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Abstract

Our previous study suggested that the functional magnetic resonance imaging MRI (fMRI) COSLOF Index (CI) could be used as a
quantitative biomarker for Alzheimer's disease (AD). The fMRI CI was lowest in the AD group (0.13±0.10), followed by the mild cognitive
impairment (MCI) group (0.20±0.05) and the control group (0.34±0.09). The current study continues an investigation into which of the
following two factors has a dominant role in determining the CI: the signal-to-noise ratio (SNR) or the phase shift of spontaneous low-
frequency (SLF) components. By using a theoretical model for SLF components, we demonstrated that the normalized CI does not depend on
the SNR of the SLF components. Further analysis shows that by taking the ratio of the cross-correlation coefficient to the maximum-shifted
cross-correlation coefficient, the SNR factor can be canceled. Therefore, the determination of the phase shift index (PSI) method is
independent of the SNR, and the PSI provides an accurate measure of the phase shift between SLF components. By applying this PSI method
to the control, MCI and AD groups of subjects, experimental results demonstrated that the PSI was highest in the AD group (72.6±11.3°),
followed by the MCI group (58.6±5.7°) and, finally, the control group (40.6±8.4°). These results suggest that the larger is the PSI value, the
more asynchrony exists between SLF components.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Alzheimer's disease (AD), a progressive neurodegenera-
tive disorder characterized by neuritic plaques and neurofi-
brillary tangles in the human brain, occurs decades before
clinical symptoms manifest. Mild cognitive impairment
(MCI) is considered the prestage onset of AD, and those
with MCI are at greater risk for developing AD [1]. Current
research has emphasized the need to determine early
biomarkers, thereby facilitating the detection and/or mon-
itoring of early brain changes suggestive of AD and MCI. In
addition, it promotes early intervention studies to hinder or
slow disease progression [2]. Recent developments in
functional magnetic resonance imaging MRI (fMRI) tech-
nology with high spatial and temporal resolutions have made
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it possible to study early AD by noninvasively detecting
spontaneous low-frequency (SLF) oscillations (b0.1 Hz) in
the hippocampus of the human brain [3]. The hippocampal
region is considered to be one of the initial loci for AD.
Neuropathological changes are thought to begin in the
hippocampal formation and to become severe with disease
progression [4,5].

The characteristics of AD progression in the hippocampal
region, together with detection of SLF patterns, provide the
foundation for the introduction of fMRI indices as a
preclinical biomarker for the disease. The previous fMRI
index, abbreviated as the COSLOF Index (CI), was
introduced to quantify the change in functional synchrony
between pairs of voxel time courses. The CI was defined as
themean of the cross-correlation COefficients of Spontaneous
LOw Frequency between possible pairs of voxel time courses
in the hippocampus of the human brain. We have demon-
strated that subjects with AD had a significantly lower CI
value than age-matched cognitively healthy elderly subjects.

http://dx.doi.org/10.1016/j.mri.2007.07.007
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The current study is a continuation of our previous
work that aimed to quantitatively characterize and
neurophysiologically understand the CI. There are two
factors that may affect the cross-correlation between two
voxel time courses: the signal-to-noise ratio (SNR) of SLF
components and the phase shift between the two voxel
time courses. We will examine how these factors affect the
cross-correlation coefficient and the CI. By evaluating the
phase shift between the voxel time courses of the SLF
components in the hippocampal region, we reveal that the
phase shift index (PSI) is a more sensitive marker of AD
than the CI.
2. Theory

In a previous study, we utilized the CI in the hippocampal
region as a noninvasive biomarker for evaluating the
preclinical stage of AD [3]. The CI is calculated from a
matrix of the pairwise cross-correlation coefficients of all
voxels within a region of interest (ROI). To focus on SLF
components, voxel time courses are convolved with a nine-
point Hamming filter that has a passband of 0.015–0.1 Hz
[3]. According to previous studies [6–8], the SLF component
has characteristics of a blood-oxygen-level-dependent
(BOLD)-like signal in physiological noise. In a given
voxel, the signal at time t is expressed as:

sðtÞ ¼ sLðtÞ þ n0ðtÞ ð1Þ
where the underlying SLF is sL(t) and the measurement noise
is n0(t). The cross-correlation coefficient ccij between the ith
and jth voxels (i,j=1,2,…,K, i≠j, where K is the number of
voxels in the ROI) is calculated between voxel time courses
si(t) and sj(t) as:

ccij ¼
PN

t¼1ðsiðtÞsjðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1ðsiðtÞÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1ðsjðtÞÞ2

q

¼
PN

t¼1ðsiðtÞsjðtÞÞ
r̂ ir̂ j

ð2Þ

with t=1,…,N. In Eq. (2), it is generically assumed that the
voxel time courses have a mean of zero and are demeaned
following filtering. The previously published CI that has
been established as a preclinical biomarker for AD is
defined as:

CI ¼ 2
KðK � 1Þ

XK
i; j¼1; iNj

ccij: ð3Þ

Two factors may affect the cross-correlation between two
voxel time courses: the SNR of SLF components and the
phase shift between the two voxel time courses. First, we
examine the variation in the ratio of the SLF components to
thermal noise and determine how a change in them might
produce modifications in the cross-correlations and, hence,
CIs. In the model presented in Eq. (1), the mean and variance
of sL(t) are assumed to be zero and σL

2; and the mean and
variance of n0(t) are assumed to be zero and σ0

2. The two
components sL and n0 are independent, so that cov(sL,n0)=0.
The cross-correlation in Eq. (2) turns out to be:

ccij ¼ r̂ ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̂ 2

Li þ r̂ 2
0iÞðr̂ 2

Lj þ r̂ 2
0jÞ

q ð4Þ

where σ̂̂ij is the sample covariance between voxels i and j,
while σ̂i

2=σ̂Li
2 +σ̂0i

2 and σ̂j
2=σ̂Lj

2 +σ̂0j
2 are the sample variances

in voxels i and j with constituents σ̂L
2 and σ̂0

2 due to the SLF
components and thermal noise. It is immediately apparent
that the thermal noise variance σ̂0

2 that is estimated in each
voxel and is stochastically equivalent will affect the cross-
correlation coefficient. According to Eq. (4), a higher SNR,
η=σ̂L/σ̂0, may lead to higher cross-correlation coefficients
and higher CIs. Since the SNR is a subject/scan-specific
factor, it may affect a comparison of the CIs between subjects
or between groups of subjects.

Based on this characteristic of SLF components in the
SNR, a cross-correlation coefficient without the impact of
SNR variation can be obtained by normalizing the ccij to
noise σ̂0

2 in Eq. (4). The normalized cross-correlation
coefficient nccij is defined as:

nccij ¼ ccij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ 2
i þ 1

q
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ 2
j þ 1

q
ĝ id ĝ j

ð5Þ

and the normalized CI (nCI) can be estimated as:

nCI ¼ 2
KðK � 1Þ

XK
i; j¼1;iNj

ccij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ 2
i þ 1

q
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ 2
j þ 1

q
ĝ id ĝ j

0
B@

1
CA: ð6Þ

To reduce the complexity of the computation, we assume
that the SNR ηm is identical in all voxel time courses within
an ROI and is obtained as a sample mean SNR over the
ROI as:

ĝ m ¼ 1
K

XK
i¼1

ĝ i: ð7Þ

Then, the nCI in Eq. (6) is approximately simplified as:

nCIc
ĝ 2
m þ 1

ĝ 2
m

d
2

KðK � 1Þ d
XK

i; j¼1; iNj

ccij: ð8Þ

The validation of these approximations is provided by
Monte Carlo simulations in Appendix B.

Another factor that may affect the cross-correlation
between two voxel time courses is the phase shift. To
estimate the phase shift, we first model the SLF components
by assuming that two voxel time courses contain an identical
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frequency component fc. The ith voxel time course in Eq. (1)
becomes:

siðtÞ ¼ gi
ffiffiffi
2

p
r0sinð2pfcd t þ hiÞ þ niðtÞ ð9Þ

where ηi is the SNR, θi is the phase of the frequency fc and
σ0 is the standard deviation of thermal noise. Then, the phase
shift between the SLF signals in two voxel time courses can
affect the value of the cross-correlation. With this simplifica-
tion, Eq. (4) can be rewritten as:

ccij ¼
gigjd cosðhijÞffiffiffiffiffiffiffiffiffiffiffiffiffi
g2i þ 1

p
d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2j þ 1

q ð10Þ

where θij is the phase shift between SLF signals and is
equal to |θi−θj|. Full synchrony between two signals (i.e.,
the zero phase shift between SLF components) can be
reached by shifting one voxel time course by τm. Here, τm

is the number of time points shifted to obtain a maximum
cross-correlation between voxel time courses i and j, as
shown below:

sm ¼ arg max
0bsbT

PN
t¼1ðsiðtÞd sjðt þ sÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi
g2i þ 1

p
d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2j þ 1

q
0
B@

1
CA; 0bsb

1
fL

ð11Þ

where fL=0.015 Hz, which is the lower limit of the
passband of the filter, and T is 1/fL/TR (where TR is the
repetition time of acquisition). Then, the maximum-shifted
cross-correlation coefficient (ccm) becomes:

ccmij ¼
PN
t¼1

ðsiðtÞsjd ðt þ smÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2i þ 1

p
d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2j þ 1

q
¼ gigjffiffiffiffiffiffiffiffiffiffiffiffiffi

g2i þ 1
p

d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2j þ 1

q ð12Þ

where we still assume that the SLF signal is a single
sinusoid function. Combining Eqs. (10) and (12), the phase
shift can be recovered immediately as:

h ̂ ij ¼ cos�1 ccij
ccmij

 !
: ð13Þ

For ROI evaluation, the phase shift can be estimated as:

h ̂ G ¼ P
hij ¼ 2

KðK � 1Þ
XK

i; j¼1;ipj

cos�1 ccij
ccmij

 !
: ð14Þ
To minimize the effect of nonuniformity of SNR on real
data, it is suggested that the ROI phase shift be calculated
as follows:

h ̂ Gccos�1 CI
CIm

� �
;CIm ¼ 2

KðK � 1Þ
XK

i; j¼1; iNj

ccmij ð15Þ

where CIm is defined as the maximum-shifted COSLOF.
The validation of this approximation between Eqs. (14)
and (15) is provided by the theoretical derivation and
Monte Carlo simulations in Appendix B.

The ROI estimate in Eq. (14) is named the PSI to quantify
the regional phase shift. Clearly, a larger phase shift leads to
lower cross-correlation coefficients; for an ROI, a larger PSI
leads to a lower CI value. It is also noteworthy that the PSI is
a normalized index and is not sensitive to noise factors
because the ratio of CI to CIm canceled the noise factor in
Eqs. (10) and (12).

The above derivations are made based on the assumption
that the SLF components in two voxel time courses contain
an identical frequency component with different phases. In
reality, the SLF signal could contain more than one
frequency component. Then, the ith voxel time course in
Eq. (1) can be decomposed as:

siðtÞ ¼
X
faF

gf
ffiffiffi
2

p
r0sinð2pf d t þ hið f ÞÞ þ niðtÞ ð16Þ

where f is the frequency bin, F is the set of available
frequencies for SLF signal, ηf is the uniform SNR of the SLF
component for frequency f, θi( f ) is the phase of f and σ0 is the
standard deviation of thermal noise. Thus, Eq. (10) becomes:

ccij ¼
P
faF

g2f cosðhijð f ÞÞP
faF

g2f þ 1
ð17Þ

where θij( f ) is the phase shift for frequency f [i.e., |θi( f )−
θj( f )|] between two voxel time courses.

If |θi( f )−θj( f )| is zero for all frequency components by
shifting one voxel time course at τm, the maximum-shifted
cross-correlation coefficient in Eq. (12) turns out to be:

ccmij ¼
P
faF

g2fP
faF

g2f þ 1
: ð18Þ

Combining Eqs. (17) and (18), the phase shift estimated
in Eq. (13) becomes:

h ̂ ij ¼ cos�1 ccij
ccmij

 !
¼ cos�1

P
faF

g2f cosðhijð f ÞÞP
faF

g2f

0
@

1
A: ð19Þ

In practice, due to the limited length of the voxel time
courses, ccij

m is obtained by experimentally shifting one
voxel time course at τm, and the obtained θ̂ij is considered an
equivalent phase shift.

For ROI evaluation, the estimation of the phase shift in
the presence of many frequency components in SLF
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components can be estimated according to Eqs. (14) and
(15). In this study, the parameters of the CI, nCI and PSI are
all estimated and employed to distinguish the differences
among the AD, MCI and control groups.
3. Materials and methods

3.1. Human subjects

Fourteen AD patients (age, 72±6 years), eight subjects
with MCI (age, 69±3 years) and 13 cognitively healthy
controls (age, 68±4 years) were recruited from the Memory
Disorders Clinic at the Medical College of Wisconsin
(Milwaukee, WI). Informed consent was obtained from all
subjects for this institutional-review-board-approved study.
The detailed inclusion and exclusion criteria for the three
groups of subjects (AD, MCI and control) and the diagnoses
of probable/possible AD and MCI subjects have been
described previously [3]. All cognitively healthy subjects
underwent a set of cognitive examinations; none reported
subjective symptoms of cognitive impairment (their Mini
Mental Status Examination scores were ≥27/30, and their
modified Hachinski scores were ≤4). fMRI was performed
within a maximum of 2 months of cognitive testing.

3.2. fMRI

fMRI data acquisition was conducted on a GE Signa
1.5-Tscanner (GEMedical Systems, Milwaukee,WI) using a
local gradient coil and an end-capped birdcage radio-
frequency coil. Foam padding was used to limit head motion
Fig. 1. The representative regions (in white) selected for analysis: the hippocampus,
selected regions are mapped onto T1-weighted anatomical images.
within the head coil. A single-shot gradient-echo Echo Planar
Imaging (EPI) sequence in the sagittal plane was used with
the following imaging parameters: TR=2 s, TE=40 ms, field
of view=24 cm, slice thickness=7 mm, matrix=64×64.
Fifteen sagittal slices and 180 images per slice were obtained
in 6 min. In all MRI sessions, the corresponding 256×256 T1-
weighted 3D Spoiled Gradient Recalled Echo (SPGR)
anatomic images were also acquired. During scanning,
all subjects were in resting state (performing no task, with
eyes closed).

3.3. Data analysis

All functional datasets were preprocessed to detect motion
and to remove linear trends. Four AD patients and four
controls were excluded from further data processing due to
excessive motion (N1 mm). The detailed procedures used to
locate the hippocampal region and to select the hippocampal
voxels from the EPI dataset have been previously described
in detail [3,9]. Specifically, the left and right hippocampi were
manually identified on T1-weighted 3D SPGR images
according to Duvernoy [10]. The most anterior boundary of
the hippocampus adjoins the ventral border of the amygdala,
and the dorsal border is formed by the dorsal cerebrospinal
fluid (CSF) of the temporal (inferior) horn of the lateral
ventricle and alveus. Its ventral border is formed by the white
matter of the parahippocampal gyrus. The posterior CSF and
choroid plexus of the trigone of the lateral ventricle form the
dorsal and posterior border of the hippocampus. Tracing was
performed on all relevant sagittal slices with a mouse-
controlled cursor, with boundaries displayed in real time on
white matter, gray matter, CSF and the outside brain region of a subject. The



Table 1
The SNRs in four selected regions of three subject groups

(A) SNR (mean±S.D.)
Region AD MCI Control

Hippocampus 2.75±0.61 2.60±1.23 2.00±0.45
White matter 1.24±0.40 1.00±0.28 0.71±0.18
Gray matter 1.45±0.70 1.57±0.79 1.04±0.25
CSF 4.29±0.85 3.16±0.33 3.78±0.45

(B) One-way unbalanced ANOVA for the SNR in the hippocampal region of
three subject groups

F(2,23) P

SNR in hippocampus 1.861 .1783
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the MRI slices. In addition, they were displayed in the
remaining orthogonal slices. Then, these masks were
transformed to the Talairach space. Since the spoiled Gradient
Recalled Echo (GRE) images had 1.1-mm spatial resolution
and the functional MR images had 3.75-mm spatial
resolution, the voxels included in the hippocampal region
in the functional MR images were determined according to
the masked volume in the 3D SPGR images using a
deresolution program. (Note that functional MR images
were also transformed into the Talairach space.) Only those
voxels in functional MR images that contained N50% of the
masked 3D SPGR voxels were included for the voxel time
course analysis.

To extract the SLF components, the original time
courses were filtered with a nine-point Hamming band-
pass filter with a passband of 0.015–0.1 Hz. To compare
the SNRs in different brain regions, five regions in fMRI
datasets were selected: the left and right hippocampi, white
matter from the splenium of the corpus callosum, gray
matter from the thalamus, CSF (lateral ventricle) and a
pure-noise region outside the brain region, as shown in
Fig. 1. Within the same slice containing the hippocampal
region, three voxels in different (CSF) regions were
selected as regression vectors in order to remove CSF
motion and potential aliased cardiac pulsations [11]. The
voxel time courses in the left and right hippocampal
regions were employed to calculate the CI, nCI and PSI
for each of the control, MCI and AD groups.

After exclusion due to motion, the remaining subjects in
the study were 9 control subjects (3 men, 70±3 years;
6 women, 70±7 years), 10 AD patients (5 men, 73±5 years;
5 women, 71±10 years) and 8 MCI subjects (6 men,
74±3 years; 2 women, 66±2 years).

3.4. Determination of thermal noise

It is known that the thermal noise in magnitude MR
images is Rician distributed. Furthermore, the Rician
distribution is reduced to Rayleigh distribution when the
signal is zero (e.g., outside the brain region on MR images).
When the signal level is very large (e.g., inside the brain
region on MR images), the Rician distribution can be
approximated as Gaussian distributed. However, for fMRI
scans, variations in voxel time courses in the brain regions
contain not only thermal noise but also other temporal
variations such as physiologic noise. This makes it very
difficult to estimate the standard deviation of thermal noise
σ̂0. Therefore, in the present study, we estimate the thermal
noise standard deviation σ̂0 in two steps. In the first step,
voxel time courses outside the brain region at the upper left
corner of the image are manually selected to estimate
the Rayleigh-distributed noise standard deviation σ̂R. The
standard deviation of noise σ̂R is then converted to
the Gaussian-distributed thermal noise standard deviation
σ̂M-noise with a correction factor according to Gudbjartsson
and Patz [12]. In the second step, the estimated Gaussian
noise standard deviation σ̂M is then scaled by the norm of the
Hamming filter to adjust for smoothing:

r̂ 0 ¼ r̂M−noised
X
t

h2ðtÞ
 !1=2

ð20Þ

where h(t) represents the time-domain nine-point Hamming
filter coefficients. Then, the standard deviation of the SLF in
the hippocampal region can be calculated as:

r̂ L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ 2

M−hipp � r̂ 2
0

q
ð21Þ

where σ̂M-hipp is the mean of the estimated temporal standard
deviation of the voxel time courses in the hippocampus.
Based on Eqs. (20) and (21), the SNR can be estimated as
η̂ = σ̂L/σ̂0.

3.5. Coherence and phase delay

In addition to the CI and proposed PSI, coherence and
phase delay were implemented and applied to our datasets to
evaluate temporal correlation between voxel time courses.
The coherence ρ between two voxel time courses [13–15]
was estimated as follows:

q̂ ij ¼
XfH
f¼fL

q̂ ij fð Þ ¼
XfH
f¼fL

jSijð f Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Siið f ÞSjjð f Þ

p ð22Þ

where Sii( f ) and Sjj( f ) are the spectral power on the
frequency component f of the ith and jth voxel time courses,
respectively; Sij( f ) is the cross-spectral power; fL is the lower
frequency bound of SLF set to 0.015 Hz; and fH is the upper
frequency bound set to 0.1 Hz. ROI coherence is simply the
average of the coherences between each pair of voxel time
courses. The phase delay τ can be estimated as [15]:

s ̂ij ¼ j

PfH
f¼fL

uijð f Þ

2p
PfH
f¼fL

f

j; uij fð Þ ¼ tan�1 ImðSijð f ÞÞ
ReðSijð f ÞÞ
� �

: ð23Þ

At par with ROI coherence, ROI phase delay is simply the
average of the phase delays between each pair of voxel time
courses.
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4. Results

The SNRs in the hippocampal region for the three groups
of subjects are presented in Table 1. The SNRs in the
Table 2
Statistical comparison between oCIs and nCIs in five brain regions of three
subject groups

(A) oCIs (mean±S.D.)
Region AD MCI Control

Hippocampusnr 0.127±0.095 0.196±0.051 0.341±0.085
Hippocampusrg 0.142±0.090 0.171±0.055 0.304±0.065
White matter 0.088±0.059 0.138±0.092 0.108±0.123
Gray matter 0.175±0.062 0.134±0.077 0.176±0.112
CSF 0.069±0.052 0.094±0.071 0.079±0.033
Pure-noise region 0.004±0.006 0.003±0.003 0.005±0.006

(B) nCIs (mean±S.D.)
Region AD MCI Control

Hippocampusnr 0.147±0.106 0.277±0.052 0.437±0.079
Hippocampusrg 0.164±0.099 0.236±0.065 0.395±0.084
White matter 0.172±0.080 0.271±0.154 0.287±0.212
Gray matter 0.382±0.233 0.233±0.117 0.346±0.175
CSF 0.072±0.054 0.103±0.078 0.085±0.036

(C) One-way unbalanced ANOVA for CIs and nCIs in the hippocampus of
three subject groups

Parameter Fnr(2,23) Pnr Frg(2,23) Prg

CI 14.563 b.0001 11.055 .0004
nCI 24.316 b.0001 15.453 b.0001

(D) Pairwise (one-tailed) t test between three subject groups
Group P

CInr

AD vs. MCI .0513
MCI vs. CONTROL ⁎⁎ .0006
AD vs. CONTROL ⁎⁎⁎ .0001
CIrg

AD vs. MCI .2365
MCI vs. CONTROL ⁎⁎ .0003
AD vs. CONTROL ⁎⁎⁎ .0005
nCInr

AD vs. MCI ⁎ .0494
MCI vs. CONTROL ⁎⁎⁎ .0001
AD vs. CONTROL ⁎⁎⁎ b.0001
nCIrg

AD vs. MCI .0566
MCI vs. CONTROL ⁎⁎ .0004
AD vs. CONTROL ⁎⁎⁎ b.0001

(E) Kruskal–Wallis nonparametric tests for the CIs and nCIs of three subject
groups

Parameter Hnr Pnr Hrg Prg

CI 14.508 .0007 11.164 .0038
nCI 17.616 .0001 14.829 .0006

nr — no CSF voxel regression; rg — with CSF voxel regression.
The CIs presented in all other regions in this article have been calculated
without CSF voxel regression.
⁎ Pb.05.
⁎⁎ Pb.01.
⁎⁎⁎ Pb.001.
hippocampal regions for the AD, MCI and control groups are
2.75±0.61, 2.60±1.23 and 2.00±0.45, respectively. One-way
unbalanced analysis of variance (ANOVA) data show no
significant differences in SNRs in the hippocampal regions
among the groups [F(2,23)=1.861, P=.1783]. The obtained
hippocampus volumes (the sum of both sides) for the three
subject groups are as follows: 5.68±1.24 cm3 for the control
group, 5.60±0.31 cm3 for the MCI group and 4.62±1.17 cm3

for the AD group. The one-way unbalanced ANOVA data
show no significant differences in volumes among the
groups [F(2,23)=2.855, P=.1122].

Table 2 lists the original CIs (oCIs) and nCIs and their
statistical differences in the five regions for the control, MCI
and AD groups, based on Eqs. (3) and (6). Table 2A shows
the oCIs, and Table 2B shows the nCIs in the five brain
regions of the AD, MCI and control groups. One-way
unbalanced ANOVA indicates that both the oCIs [F(2,23)=
14.563, Pb.0001] and the nCIs [F(2,23)=24.316, Pb.00001]
are significantly different in the three groups. The CI is
largest for the control group, moderate for the MCI group
and lowest for AD patients. Except in the case of AD versus
MCI, CSF voxel regression does not significantly alter the
statistical results, either in ANOVA or in one-tailed t tests.
Table 2D shows that the pairwise t test results for both oCIs
and nCIs have significant statistical power to separate the
AD-versus-control groups and the MCI-versus-control
groups. However, the ability of the CI to distinguish between
the MCI and AD groups was moderate and became
insignificant when CSF regression was employed. Further
Z-statistical analysis revealed that the Z-score necessary for
the oCI to separate the MCI group from the control group
was 3.215, and the score necessary to separate the AD group
from the control group was 3.676. The Z-score necessary for
the nCI to separate the MCI group from the control group
was 3.571. The Z-score used to separate the AD group from
the control group was 4.286. The discriminating power of the
nCI was stronger than that of the oCI.

Since the distribution of the oCIs or nCIs is not assured to
be Gaussian, nonparametric Kruskal–Wallis tests were
conducted as a general statistical evaluation. As listed in
Table 2E, the oCIs and nCIs can significantly detect the
differences among the three groups (oCIs, H=14.508,
P=.0007; nCIs, H=17.616, P=.0001).

Based on Eqs. (10), (12) and (15), Table 3 lists the
maximum-shifted CI (CIm) and the PSI (θG), as well as
the results of statistical comparisons for the PSI in the
hippocampal region between the control, MCI and AD
groups. Table 3A illustrates that the CIm values are
comparably similar in each of the five regions between the
three groups, while the PSI values in the hippocampal region
in the three subject groups are significantly different, as
listed in Table 3B. The PSI without CSF voxel regression is
largest (72.6±11.3°) for the AD group. It is smallest (40.6±
8.4°) for the control group, and the value is 58.6±5.7° for the
MCI group. The larger is the PSI, the less synchrony there is
between the voxel time courses in the hippocampal region. In



Table 3
Statistical comparisons between maximum-shifted CIs and PSI in five brain
regions of three subject groups

(A) CIm (mean±S.D.)
Region AD MCI Control

Hippocampusnr 0.412±0.075 0.390±0.072 0.438±0.054
Hippocampusrg 0.398±0.061 0.362±0.054 0.424±0.037
White matter 0.304±0.049 0.305±0.056 0.280±0.067
Gray matter 0.336±0.063 0.331±0.083 0.325±0.055
CSF 0.307±0.051 0.337±0.069 0.282±0.025
Pure-noise region 0.233±0.003 0.234±0.006 0.232±0.002

(B) θG (mean±S.D.)
Region AD MCI Control

Hippocampusnr 72.6±11.3 58.6±5.7 40.6±8.4
Hippocampusrg 68.0±14.1 58.9±7.0 43.5±10.1
White matter 74.1±9.2 64.4±14.7 77.9±4.5
Gray Matter 60.5±9.8 67.1±11.5 70.7±9.7
CSF 78.1±7.9 73.8±6.2 74.0±12.3
Pure-noise region 88.9±1.6 88.2±0.9 88.5±1.5

(C) One-way unbalanced ANOVA for the CIm and èG of three subject groups
Parameter Fnr(2,23) Pnr Frg(2,23) Prg

CIm 0.941 .4049 2.661 .0913
θG 25.789 b.0001 10.462 .0006

(D) Pairwise (one-tailed) t test between three subject groups
Group P

PSInr

AD vs. MCI ⁎⁎ .0047
MCI vs. CONTROL ⁎⁎ .0001
AD vs. CONTROL ⁎⁎⁎ b.0001
PSIrg

AD vs. MCI .1487
MCI vs. CONTROL ⁎⁎ .0006
AD vs. CONTROL ⁎⁎⁎ .0006

(E) Kruskal–Wallis nonparametric tests for the CIm and èG of three subjec
groups

Parameter Hnr Pnr Hrg Prg

CIm 2.459 .2924 4.073 .1305
θG 17.939 .0001 11.478 .0032

nr — no CSF voxel regression; rg — with CSF voxel regression.
The CIs presented in all other regions in this article have been calculated
without CSF voxel regression.

*Pb.05.
⁎⁎ Pb.01.
⁎⁎⁎ Pb.001.
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Table 3C, one-way unbalanced ANOVA shows a statistically
significant difference in PSI values among the three groups
of hippocampal regions [F(2,23)=25.789, Pb.0001]. Table
3D shows the pairwise t test results among the three groups.
Although CSF regression has reduced P values, the
differences between the control-versus-MCI groups and the
control-versus-AD groups are still significant. Z-statistical
differences are significant between the MCI and control
groups (Z=3.672) and between the AD and control groups
(Z=4.365).
Again, since the distribution of the maximum-shifted CI
(CIm) and the PSI (θG) cannot be assured to be Gaussian,
nonparametric Kruskal–Wallis tests were conducted. Sig-
nificant differences in PSI values among the three groups
were detected (H=17.939, P=.0001), while maximum-
shifted CIs (CIm) were not significantly different among
the three subject groups (H=2.459, P=.2924).
5. Discussion

The present study consists of two parts: the first part
provides a model of SLF components to investigate how
SNR distributions could affect the calculations of cross-
correlation coefficients and the CI, and the second part
applies this model to analyze the functional synchrony in the
hippocampal region of the normal, MCI and AD subjects. In
regard to the first part, our simulation study showed that
SNR variations significantly affect the CI calculation. The
lower is the SNR, the higher is the error for the CI. By
normalizing the SNR factor, this error can be significantly
reduced, and the nCI is no longer affected by the SNR factor.
Therefore, the nCI has a stronger discriminating power than
the oCI. However, accurate SNR estimation is susceptible to
background artifacts and temporal changes in the brain
region. As a result, the method of normalizing the SNR
factor is not ideal for providing an optimal measurement of
the CI. To overcome this problem, we further developed the
PSI method.

Ideally, if there is no thermal noise present, the cross-
correlation coefficient between two signals reflects the phase
shift (the angle between two vectors). However, when thermal
noise is present, the variable SNR can affect the cross-
correlation coefficient andmake it less reliable in detecting the
phase shift, in turn affecting the CI calculation. Our simulation
study demonstrated that the inaccuracy of the SNR estimation
can be avoided through the cancellation of the SNR factor, by
taking the ratio of the cross-correlation coefficient to the
maximum-shifted cross-correlation coefficient, as shown in
Eqs. (10), (12) and (13). Therefore, nomatter what the SNR is,
the PSI method provides an accurate measure of the phase
shift between the SLF components. As a result, the PSI
measurement provides a stronger discriminatory power than
the original and normalized COSLOF methods.

For the second part of study, we applied the model of the
oCI, nCI and PSI methods to investigate the functional
synchrony in the hippocampus of the normal, MCI and AD
subjects. We have demonstrated that the nCI and the PSI,
quantified by θG, have higher statistical discriminatory
power between these groups of subjects than the oCI based
on their Z-score comparisons. A large PSI value in the
hippocampal region of the AD and MCI subjects reveals a
significantly large phase shift among voxel time courses,
indicating asynchrony.

Unlike thermal noise, which is not correlated and can be
canceled when calculated with the PSI, an aliased cardiac



Fig. 2. The relationship between the number of time points and the
maximum-shifted cross-correlation coefficient ccm(0) between two noise
time courses with standard normal distribution. The lighter gray
line represents the theoretical value, and the dark line represents the
simulated value.
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signal cannot be canceled because it can be cross-
correlated as “signal.” With a TR of 2 s, the cardiac
component can be aliased into the frequency range of the
SLF signal (0.015–0.1 Hz) and may affect the calculation of
the PSI. Since we did not simultaneously record the cardiac
pulse during fMRI scanning and could not employ a
retrospective correction technology [16,17], we employed
the CSF signal as a regressor to test whether the cardiac
signal played a significant role. The CSF signal usually
contains the aliased cardiac signal due to the steady-state free
precession mechanism [18]. As demonstrated in Table 3C,
the significance values in the PSI measurement estimated
with ANOVA were not altered with or without CSF
regression. In addition, the significance values in the PSI
between the MCI-versus-control groups and the AD-versus-
control groups were not altered with or without CSF
regression (Table 3D). Therefore, this potential confounding
factor did not play an important role in estimating the PSI.
However, CSF regression did affect the significance between
the MCI and AD groups. The reason is not known. One
possibility is that the CSF voxel time courses may contain
other unknown signal sources, which might introduce
uncertainty to PSI estimations. We do not recommend the
Table 4
The relationships between the number of time points and the maximum-shifted cr

Time points
(scanning time)

Theoretical
ccm(0)

Simulated
ccm(0)

Simulated ccm(0) w
truncation

90 (3 min) 0.2221 0.2150 0.2740
180 (6 min) 0.157 0.1562 0.1663
360 (12 min) 0.111 0.1114 0.1207
720 (24 min) 0.0785 0.0792 0.0786
1440 (48 min) 0.0555 0.0553 0.0564
2880 (96 min) 0.0392 0.0389 0.0391
5760 (192 min) 0.0277 0.0279 0.0280
11,520 (384 min) 0.0204 0.0192 0.0198
CSF regression method. Rather, the retrospective correction
technology should be employed [16,17].

Respiratory signals may also be present in fMRI voxel
time courses. Its frequency usually lies within the range
0.1–0.3 Hz [19,20]. With a TR of 2 s, this respiratory
frequency could fold over into the frequency range of
0.1–0.25 Hz, which is outside the Hamming filter passband.
Therefore, the respiratory frequency generally does not
contribute as a confounding factor.

Respiratory variation in volume (i.e., variation in arterial
CO2 level, which acts as a vasodilator) could also induce
BOLD signal variation. The spectral density of this temporal
variation in BOLD signal appears at about 0–0.05 Hz
[18,19], which resides in the frequency range of SLF signals,
hence imposing a potential confounding factor for PSI
calculations. The respiratory variations in volume were
region specific, and the most affected regions were the
posterior cingulate and precuneus, while the hippocampal
region seemed immune to this variation [19]. Furthermore, a
recent study on the functional synchrony analysis of the
parahippocampal region also showed that different cognitive
tasks lead to different PSI values [21], implying that it is
unlikely for respiratory variation to play significant roles in
both cases. Nevertheless, it will be necessary to record and
regress this respiratory variation in future studies.

It is interesting to note that the maximum-shifted CI
(CIm) in the pure-noise region shown in Table 3A is about
0.23 and is similar in the three study groups. Intuitively, the
cross-correlation coefficient between noise time courses
should be close to zero. The noticeably shifted cross-
correlation coefficient of 0.23 for noise is explained below.
As described in detail in Appendix A and as shown in
Fig. 2, the relationship between the number of time points
M and ccm(η) theoretical calculation and simulation
showed that the value of ccm(η) depends on the number
of time points M in a voxel time course. The larger M is,
the smaller ccm(η) is. As shown in Table 4, after truncation
and band-pass filtering, the simulated ccm(η) for noise is
about 0.23 when M is 180. The simulated data are
consistent with experimental results.

As we have demonstrated, the PSI, with its cancelled
noise factor, has a much stronger statistical power than the
CI. Nevertheless, a certain level of SNR is necessary to
oss-correlation of white normal noise ccm(0) under different conditions

ith Simulated ccm(0) with
band-pass filter

Simulated ccm(0) with truncation
and band-pass filter

0.2981 0.3554
0.2110 0.2307
0.1453 0.1563
0.1044 0.1077
0.0730 0.0745
0.0522 0.0529
0.0367 0.0363
0.0252 0.0256
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reliably calculate the PSI. As shown in Appendix A, the
minimum SNR for a reliable calculation of the PSI was
estimated to be approximately 1. It is conceivable that the
SNR for a 3-T scanner will certainly be higher than that
for a 1.5-T scanner, resulting in a more reliable estimation
of PSI.

In addition, there are other methods that can be used to
study the association between time series, such as coherence
analysis (frequency-domain correlation) [13,14]. The phase
delay, according to its conventional meaning, has also been
developed without the use of a band-pass filter [15].
However, these methods are vulnerable to the lower SNR
and complex spectrum. The SNR for SLF components is
relatively low, as listed in Table 1. We have applied both
coherence and phase delay methods to our experimental
data. The estimated coherences for the control, MCI and AD
groups are 0.43±0.08, 0.37±0.05 and 0.34±0.11, respec-
tively; the phase delay for the control, MCI and AD groups
are 0.95±0.10, 0.94±0.08 and 1.03±0.13 s, respectively.
There is no significant difference between each pair. This is
also true for ANOVA statistics. Therefore, we prefer the PSI
to the coherence or phase delay method in this study. We
have examined how the SNR of SLF components and the
phase shift between the two voxel time courses affect the
cross-correlation coefficient and the CI. It is reasonable to
ask how the spectral density of the SLF components would
affect the correlation analysis. However, the spectral
densities of the SLF components are rather complex because
not all frequency components in SLF components contribute
to the calculation of the cross-correlation coefficients
between voxel time courses. In addition, those frequency
components contribute to the different cross-correlation
coefficients from different pairs of voxel time courses.
Therefore, the concept of spectral density influencing the
calculation of the cross-correlation coefficient is ill defined.
Rather, we will focus on testing whether there are intrinsic
frequency components in SLF components that are relevant
to the determination of the CI.
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Appendix A

Here, we will derive a theoretical relationship between the
number of time points M and the maximum-shifted cross-
correlation coefficient ccm(0) of the two time courses n1(t)
and n2(t) of white noise, with 0 as expectation and with 1 as
standard deviation. The zero in ccm(0) represents no SLF in
the time course.
Assuming that the two courses n1(t) and n2(t) have M
time points and maximum time shift points T, the maximum-
shifted cross-correlation is calculated as:

ccm 0ð Þ ¼ max
0bsbT

1
M

XM
t¼1

n1 tð Þd n2 t þ sð Þð Þ: ðA1Þ

We define Γ(τ) as a cross-correlation function between n1
(t) and n2(t) as follows:

C sð Þ ¼ 1
M

XM
t¼1

n1 tð Þd n2 t þ sð Þð Þ: ðA2Þ

Because it is white noise, n(t) is statistically independent
of n(t+1). Thus, ∑n1(t)·n2(t) is independent of ∑n1(t)·n2
(t+τ) [τ≠0, because ∑n1(t)·n2(t) is independent of ∑n1(t+1)·
n2(t+τ+1), while the latter is equal to ∑n1(t)·n2(t+τ)]. Thus,
the probability function of the maximum-shifted cross-
correlation coefficient is:

Fðxjccmð0ÞbxÞ ¼ F xj max
0bsbT

CðsÞbx
� �

¼ P
T

s¼0
F xjCðsÞbxð Þ

¼ FðxjCbxÞð ÞTþ1: ðA3Þ

According to the Central Limit Theorem, the distribution
of Γ approximates a normal distribution with a sample
expectation of 0 and a sample variance of 1/M. The
probability function of Γ is:

F xjCbxð Þ ¼
Z x

�l

1ffiffiffiffiffiffi
2p

p
r̂
exp � s2

2r̂ 2

� �
ds ðA4Þ

where r̂ ¼ 1=
ffiffiffiffiffi
M

p
. By substituting Eq. (A3) with Eq. (A4)

and by taking the derivative, the probability density function
of ccm(0) is:

pccmð0Þ xð Þ ¼ T þ 1ffiffiffiffiffiffi
2p

p
r̂

� �Tþ1

Z x

�l
exp � s2

2r̂ 2

� �
ds

� �T

� exp � x2

2r̂ 2

� �
: ðA5Þ

Under the present experimental conditions, T is 34 and σ̂
is 1=

ffiffiffiffiffiffiffiffi
180

p
. The expectation of ccm(0) from Eq. (A5) is

0.157, and the standard deviation is 0.0362. For different
time points M, there are different variances and expectations
of ccm(0); the larger M is, the smaller are the variances and
expectations. In practice, the time courses were band-pass
filtered, and the data were truncated due to the shift (there
will be only M−τ time points matched for cross-correlation
calculation for each shift attempt), which resulted in changes
shown in Fig. 2 (dark line). Table 4 further lists the detailed
results to demonstrate the relationships between the number
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of time points and the expectations of ccm(0) (i.e., under
different conditions). An expectation of 0.23 for the
simulated, truncated and filtered datasets (as shown in
Table 4, row 3, column 6) is consistent with the experimental
result 0.23, as shown in Table 3A, for the pure-noise region.
All these results strongly support our theoretical model
derived above.

In Appendix B, we will determine the minimum SNR in
the voxel time courses required, which reliably obtains
ccm(∞), resulting from SLF components instead of noise.
With the signal–noise model of Eq. (1), the maximum-
shifted cross-correlation between two measured voxel time
courses can be written as:

ccmðr̂ sÞ ¼ 1

r̂ 2
s þ 1

max
s

� 1
M

X
t

s tð Þþ n1 tð Þð Þd s tþsð Þþn2 t þ sð Þð Þð Þ
 !

¼ 1

Mðr̂ 2
s þ 1Þmax

s

�
�X

t

sðtÞsðt þ sÞ þ
X
t

sðtÞn2ðt þ sÞ

þ
X
t

sðt þ sÞn1ðtÞ þ
X
t

n1ðtÞn2ðt þ sÞ
�
: ðA6Þ

Assuming that the SLF components in both voxel time
course are the same stationary s(t), the sample standard
deviation of s(t) is σ̂, the expectation is 0 and the noise n1(t)
and n2(t) are both white noise with a standard deviation of 1.
When the length of the time course is infinite M→∞, only
the first item will remain and the other terms will approach
zero. Assuming that the SLF components are stationary, the
correlation function Rss(τ) can be written:

Rss 0ð ÞzRss sð Þ ¼ 1
M

X
t

s tð Þs t þ sð Þ: ðA7Þ

However, when M is finite and the SNR is small, there is
the possibility that experimentally obtained Rss(0) may not
reflect the synchrony between SLF components, whichmeans
that shifting the time course may not reach the maximum
synchrony among the signals. To avoid such a confounding
factor, Rss(τ) must be dominant in Eq. (A7), that is:

Rss 0ð ÞzRss sð ÞzA ¼
�
max
s

�
1
M

X
t

s tð Þn2 t þ sð Þ

þ 1
M

X
t

s t þ sð Þn1 tð Þ

þ 1
M

X
t

n1 tð Þn2 t þ sð Þ
��

: ðA8Þ

Considering that the maximum summation of the three
terms in Eq. (A7) is usually equal to or smaller than the
summation of their individual maxima, we make a more
restrictive requirement by letting Rss(0) satisfy Eq. (A7):

Rss 0ð ÞzB ¼ max
s

�
1
M

X
t

s tð Þn2 t þ sð Þ
�

þmax
s

�
1
M

X
t

s t þ sð Þn1 tð Þ
�

þmax
s

�
1
M

X
t

n1 tð Þn2 t þ sð Þ
�
zA: ðA9Þ

Assuming that the distribution of B has an upper limit of
EðBÞ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðBÞp

, an approximation of Eq. (A9) is:

Rssð0ÞNEðBÞ þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðBÞ:

p
ðA10Þ

Based on the premise of independence between signal and
noise, s(t)n1(t) will be independent of s(t)n2(t). The
distribution of maxs 1

M

P
t s tð Þn2 t þ sð Þ� �

is similar to that
of maxs 1

M

P
t n1 tð Þn2 t þ sð Þ� �

. Two terms on the right side of
Eq. (A10) can be respectively expressed as:

EðBÞ ¼ 2E max
s

 
1
M

X
t

s tð Þn2 t þ sð Þ
 !!

þ E

�
max
s

�
1
M

X
t

n1 tð Þn2 t þ sð Þ
��

VarðBÞ ¼ 2Var

 
max

s

1
M

X
t

s tð Þn2 t þ sð Þ
! !

þVar

 
max

s

 
1
M

X
t

n1 tð Þn2 t þ sð Þ
!!

: ðA11Þ

By using the experimental parameters T (=34) and M
(=180) in Eq. (A5), we obtain sample estimations of E(Q)
and var(Q):

E ̂ðBÞ ¼ 0:314r̂ s þ 0:157; var ̂ðBÞ ¼ 0:00262r̂ 2
s þ 0:00131:

ðA12Þ
Substituting Eq. (A10) with Eq. (A12), we obtain:

r̂ 2
sN0:314r̂ s þ 0:157þ 0:1086

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r̂ 2

s þ 1:
q

ðA13Þ

By solving the above inequality with a simulation, the
threshold of the SNR is determined to be 0.74. Considering
the effects of the truncation and the Hamming filter, Eq.
(A13) becomes:

r̂ 2
sN0:46rs þ 0:23þ 0:2064

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r̂ 2

s þ 1:
q

ðA14Þ

The solution of Eq. (A14) is:

g ¼ r̂ sN1:036: ðA15Þ
Again, the noise variance is 1. Eq. (A15) suggests that

with the SNR being larger than 1.036, the maximum-
shifted cross-correlation coefficient resulted from the



Fig. 3. The normalized maximum-shifted cross-correlation coefficient
ccm(η) versus η. The lighter gray line represents theoretical values based
on Eq. (A15), and the dark line represents practical values after truncation
and filtering. The dashed line represents a threshold of 10% error in
ccm(η) at η=1.036. The smaller η is, the bigger is the error in ccm(η), and
vice versa.
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synchrony of SLF components rather than from noise.
Based on the analytical solution in Eq. (A14), the
minimum required SNR of 1.036 would produce about
10% error, as simulated in Fig. 3. The simulation was
made with the assumption that both SLF components are
of the same sine waves, with a frequency of 0.0575 Hz
(center of the low-frequency band, 0.015–0.1 Hz) and with
different levels of SNR. Clearly, if the SLF contains
multiple frequency components, the required SNR for the
same error level will be higher.
Fig. 4. Simulation of the independence of the nCI from different SNRs. (A
Four sets of simulations are implemented to examine the impact of differen
SNRs on the oCI based on Eq. (3). The solid line, dashed line, dash-dotted
line and dotted line represent the oCI in different noise distributions at noise
free N1(1.75,0.25

2), N2(2.5,0.5
2) and N3(4,1

2), respectively. (B–D) The
MAEs of oCI (dotted line) and nCI (dashed line) based on Eq. (6), and the
MAE of anCI (solid line) based on Eq. (8) at three different SNR
distributions.
Appendix B

To validate the approximation in Eqs. (6) and (8), where
the SNR η̂ is assumed to be identical in all voxel time
courses within an ROI, and to compare the nCI calculated
from Eqs. (6) and (8) to the oCI calculated from Eq. (3), the
simulations are constructed as follows. The voxel time
course from the ith voxel is expressed as in Eq. (9). For
benchmark comparison, we have also constructed a
hypothetical noise-free ROI with the voxel time course as:

uiðtÞ ¼
ffiffiffi
2

p
sinð2pfct þ hiÞ: ðB1Þ

Three sets of simulations are implemented to examine the
impact of SNRs on (a) the oCI based on Eq. (3); (b) the nCI
based on Eq. (6); and (c) approximately normalized CI (anCI)
based on Eq. (8). Three sets of normal SNR distributions are
defined as N1(1.75,0.25

2), N2(2.5,0.5
2) and N3(4,1

2) based
on a reasonable representation of substantial SNR variations
that are observed across the hippocampus. In addition, the
means and standard deviations of the SNR distributions are
set to satisfy a minimum SNR of mean±3S.D.≥1, as
described in Appendix A. θi is the phase that also obeys a
)
t

-



Fig. 5. Simulation of the independence of the PSI estimation from the SNRs
(A) Three sets of simulations are implemented to examine the impact of the
approximation between Eqs. (14) and (15) in the case of the noise-free
condition. The solid line, dashed line and dotted line represent the given σθ

and the estimated σ̂θ from Eqs. (14) and (15), respectively. (B–D) The
MAEs of estimated σ̂θ based on Eq. (14) (dotted line) and Eq. (15) (dashed
line) at three different SNR distributions. The vertical units for (A)–(D) are
all expressed in degrees.

Table 5
Statistical significance of σθ calculated from Eq. (B8) based on θG
calculated from Eq. (15) in the hippocampal region of three subject groups

(A) Recovered σθ (mean±S.D.)
Region AD MCI Control

Hippocampusnr 59.07±10.48 46.03±5.36 30.30±6.81
Hippocampusrg 54.99±12.99 49.00±7.33 32.78±8.61

(B) One-way unbalanced ANOVA for the σθ of three subject groups
Parameter Fnr(2,23) Pnr Frg(2,23) Prg

σθ 26.209 b.0001 10.392 .0006

(C) Pairwise (one-tailed) t test between three subject groups
Group P

σθ
nr

AD vs. MCI ⁎⁎ .0042
MCI vs. CONTROL ⁎⁎ .0008
AD vs. CONTROL ⁎⁎⁎ b.0001

σθ
rg

AD vs. MCI .2594
MCI vs. CONTROL ⁎⁎ .0047
AD vs. CONTROLL ⁎⁎⁎ .0002

(D) Kruskal–Wallis nonparametric tests for the σθ of three subject groups
Parameter Hnr Pnr Hrg Prg

σθ 17.939 .0001 11.478 .0032

nr — no CSF voxel regression; rg — with CSF voxel regression.
*Pb.05.
⁎⁎ Pb.01.
⁎⁎⁎ Pb.001.
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.

normal distribution and is set to beN(0,(π/4)2), according to a
previous study [21]; fc is a predefined frequency (0.0575 Hz),
which is the middle frequency of SLF components between
0.015 and 0.1 Hz; ni(t) is the normally distributed thermal
noise; and ηi, θi and ni(t) are independent of one another. The
time length is 6 min, and the sampling frequency is 0.5 Hz,
which corresponds to a TR of 2 s.

In each set of SNR distribution, we perform Monte Carlo
simulations by altering the SNRs and the number of voxels
in an ROI from 10 to 150, with 10 as increment. At a given
voxel number, each voxelwise SNR level was randomly
generated within a given SNR distribution. This procedure
was independently repeated for 100 times. Then, the 100
estimations obtained of the CI were averaged to yield a final
simulated estimation. To evaluate the simulation perfor-
mance, we employed the mean absolute error (MAE), as
calculated below:

MAE ¼ 1
L

XL
l¼1

jVl � V0j ðB2Þ

where Vl represents the CI in each case of calculation (oCI,
nCI or anCI) obtained from Eq. (3), Eq. (6) or Eq. (8),
respectively, at a given voxel number and SNR distribution;
L is equal to 100 as a trial repetition; and V0 represents the CI
calculated from Eq. (B1) without noise.
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Fig. 4 shows the simulated results between the different
levels of SNR distribution and the estimated CI at different
numbers of voxels. Fig. 4A demonstrates that, without
noise, the oCI is 0.538±0.003. With the SNR distributions
of N1(1.75,0.25

2), N2(2.5,0.5
2) and N3(4,1

2), the oCIs are
0.399±0.004, 0.456±0.008 and 0.501±0.007, respectively.
Clearly, the SNR significantly affects the CI estimation.
When the SNR distribution is normalized, the accuracy of
the CI estimation is significantly improved, as shown in Fig.
4B–D. Specifically, Fig. 4B shows that with an SNR
distribution of N1(1.75,0.25

2), the MAE is 0.135±0.002 for
oCI, 0.005±0.002 for nCI and 0.007±0.002 for anCI.
Clearly, the MAE is largest for the oCI calculation, based
on Eq. (3), in contrast to the nCI estimated by Eqs. (6) and
(8). Furthermore, Fig. 4B shows that the assumption made
from Eq. (6) to Eq. (8) is statistically valid, since the
difference is only 0.002. The MAE of 0.002, compared to
the no-noise case of the CI (0.538±0.003), only represents
0.4%. Similarly, with an SNR distribution of N2(2.5,0.5

2),
as shown in Fig. 4C, the correspondingMAEs are 0.082±0.002
for oCI, 0.003±0.001 for nCI and 0.009±0.001 for anCI. With
an SNR distribution of N3(4,1

2), as shown in Fig. 4D, the
corresponding MAEs are 0.038±0.001 for oCI, 0.002±0.001
for nCI and 0.007±0.001 for anCI. These data not only
demonstrate how the different SNRs affect the oCI estimation
but also prove that normalization of the CI is an optimal
estimation. In addition, these data also validate our approx-
imation fromEq. (6) to Eq. (8), with a mean SNR over an ROI.
This assumption not only significantly reduced the computa-
tional cost but also provided an accurate estimation of the nCI.

To validate PSI's independence of SNRs and the
approximation in Eqs. (14) and (15), the same datasets of
the simulations and procedures described above were
employed. These were contained in three different SNR
distributions N1(1.75,0.25

2), N2(2.5,0.5
2) and N3(4,1

2), and
a phase distribution N(0,σθ

2), where σθ is set to (π/4).
Similarly, the MAE was employed to quantify the error
between the given phase distribution and the calculated PSI
with Eqs. (14) and (15). As shown in Fig. 5A, when using the
noise-free SLF signal based on Eq. (B1), both PSI measure-
ments with Eqs. (14) and (15) provided accurate detection of
the input phase σθ, which is set to π/4 (45°). When the SNR
distribution is set to N1(1.75,0.25

2) and the ROI is 10, the
MAE of PSI from Eq. (14) is 2.09° and that from Eq. (15) is
1.6° (Fig. 5B). The PSI estimation based on Eq. (15) is more
accurate than the approach based on Eq. (14). As shown in
Fig. 5B–D, the larger an ROI is, the more accurate is the PSI
estimation. For example, when voxels in an ROI are N100, the
MAE is about 0.5° for both estimations. These simulations
validate our assumption between Eqs. (14) and (15).

It should be pointed out that the calculated θ̂G from
Eq. (14) is not directly equal to σθ and that they have a
relationship:

h ̂ G ¼ 2ffiffiffi
p

p
rh:

ðB3Þ
To derive this relationship, we restate the phase distribu-
tion in the voxel time courses as N(θ0,σθ

2) and assume
that the phase of each voxel within the ROI is (θ1,θ2,…,
θK). Based on Eq. (14):

h ̂ GðEq: ð14ÞÞ ¼
2

KðK � 1Þ
XK

i; j¼1; ip j

���hdij���
¼ 2

KðK � 1Þ
XK

i; j¼1; ip j

���hi � hj
��� ðB4Þ

where θij
d=θi−θj∼N(0,2σθ

2), and the SNR item is cancelled
due to the ratio between the cross-correlation coefficient
and the maximum-shifted cross-correlation coefficient.
Therefore, the PSI within the region turns out to be:

hĜðEq: ð14ÞÞ ¼ hjhdijjic
Z l

�l
jtjd 1

2rh
ffiffiffiffiffiffi
2p

p d e
� t2

4r2
hdt

¼ 1ffiffiffiffiffiffi
2p

p
rh

Z l

0
td e

� t2

4r2
hdt ¼ 2ffiffiffi

p
p rh ðB5Þ

as shown in Eq. (B3) above. Similarly, the θ̂G calculated
from Eq. (15) and σθ have the following relationship and
can be derived as:

cos hGðEq: ð15ÞÞ
� � ¼ CI

CIm

¼
2

KðK�1Þ
P

1VibjVK

 
giffiffiffiffiffiffiffiffi
g2i þ1

p d
gjffiffiffiffiffiffiffiffi
g2j þ1

p d cos hi � hj
� �!

2
KðK�1Þ

P
1VibjVK

 
giffiffiffiffiffiffiffiffi
g2i þ1

p d giffiffiffiffiffiffiffiffi
g2j þ1

p
!

¼
2

KðK�1Þ
P

1VibjVK

g̃ id g̃ jd cos hi � hj
� �� �

2
KðK�1Þ

P
1VibjVK

g̃ jg̃ j

� � c
g̃ id g̃ jd cosðhi � hjÞP

g̃ id g̃ j
P

ðB6Þ
where g̃ i ¼

giffiffiffiffiffiffiffiffiffiffiffiffiffi
g2i þ 1

p .

The last step of the approximation in Eq. (B6) stands
when the number of voxels within the ROI K is very large.
As the initial assumption ηi is independent of θi and so is η̃i,
its mean is not zero, as predefined. Therefore, Eq. (B6) can
be simplified as:

Therefore, Eq. (B6) can be simplified as:

cosðhGðEq: 15ÞÞcðcosðhi � hjÞ; 1 V i b j V K ðB7Þ

Use Taylor Series to expand the cosine item:

cosðhGðEq: ð15ÞÞÞc
Xl
n¼1

ð�1Þn
ð2nÞ! ðhi � hjÞ2n

c1� 1
2
ðhi � hjÞ2þ 1

24
ðhi� hjÞ4� 1

720
ðhi� hjÞ6 þ 1

40; 320
ðhi� hjÞ8

¼ 1� r2h þ
1
2
r4h �

1
6
r6h þ

1
384

r8h:

ðB8Þ

The above derivation utilizes the fact that θi is
independent of θj when i≠j. The high even-order moments

E
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of θi, such as E(θi
4)=3σθ

4, E(θi
6)=15σθ

6 and E(θi
8)=105σθ

8, are
obtained from the generating function of the preassumed
Gaussian distribution N(θ0,σθ

2), and the high odd-order
moments are zero. To further improve the precision of
recovering σθ, a higher-order item in the Taylor series can be
added. In practice, Eq. (B8) is sufficient and can be solved
with the Aitken method.

By applying Eq. (B8) to datasets obtained from the human
hippocampus in Table 3, σθ can be obtained from θ̂G. The
results are listed in Table 5, and the statistical significance
values are the same as in Table 3.
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