consistent with the findings of Rowe (2005b).

Finally, we also implemented the MCMC sampling approach
outlined in Section 2 and detailed in the online Appendices to
achieve full posterior inference for the complex-valued models.
We obtained similar results to those from the C-EMVS algo-
rithm in terms of the number of active sites and the strength
of those sites, but we highlight that, in addition, the MCMC
approach allows us to compute uncertainty measures related to
activation strength and any other functions of themodel param-
eters. For instance, Figure 4 shows posteriormean strengthmaps
and 95% posterior credibility strength maps for a single dataset
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Figure . Strengthmaps for a simulated dataset with SNR= . and CNR=  obtained from a complex-valuedmodel via MCMC. Left: .% quantile map; Middle: Posterior
mean map; Right: .% quantile map.

obtained from the complex-valuedmodel. As seen in this figure,
the posteriormean estimates for the strength are similar to those
obtained via the C-EMVS algorithm but theMCMC-based pos-
terior credibility maps provide additional information about the
strength maps. We see that, in general, there is less uncertainty
about activation strength for voxels located in region centered at
(30,30) than for voxels located in the region centered at (40,10).
This makes sense given the true strength maps used to generate
the simulated data (see Figure 3). In cases where this Gibbs sam-
pling scheme is not computationally feasible (e.g., when several
large-dimensional images for multiple subjects need to be ana-
lyzed), one could consider a hybrid approach that, say, uses the
C-EMVS method to determine which sites are active and then
uses the Gibbs sampling scheme only on regions of the brain
that present active sites to obtain posterior uncertaintymeasures
on strength maps and/or activation maps for those regions only.
Alternative methods based on obtaining approximate inference
via variational Bayes could also be considered (see, e.g., Yu et al.,
2016).

... Additional Structure: Temporal Correlation
We also analyzed synthetic CV-fMRI data simulated under (11)
but with errors following an autoregressive structure of order
one, that is, ηv

t,Re = ϕηv
t−1,Re + ζ v

t,Re, with ζ v
t,Re independent

Gaussian for all t , ζ v
t,Re ∼ N

(
0, σ 2) , and ηv

t,Im = ϕηv
t−1,Im +

ζ v
t,Im, with ζ v

t,Im also independent Gaussian for all t , ζ v
t,Im ∼

N(0, σ 2) and ϕ ∈ [0, 1) the AR coefficient. We considered
values of ϕ ranging from 0.1 to 0.9, and the same 12 SNR-
CNR scenarios described in the previous simulation, with σ 2 =
0.25. We analyzed these data using two versions of the model
yv
t = γ ∗

1 + γ ∗,v
2 xt + ηv

t : one version with ηv
t iid complex nor-

mal, and another version with ηv
t following a complex-valued

AR(1) structure in ηv
t = ηv

t,Re + iηv
t,Im as described above.

Figure 5 displays the sensitivity, specificity, precision, and accu-
racy for the two versions of the CV model (independent and
autoregressive errors) and two types of data (AR errors with
ϕ = 0.5 and ϕ = 0.9). Overall we find that the larger the value
of ϕ the harder it is to detect active sites, particularly for small
SNR and CNR. This makes sense, as AR(1) errors with ϕ close

Figure . Sensitivity, specificity, precision, and accuracy plots for synthetic AR() CV-fMRI datawith AR coefficients . (top plots) and . (bottomplots). The plots are based
on results obtained from analyzing  datasets using models that assumed independent errors (dotted lines) and AR() errors (solid lines).



1404 C.-H. YU ET AL.

to 1 may add a temporal structure that locally resembles a linear
trend and can easily hide/mask the temporal behavior that char-
acterizes active sites due to increased variability in the observed
time series. We also see that while the CV model with indepen-
dent errors has higher sensitivity, it also leads to a larger num-
ber of false positives (we only have about 77% specificity for the
model with independent errors while we obtain 100% specificity
for the model with AR errors when ϕ = 0.9). Therefore, the CV
model with AR errors is overall a better option in terms of speci-
ficity, precision, and accuracy, particularly when ϕ is large.

... Additional Structure: HRF Effect and Prior Sensitivity
Analyses

We also studied the effects of the HRF choice and the prior
distributions. Regarding the HRFs, we analyzed the simulated
and human data presented in Sections 3 and 4 with three
different classes of HRF functions, namely, canonical, gamma,
and boxcar with different choices for the parameters that define
each particular class. For a given HRF, we can select the optimal
v0 and then choose the HRF and corresponding v0 that leads to
the smallest MSE (mean squared error) for a particular dataset.
Overall we found that the MSEs for the optimal HRFs within
each class were comparable. Furthermore, the results in terms
of the number and locations of the sites labeled as active were
also similar across the optimal HRFs within each class.

We studied the sensitivity of our posterior results with respect
to the prior distributions. In particular, as mentioned above,
we generally assume θ ∼ Beta(1, 1). In cases where a sparser
structure is desired a priori, that is, when it makes sense bio-
logically to assume that the number of active sites is just a very
small percentage of the total number of sites, priors of the form
θ ∼ Beta (1, b)with b large can be used. In this simulation study,
we found that the activation results were essentially the same for
any prior with b ≤ 1000. Priors with values of b > 1000 lead to
sparser results (i.e., less active sites) in the simulated data. For the
human data presented in Section 4, we found that we are able
to detect similar numbers and locations of active sites for pri-
orswith values of b ∈ [1, 100,000].Note that choosing b = 1000
leads to a fairly informative prior, with about 0.09%of active sites
expected a priori and rarely above 0.4% of active sites expected
a priori.

Finally, we assessed the effect of using noncircular
complex-normal priors on γv , that is, priors of the form
γv | ψv ∼ CNp(0, σ 2

v	v , σ
2
v
v ), with 
v �= 0, so that there is

a nonzero correlation between the real and imaginary compo-
nents of γv . As expected, allowing for a correlation structure
between the real and imaginary components of γv leads to
improved results when such underlying structure is present in
the data, that is, having a more flexible prior that accounts for
this correlation leads to higher power for detecting activation
and reduces the number of false positives. On the other hand,
such priors also lead to models that are more computationally
costly and may potentially lead to biases in the posterior results.
Therefore, we recommend the use of noncircular priors only
when there is a strong indication that there is a significant
correlation between the real and complex components of γv ,

and that such correlation structure is similar for active and
nonactive voxels. Alternative priors will be developed and
investigated in the future but are out of the scope of this work.

Figure . Left: Activation results obtained from a model with a noncircular prior.
Right: Activation results obtained with a circular prior. The data were simulated so
that the real and complex components of the activation coefficients are highly cor-
related.

We now illustrate the use of noncircular priors in the analysis
of a simulated dataset with high correlation among the real
and imaginary components for both types of voxels, active and
nonactive. The data were simulated following:

yv
t,Re = (

β0 + βv
1,Rezt

)
cos (α0)+ ηv

t,Re, ηv
t,Re ∼ N(0, σ 2),

yv
t,Im = (

β0 + βv
1,Imzt

)
sin (α0)+ ηv

t,Im, ηv
t,Im ∼ N(0, σ 2),

with α0 = π/4, σ 2 = 0.1, SNR= 0.4, β0 = 0.8, and the same zt
used in the previous simulation study. In addition, the parame-
ters βv

1,Re and βv
1,Im were obtained from complex-normal distri-

butions as follows. For active voxels, we sampled βv
1,Re + iβv

1,Im
from a complex noncircular normal with mean 0.7 and covari-
ance and relation values that lead to a correlation of 0.9 between
βv
1,Re and βv

1,Im. For nonactive voxels, we sampled βv
1,Re + iβv

1,Im
from a complex noncircular normal withmean 0 and covariance
and relation values that lead to a correlation of 0.9 between βv

1,Re
and βv

1,Im.Note that ηv
t,Re and ηv

t,Im are assumed independent for
all the voxels and also across time. The location of the active vox-
els was determined using the same activation map used in the
previous simulation and displayed in the left plot of Figure 3(a).

Figure 6 shows the results obtained from a model that uses
a noncircular prior on γv that captures the induced correla-
tion structure in these coefficients (left plot) and also shows
the results obtained using a circular prior that assumes no cor-
relation structure. Clearly, the model with a noncircular prior
leads to much better results as it adequately identifies the active
regions and leads to a much smaller number of false positives
than those obtained under themodel with the circular prior. The
model with the noncircular prior also leads to better results in
terms of estimation of activation strength and reduced MSE.

3.2. Simulation Study II: Physically Realistic Simulated
Data

Amore realistic simulated dataset was generated using a discrete
version of the magnetic resonance (MR) signal equation after
steady-state magnetization (Karaman, Bruce, and Rowe 2015).
This equation is given by

s(kx, ky | t )=
∫ ∞

−∞

∫ ∞

−∞
ρ(x, y)e−t/T∗

2 (x,y)

× (
1 − e−TR/T1(x,y)

)
ei�H�B(x,y)t e−i2π(kxx+kyy)dxdy,

(13)
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Table . Tissue physical parameter values.

Gray matter White matter Cerebrospinal fluid Outside brain

PSD . . . − 

T ∗
2 . .  

T1    − 

where s(kx, ky|t ) is the k-space location at intra slice time t ,
ρ(x, y) is the proton spin density (PSD), T∗

2 (x, y) is the trans-
verse relaxation rate (TRR), T1(x, y) is the longitudinal relax-
ation rate (LRR), �B(x, y) is the magnetic field inhomogeneity
(MFI), and �H is the proton gyromagnetic ratio (Haacke et al.
1999). The k-space points in (13) are defined by the temporal
integral of the magnetic field gradients Gx(·) and Gy(·) :

kx = �H

2π

∫ t

0
Gx(t ′)dt ′, and ky = �H

2π

∫ t

0
Gy(t ′)dt ′.

As input to this data-generation process, 3.0 T tissue specific
physical parameters (Peters et al. 2006) for the brain slice as
given in Table 2 and displayed in Figure 7 were used. The
units of measurement for T∗

2 and T1 are msec. In generating
these data, a simplified version of (13) was used where the
MFI �B(x, y) was not included. Without the inclusion of
�B(x, y) MFI, the k-space array after being reconstructed
yielded a real-valued image with a maximum around one. The
average value in gray matter of this image was computed, and
the entire image multiplied by a magnitude signal-to-noise
ratio SNRM × σ/GM, where σ = 1 is the standard deviation of
noise added to the simulation, SNRM = 25 is the signal-to-noise
ratio for the simulation, and GM = 0.3545 is the average gray
matter value before scaling. This scaled real-valued image was
used as the magnitude of the true images. To have nonzero
mean phase, baseline phase as shown in Figure 8(b) was added
to each tissue type according to α0,OB = 0 for outside brain,
α0,WM = π/12 for white matter, α0,GM = π/6 for gray matter,

and α0,CSF = π/4 for cerebrospinal fluid. The remaining imag-
ing parameters were selected to mirror those of an experimental
dataset with field of view (FOV) = 240 mm, time to echo
(TE) = 50 msec, flip angle (FA) = 90◦, effective echo spacing
(EESP) = 720 µsec, and bandwidth (BW) = 125 kHz.

The simulated data have slices of dimension 96 × 96 over
T = 490 time points. The true activation regions are the two
5 × 5 red squares shown in the left panel of Figure 9. Each active
voxel has different intensity and the voxels near the center of the
region have stronger intensities than the ones around the edges
of the region. At each time point, the magnitude contrast (β1)
in Figure 8(c) was multiplied by a task response waveform and
then added to themagnitude baseline (β0) in Figure 8(a) to form
the image magnitude. At each time point, the phase contrast
(α1) in Figure 8(d) was multiplied by a task response waveform
then added to the phase baseline (α0) in Figure 8(b) to form the
image phase. Independent zero mean and unit variance normal
noise was also added to the real and imaginary parts at each time
point. In this simulation, the maximum magnitude CNR in
the center of each ROI was set to CNRM = β1/σ = 0.5/1
and the maximum phase CNR in each ROI was set to
CNRP = α1/SNRM = (π/120)/25. The contrast values (β1
and α1) in each ROI were then multiplied by an unnormalized
Gaussian kernel with full-width-at-half-max (FWHM) = 4
voxels.

We fitted a Bayesian complex-valued (CV) model given by

yv
t = γ ∗,v

1 + γ ∗,v
2 t/T + γ ∗,v

3 xt + ηv
t , ηv

t ∼ CN1
(
0, 2σ 2, 0

)
,

(14)

with γ ∗,v
1 and γ ∗,v

2 baseline and trend parameters, and γ ∗,v
3

the activation parameters for v = 1, . . . ,V. Here, we set xt
to be the BOLD response obtained from the convolution of
the experimental block design and the canonical HRF. We
used priors of the form π(γ ∗,v

1 ) ∝ 1 and π(γ ∗,v
2 ) ∝ 1 for the

baseline and trend parameters. For the activation parameters

Figure . Slice physical parameters.

Figure . True simulated image values.
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Figure . Left: True activation map. Middle: Activation map from C-EMVS at optimal v0 . Right: Activation map frommagnitude-only EMVS at optimal v0.

Table . Performance measures obtained from the complex-valued EMVS and
magnitude-only EMVS in simulation study II.

True positives False positives MSE MSE
Model ( active) ( nonactive) Precision Accuracy (all) (active)

CV   . . . .
MO   . . . .

γ ∗,v
3 for v = 1, . . . ,V , we used priors of the form γ ∗,v

3 | ψv ∼
(1 − ψv )CN1(0, 2v0σ 2, 0)+ ψvCN1(0, 2v1σ 2, 0), and for σ 2,

ψv , and θ we used the priors given in (12). As done in the sim-
ulation study I, we also fitted a magnitude-only version of this
model (MO). The posterior results for bothmodels summarized
here were obtained after integrating out the baseline and trend
parameters. In both models, we chose the optimal values of v0
by maximizing the marginal posterior π0(ψ | y) as described in
the previous simulation study. In this case, the optimal v0 values
were found to be vMO

0 = vCV
0 = 0.006.

The posterior activation maps for each model are shown in
Figure 9. First note that both Bayesian models, the complex-
valuedmodel (CV) and themagnitude-only one (MO), perform
reasonably well in terms of detecting active sites, particularly
considering that the CV-fMRI data were not generated from
these models and instead followed a much more complicated
physically realistic model, and also considering the low SNR
and CNR in this setting. The main advantage of the Bayesian
CV and MO models is that their linear structure allows us
to obtain posterior estimates in a computationally feasible
manner that scales well with the large dimension of the images.

Regarding the comparison between the complex-valued and
magnitude-only models, we see that, once again, the CV model
shows a better performance than the MO model. The MO
model produces a larger number of false positives without
detecting more true positives than the CVmodel. Table 3 shows
the performance measures for both models. We also see that
the mean squared errors are smaller for the CV model.

In terms of the strength, the CV model also leads to
more accurate results. Figure 10 shows the estimated strengths
obtained from the C-EMVS and MO EMVS approaches with
their corresponding optimal v0 values. The magnitude-only
model overestimates the strengths for the true active sites and
does not appropriately capture the fading effect observed in the
true strength map. Finally, we note that full posterior results
obtained viaMCMC (not shown) were similar to those obtained
through the EM approaches for both models.

4. Analysis of Human CV-fMRI Data

We analyzed human data recorded during an fMRI experiment
performed on a single subject on a 3.0-T General Electric Signa
LX magnetic resonance imager. The experiment consisted of
a unilateral finger-tapping task performed with a visual cue
indicating whether to tap or rest. A block designed experiment
with an initial 20 sec of rest followed by 16 epochs of 15 sec on
and 15 sec off was used. The full dataset is composed of seven
2.5 mm thick axial slices of dimension 96 × 96. A single slice
was used for the analysis presented here. Further details about
the experiment, the dataset and previous analyses of these data

Figure . Left: True strength map. Middle: Strength map from C-EMVS at optimal v0 . Right: Strength map frommagnitude-only EMVS at optimal v0.
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Table . CV models considered for the human CV-fMRI data.

Error structure Common variance Voxel-specific variance

independent model (i): σ 2 model (iv): σ 2
v

AR(), common AR parameter model (ii): σ 2, ϕ model (v): σ 2
v , ϕ

AR(), voxel-specific AR parameter model (iii): σ 2, ϕv model (vi): σ 2
v , ϕv

are found in Karaman, Bruce, and Rowe (2014). The original
time series at each voxel had 510 TRs, however, following the
approach of Karaman, Bruce, and Rowe (2014), we discarded
the first 20 observations for the analysis with the C-EMVS
approach. Activation from this finger-tapping experiment is
well-studied. However, the methods that have been used so far
could have limitations in detecting activation—as suggested
by the simulation studies. Our goal here is to demonstrate that
our novel Bayesian complex-valued method is able to simul-
taneously produce activation results that are consistent with
previous results and additionally lead to a reduction of spurious
results, such as activation outside of the brain or in regions that
are not implicated in the finger tapping task.

Karaman, Bruce, and Rowe (2014) analyzed these data
with three different models: a complex-valued constant phase
activation model that linearly describes the temporally varying
magnitude (we refer to this model as KBR14-CV), a similar
magnitude-only activation model (KBR14-MO), and a nonlin-
ear model referred to as DeTeCT-ING that incorporates tissue
and imaging parameters T1 and T∗

2 into physical magnetization
equation to model magnetic resonance (MR) magnetization.
More specifically, the DeTeCT-ING model considers the physi-
cal nonlinear signal equation to model MR magnetization, uses
the first scans of the CV-fMRI data to estimate the parameters
T1 and T∗

2 , and incorporates these GM (gray matter) parameter
values to detect active voxels. Further details about thesemodels
and related activation maps obtained by Karaman, Bruce, and
Rowe (2014) are included in the Appendices.

We applied the C-EMVS approach to these human CV-fMRI
data using models with baseline, trend, and activation parame-
ters and considered different noise structures. As in the previous
examples, we used reference priors on the baseline and trend
parameters and the proposed complex-valued spike-and-slab
prior on activation parameters. We also used the canonical
HRF to obtain the BOLD signals for all the voxels. Other classes
of HRFs were considered, as explained in Section 3, resulting
in similar activation results to those presented here for the
canonical HRF. Regarding the noise structure, we considered

independent noise and noise with a temporal correlation
modeled in terms of an autoregressive process of order one or
AR(1). The model with AR(1) noise was specified as follows,

yv
t = γ v,∗

1 + γ v,∗
2 t/T + γ v,∗

3 xt + ηv
t ,

ηv
t = ϕvη

v
t−1 + ζ v

t , ζ v
t

iid∼ CN1
(
0, 2σ 2

v , 0
)
,

where ϕv is the AR(1) coefficient for voxel v . For this model, we
considered a prior structure with π(γ ∗,v

1 ) ∝ 1, π(γ ∗,v
2 ) ∝ 1,

γ ∗,v
3 | ψv ∼ (1 − ψv )CN1(0, 2v0σ 2

v , 0)+ ψvCN1(0, 2v1σ 2
v ,

0), σ 2
v ∼ IG(1/2, 1/2), ψv | θ ∼ Bernoulli(θ ), θ ∼

Beta(1, 1), and ϕv ∼ U (−1, 1). In addition, we also con-
sidered models with common variance for all voxels, that is,
σ 2

v = σ 2 for all v and σ 2 ∼ IG(1/2, 1/2) and models with
common AR coefficient for all voxels, that is, ϕv = ϕ with
ϕ ∼ U (−1, 1). All the different models that were considered
are summarized in Table 4.

Here, we only present the results for models (iii) and (vi).
We found that these two models led to better activation maps
(i.e., smaller numbers of clear false positives in areas outside the
brain) than the other models considered. The left and center
plots in Figure 11 show the estimated values ofϕv formodels (iii)
and (vi). These pictures demonstrate that there is a large variabil-
ity in the estimated AR coefficients at the voxel level. The voxels
outside the brain essentially show no temporal correlation since
the estimated AR coefficient values are close to zero.We also see
that some voxels have relatively large temporal correlation with
ϕ̂v around 0.6, however these voxels do not lie in the activation
areas. Figure 11 also shows the estimated values of σ 2

v from
model (vi) (right plot). It is clear from this plot that the estimated
σ 2

v are larger for those voxels inside the brain than for those
outside. These estimated values are also able to differentiate gray
matter from the rest and are consistent with results in Karaman,
Bruce, and Rowe (2015). In particular, the right plot in Figure 11
shares similarities with the estimatedT1 map inKaraman, Bruce,
and Rowe (2015). This is an important result given that our
proposed models are able to capture a relatively sophisticated
brain structure without incorporating nonlinear physically
based components that would make posterior computations
extremely challenging for these large dimensional data.

Figure 12 shows the strength maps obtained from models
(iii) (left plot) and (vi) (right plot). These maps are fairly sim-
ilar for both models. Comparing these C-EMVS results with
those results obtained from the model of Karaman, Bruce,
and Rowe (2014), we observe that the C-EMVS models have
higher power of detecting active sites than the magnitude-only

Figure . Human data: Estimated values of ϕ2v for the CV model with a single σ 2 (model (iii), left plot) and the CV model with voxel-specific σ 2
v (model (vi), center plot);

estimated values of the ϕv s in model (vi).
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Figure . Human data: Strength maps obtained frommodels (iii) (left) and (vi) right.

KBR14-MO model, and also show a better performance than
the complex-valued KBR14-CV model (KBR14 maps provided
in the online Appendices). The maps obtained frommodels (iii)
and (vi) show either no false positives outside of the brain and
also no false positives in the upper left side of the brain close
to the no signal area (model (iii)), or a much more reduced
number of false positives (model (vi)) when compared to the
activation map obtained from model KBR14-CV. In addition,
The KBR14-MO and KBR14-CV models both use an FWE of
5% and are therefore procedures that require two steps. The
Bayesian C-EMVS approach is a one-step procedure and does
not require additional adjustments for multiple comparisons.
The C-EMVS approach also compares favorably with the more
physically realistic nonlinear DeTeCT-ING model. Models (iii)
and (iv) identify most of the sites in the left and supplementary
motor region and produce none or a reduced number of the
false positive sites in the anterior left side of the brain than those
that were obtained by the DeTeCT-ING model. These findings
are not trivial especially given that, unlike the DeTeCT-ING
model, the proposed Bayesian C-EMVS approach does not
incorporate any physical aspects to model MR magnetization.
This example shows that methods with improved power for
detecting activations, such as the one developed here, are essen-
tial to increase the understanding of human brain function,
particularly in scenarios that involve CV-fMRI images with low
SNR.

5. Conclusion

Our main contribution in this article is a new Bayesian variable
selection approach for detection of brain activation from single
or multi-task complex-valued fMRI signals at the voxel-specific
level. Although we focused on circular complex-valued priors
and themethodswere only illustrated in the context of CV-fMRI
data, the models and algorithms proposed here are general, and
can be applied to the general case of noncircular complex-valued
priors and to other types of data.

Our simulation studies show that by considering both, real
and imaginary information, the Bayesian complex-valued
variable selection methods are able to detect more true

positives and less false positives than magnitude-only models,
especially when the SNR is small. We also found that both,
the Bayesian complex-valued and magnitude-only EMVS
approaches performed better than lasso and adaptive lasso and
were computationally fast, with run times comparable to those
needed by lasso or adaptive lasso. Finally, we demonstrated that
the activation results in the finger-tapping experiment obtained
from the C-EMVS approach compared favorably to those
results obtained frommore sophisticated nonlinear models that
are physically realistic as they incorporate tissue and imaging
parameters. The computational efficiency and the perfor-
mance obtained in the analysis of experimental and simulated
complex-valued fMRI data presented here make the C-EMVS
approach a very useful tool for detecting brain activation.

We note that the new Bayesian complex-valued models
considered here do not use any sophisticated spatio-temporal
structure that can more appropriately describe fMRI data (we
only considered an AR(1) temporal structure). Adding spatio-
temporal structure that can better describe the data could poten-
tially lead to further improved results, but would also lead
to more computationally intensive models that may be not
be feasible for detecting brain activation at the voxel-specific
level. Future work will explore Bayesian complex-valued spatio-
temporal extensions that are computationally scalable as well
as multi-subject models. The C-EMVS methods presented here
serve as a highly useful starting point, especially for analyzing
high-dimensional CV-fMRI data.

Supplementary Materials
The online supplementary materials contain the appendices, and the
associated R and C++ code for the C-EMVS algorithm. The simu-
lated data used in Section 3.2 can be downloaded at https://github.com/
chenghanyu/CEMVS_simulation
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