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Abstract

Due to the presence of artifacts induced by fast-imaging acquisition in functional magnetic resonance imaging (fMRI) studies, it is very

difficult to estimate the variance of thermal noise by traditional methods in magnitude images. Moreover, the existence of incidental phase

fluctuations impairs the validity of currently available solutions based on complex datasets. In this article, a time-domain model is proposed

to generalize the analysis of complex datasets for nonbrain regions by incorporating artifacts and phase fluctuations. Based on this model, a

novel estimation schema has been developed to find an appropriate set of voxels in nonbrain regions according to their levels of artifact and

phase fluctuation. In addition, noise intensity from these voxels is estimated. The whole schema is named COmplex-Model-Based Estimation

(COMBE). Theoretical and experimental results demonstrate that the proposed COMBE method provides a better estimation of thermal noise

in fMRI studies compared with previously proposed methods and suggest that the new method can adapt to a broader range of applications,

such as functional connectivity studies, evaluation of sequence designs and reconstruction schemas.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Thermal noise in magnetic resonance (MR) images is a

very important parameter. The estimation of thermal noise

not only provides measurements of the quality of a magnetic

resonance imaging (MRI) system [1] and quantification of

an MR signal, especially signal-to-noise ratio (SNR) for

functional MRI (fMRI) signal [2], but also offers a general

measure to evaluate the performance of MRI sequences [3]

and reconstruction schemas [4].

Analytical estimation methods that determine thermal

noise have been extensively studied. In most cases, thermal

noise is determined from magnitude images, which can be

modeled as a Rician distribution that has no analytical

solution. When the SNR is high, the Rician distribution can

be approximated as Gaussian in nature, and thermal noise

can be estimated as the standard deviation of magnitude [5].

When the signal is zero, the Rician model evolves to a
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Rayleigh distribution, and thermal noise can be estimated by

dividing the standard deviation of magnitude with a

correctional factor (about 0.655) [6,7].

Technological development and clinical research applica-

tions of fMRI methods have generated three new challenges

in estimating noise. First, unlike anatomical images, fMRI

datasets in high SNR regions, such as the brain, contain

significant temporal signal changes, hence invalidating the

Gaussian method. Temporal signal changes may include

fluctuations in blood-oxygenation-level-dependent (BOLD)

signals induced by tasks or physiologic noise during rest [8].

Second, the presence of significant artifacts in background

regions (nonbrain regions), acquired by fast-imaging meth-

ods such as Echo Planar Imaging (EPI) [9] and spiral [10]

pulse sequences, makes the Rayleigh method inapplicable.

To solve this problem, researchers have developed several

methods, including averaging variances over real and

imaginary channels (Average method) [11–13], maximum

likelihood (ML)-based estimations [12,14] and a double-

acquisition method employing the analytical form of even

moments of the Rician distribution [15].
aging 25 (2007) 1079–1088
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The final problem seen in fMRI datasets is incidental

phase fluctuations, which are derived from various time-

dependent sources of variation, including flip-angle inho-

mogeneity, filter responses, system delay, noncentered

sampling windows and others [16]. However, the above-

mentioned methods did not explicitly take phase fluctuation

into account as a random variable.

In this article, a new method is proposed for fMRI

datasets. It estimates thermal noise in the presence of image

artifacts and phase fluctuations for fMRI datasets. By ana-

lyzing the real and imaginary channels of complex-valued

data in the time domain, it becomes evident that thermal

noise can be accurately estimated. Theoretical simulations

and experimental results demonstrate that the new method,

compared with previously proposed methods, provides a

better estimation of thermal noise and a higher capacity for

a broader range of artifact-to-noise ratios (ANRs) and phase

fluctuations. Thus, the new method is suitable for various

applications, including functional connectivity studies,

sequence evaluation and reconstruction evaluation.
2. Theory

It is well known that in the brain, real [Rb(t)] and

imaginary [Ib(t)] channels in a given voxel of reconstructed

fMRI datasets have three components. These components

are: the magnitude of the signal S(t), the phase of the signal

h(t) and the thermal noise n(t) at time t. The time-domain

model within a given voxel can be expressed as:

Rb tð Þ ¼ S tð Þcos h tð Þð Þ þ n1 tð Þ

Ib tð Þ ¼ S tð Þsin h tð Þð Þ þ n2 tð Þ ð1Þ

where n1(t) and n2(t) are additive thermal measurement

noise [17,18]. As previously described, the magnitude and

phase portions of the signal are temporally varying

quantities. Thus, they may be modeled by temporally

constant mean-varying and time-varying portions

S(t)=S+DS(t) and h(t)=h+Dh(t). The temporally constant

means of magnitude and phase are S and h, while their time-

varying portions are DS(t) and Dh(t), respectively.
Any signal that is present in the background region

of reconstructed fMRI datasets is due to ghosting

artifacts. Thus, it is described by a decreased version

of the original signal. The original magnitude signal S(t)

in Eq. (1) is decreased by an artifact proportionality factor

c to yield cS(t)=cS+cDS(t) instead of S(t) for an artifact-to-

noise model.

In fMRI data, the mean magnitude signal is usually much

larger than its temporal variation SHDS(t), so that the

artifact magnitude signal is also much larger than its temporal

variation cSHcDS(t). This allows the variation of the

artifact signal to be neglected when cS(t) is comparable to

thermal noise. Thus, the artifact cS(t) can be taken as a
temporally constant quantity a, which is called the artifact

level. The artifact-to-noise complex model can be written as:

R tð Þ ¼ acos hþ Dh tð Þð Þ þ n1 tð Þ

I tð Þ ¼ asin hþ Dh tð Þð Þ þ n2 tð Þ: ð2Þ

In nonartifact voxels, a=0, so that real and imaginary

channels consist only of noise. The phase fluctuation Dh(t)
in fMRI data is relatively small. This allows Eq. (2) to be

written as:

R tð Þ ¼ acos h tð Þð Þ þ n1 tð Þ � a cosh� sinhdDh tð Þð Þ þ n1 tð Þ

I tð Þ¼ asin h tð Þð Þþn2 tð Þ� a sinhþ coshdDh tð Þð Þ þ n2 tð Þ ð3Þ

with the use of trigonometric addition formulas for sines and

cosines along with small-angle approximations.

By definition, thermal noise n1(t) and n2(t) in the two

channels are mutually independent and identically distrib-

uted with zero means and variances r0
2. Additionally, the

mean and the variance of phase fluctuation are zero and rh
2,

respectively. With the above model specifications, the mean

(expected) values for the real and imaginary parts of the

artifact-to-noise complex model are:

lR ¼ acosh

lI ¼ asinh ð4Þ

while their variances are:

r2
R ¼ a2sin2hd r2

h þ r2
0

r2
I ¼ a2cos2hd r2

h þ r2
0: ð5Þ

Since we do not assume any particular distribution for

thermal noise and phase fluctuations, we do not have a

likelihood and cannot estimate model parameters with

maximum likelihood estimates (MLEs). Instead, we will

estimate model parameters with method of moment estima-

tors (MMEs). MMEs are found by equating population

moments to sample moments [19]. MMEs for the artifact

level a and the mean phase h are found by equating

population means to sample means (first moments). This

yields the equations:

R
P ¼ âcos ĥ

� �
; I

P ¼ âsin ĥ
� �

ð6Þ

where R̄ and Ī are the sample means of real and imaginary

channels. The solution to these two equations with two

unknowns yields MMEs that are:

â¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
Pð Þ2 þ I

Pð Þ2
q

; ĥ¼ tan�1 I
P
=R
Pð Þ: ð7Þ

For convenience, â is named the artifact level, while ĥ is

the estimated phase mean. MMEs for variances r0
2 and rh

2
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can be found by equating population second moments to

sample second moments. This yields the equations:

r̂ 2
R ¼ R2

P

� R
Pð Þ2 ¼ â2sin2ĥd r̂2h þ r̂20

r̂ 2
I ¼ I2

P

� I
Pð Þ2 ¼ â2cos2ĥd r̂2h þ r̂20 ð8Þ

where R2
P

and I2
P

are the means of the squares of the real

and imaginary channels, respectively, while R̄ and Ī remain

as previously defined. The solution to these two equations

with the two unknowns yields the following MMEs:

r̂ 2
h ¼

r̂ 2
I � r̂ 2

R

â 2cos 2ĥ
� �

r̂ 2
0 ¼

1

2
r̂ 2
R þ r̂ 2

I

� �
� 1

2
â 2r̂ 2

h : ð9Þ

It is noted that, in Eq. (9), the denominator for the

estimate of the sample variance for phase fluctuation will

approach zero when the estimated phase mean ĥ is close to

(p/4)d (2k�1), where k is any integer. To avoid this

problem, a complementary set of equations is introduced:

r̂2
RþI ¼ Rþ Ið Þ2 �

�
Rþ I

�
2¼ â

2
r̂
2

h

�
1� sin

�
2ĥ
��
þ 2r̂20

r̂2
R�I¼ R� Ið Þ2�

�
R�I

�
2¼ â2r̂2h

�
1þsin

�
2ĥ
��
þ2r̂20 ð10Þ

The terms ĵ2R+I and ĵ
2
R+I represent the estimated variance

of the sum of channels and the difference between channels,

respectively. Then, the sample variance for phase fluctuation

can be obtained as below:

r̂
2

h ¼
r̂2

R�I � r̂2
RþI

2â2sin2ĥ
: ð11Þ

For convenience, this model will be parameterized

by an ANR that is defined as g= â/ĵ0. This proposed

method is named COmplex-Model-Based Estimation

(COMBE).

For evaluation, the four previously proposed noise-

estimation methods (Gaussian, Rayleigh, Average and

Simplex) are implemented for comparison through the

theoretical simulation and experimental determination of

the estimated noise level. In the case of the Gaussian

method, the artifact level can be estimated in the usual way

as the sample mean of the magnitude time course âG= M̄̄̄ ,

where M tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R tð Þð Þ2 þ I tð Þð Þ2

q
denotes magnitude at

time t. Noise level can also be estimated from voxel

magnitude time courses as:

r̂ 2
0G ¼

1

n� 1

Xn
t¼1

M tð Þ �M
Pð Þ2: ð12Þ
In this study, we implement this method, which is from

the background region, in order to obtain a reference

demonstrating how the ANR affects estimation.

For the Rayleigh method, the artifact level can be

estimated by âR ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
p r̂2

0G

q
. Noise estimation is conducted

by dividing the noise variance obtained from the Gaussian

method with a constant factor as:

r̂20R ¼
r̂20G

2� p=2
ð13Þ

as has been described previously [7]. The standard deviation

of the noise is generally utilized. The widely used Rayleigh

method selects voxels from background regions and

assumes that these voxels contain only thermal noise

without signals such as artifacts [17,20].

In the case of the Average method, the estimate of the

artifact âA is the same as our COMBE estimate. The

estimate of noise variance is the average of the variances of

real and imaginary datasets:

r̂
2

0A ¼
1

2
r̂2
R þ r̂2

I

� �
: ð14Þ

The Average method was utilized in voxel measurements

in space [8], assuming a region of constant amplitude and

phase. This method was also used through time [14] in a

model developed for fMRI, which has a temporally varying

magnitude signal with a linear form and a temporally

constant phase. We use the Average method that was

developed for fMRI with a specification of a temporally

constant magnitude since we have repeated measurements.

This yields the same estimates as the version used in space,

but we do not assume spatial homogeneity.

Although the Average method takes into account the

existence of the artifact, it could produce a biased estimation

when phase fluctuations exist. Our model explicitly assumes,

mirrors and estimates phase fluctuation, while the previous

models do not. It should be noted that our COMBEMMEs for

themean artifact and phase are the same as theMLEs from the

Average method. Furthermore, in comparing noise variance

estimates in Eq. (9) to those in Eq. (14), the actual noise

estimate by our COMBE method is:

r2
0 ¼ r̂20A � a2r2

h=2: ð15Þ

Our COMBE MME for noise variance is the same as

the MLE from the Average method when there is no phase

fluctuation. This demonstrates that our model is more

general in nature and that, when phase fluctuations do not

exist, our COMBE method produces an identical estimate

of noise variance as the Average method. However, when

phase fluctuations exist, the two methods deviate from our

estimate. Noise variances become decreased, accounting

for the additional phase variation that we have modeled

and estimated.

The Simplex method has a noise level that can be

estimated based on the magnitude image by maximizing a
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two-dimensional function following the description by

Sijbers and den Dekker [12] (Eq. (46) in the cited article).

Although Rician function cannot be analytically solved,

numerical optimization can be implemented by using the

Nelder–Mead Simplex method [21].
3. Simulations and results

A simulated data study was conducted in order to

examine the theoretical properties of our COMBE model

in comparison to the other previously described models

under known conditions. Real R(t) and imaginary I(t) voxel

time courses were generated according to the COMBE

model in Eq. (3). This similarity to experimental data will be

presented in Section 4. From these simulations, we can

examine the impact of ANR level and phase fluctuation

standard deviation on the estimation of noise intensity under

known conditions.

In statistical analysis, desirable properties of parameter

estimates are unbiased (correct on average) and have the

smallest standard deviation (on average). The smallest

standard deviations that are unbiased are generally deter-

mined using the expected value and the Cramer–Rao lower

bound for the variance of an estimator from a model

resulting in likelihood. However, since we do not make any

distributional assumptions, we evaluate these properties via

Monte Carlo simulation.
Fig. 1. Simulated estimation matrix maps for the five methods. The horizontal row

the vertical column corresponds to the standard deviation of the phase fluctuant fro

color coded on the matrix map, especially with green corresponding to a theoretical

method. (C) is for the Simplex method. (D) is for the Average method. (E) is for th

superposed on the matrix maps represent a special case rh =0.2, while the ANR ch

maps represent another special case with ANR=1, while rh changes from 0 to p
For our simulation, we utilized MATLAB to generate

voxel time courses that are of the length of 100 in order to

mimic the experimental data that will be presented in

Section 4. The voxels were generated in an array where each

element has a different ANR and thermal noise standard

deviation. The phase mean h for each voxel was randomly

chosen by using a uniformly distributed random function

from 0 to 2p rad, while the thermal noise standard deviation

r0 was generated with channel-independent white Gaussian

(normally)-distributed noise with a mean of zero and a

variance of one. The ANR varied from zero to five from left

to right along the horizontal direction. Phase fluctuation was

generated with a mean of zero and a standard deviation rh

that varied from 0 to p/2 rad from bottom to top. Both ANR

and phase fluctuation varied in 101 equally spaced incre-

ments. This procedure was repeated for 100 arrays of voxel

time courses. The parameters for each of the models were

estimated within each of the arrays. Array surfaces for the

sample mean and mean square error (MSE) of the estimated

standard deviation of thermal noise by each method were

computed as a function of the ANR and rh
2.

The joint dependence of the thermal noise standard

deviation as a function of the ANR and the phase fluctuation

standard deviation are presented as matrix maps in Fig. 1

with a color bar in Fig. 1F, while matrix maps for MSEs are

omitted here. The true noise standard deviation in the figure

is the one corresponding to the green region. We can see in
of each matrix map corresponds to the ANR level from zero to five, while

m 0 to p/2. The estimated normalized standard deviation of thermal noise is

value of one. (A) outlines the Gaussian method. (B) represents the Rayleigh

e COMBE method. (F) illustrates color coding. The horizontal dashed lines

anges from zero to five. The vertical dashed lines superposed on the matrix

/2.



Y. Xu et al. / Magnetic Resonance Imaging 25 (2007) 1079–1088 1083
Fig. 1A that the Gaussian method drastically underestimates

the noise standard deviation for a low ANR, regardless of

the phase fluctuation standard deviation. In Fig. 1B, we can

see that the Rayleigh method drastically overestimates the

noise standard deviation for a large ANR, regardless of the

phase fluctuation standard deviation. Moreover, the Simplex

method underestimates the standard deviation of noise when

the ANR is low, as shown in Fig. 1C. Nevertheless, in

Fig. 1D and E, we can see that the Average and COMBE

methods more accurately estimate the noise standard

deviation for low/moderate ANR and phase fluctuation

combinations. Furthermore, the COMBE method performs

better over a larger combination of ANRs and phase

fluctuations, as seen by its green region on the lower left

part of Fig. 1E, than the Average method, with the green

region on the lower left part of Fig. 1D.

The dependence of the thermal noise standard deviation

estimate j0 on the ANR for each of the five noise-estimation

methods is of interest. The 14th row above describes mean

arrays for the estimated noise standard deviation j0
corresponding to a typical value (0.2 rad) of the phase

fluctuation standard deviation, with an ANR varying from

zero to five, as plotted in Fig. 2A, with the MSE depicted in

Fig. 2B. As shown in Fig. 2A, when the ANR is close to

zero, the Gaussian method (in blue) drastically under-

estimates the noise, as does the Simplex method in black
Fig. 2. Specific cases of the simulated estimations of thermal noise. The solid blu

method; black lines represent the Simplex method; and yellow lines are for the A

estimations when rh is fixed at 0.2, while the ANR is scanned from zero to five, c

1A–E. (B) shows the MSE of the corresponding estimations. (C) presents the estim

corresponding to the vertical dashed lines superposed on the matrix maps in Fig.
(but to a lesser extent). The Rayleigh method (in green)

correctly estimates the noise, while the estimated noise

levels for the Average and COMBE methods (in yellow and

red) are accurate and relatively unbiased. As the ANR

increases, the Rayleigh method (in green) overestimates the

noise and becomes more biased, while the Gaussian method

yields a more unbiased estimate. The Average and COMBE

methods yield relatively unbiased estimates for the ANRs

until about two and four, respectively. The COMBE method

with a smaller bias for all ANRs is considered. As seen in

Fig. 2B, the COMBE method (in red) produced the lowest

overall variability (i.e., the lowest MSEs for all ANRs

considered among the five methods).

Also of interest within the simulation is the dependence

of the thermal noise standard deviation estimate on the

standard deviation of the phase fluctuation for each of the

five noise-estimation methods. The 21st row above

describes mean array surfaces for the estimated noise

standard deviation j0 corresponding to an ANR of 1, with

the phase fluctuation standard deviation varying from 0 to

p/2 rad, as plotted in Fig. 2C. The MSEs of the estimation

are plotted in Fig. 2D. As shown in Fig. 2C, since the ANR

is fixed at 1, the Gaussian and Simplex methods (in blue and

black) remarkably underestimate thermal noise, while the

Rayleigh method (in green) significantly overestimates the

noise. When the standard deviation of phase fluctuation is
e lines correspond to the Gaussian method; green lines are for the Rayleigh

verage method. The red lines are for the COMBE method. (A) presents the

orresponding to the horizontal lines superposed on the matrix maps in Fig.

ations when the ANR is fixed at 1, while the rh is scanned from 0 to p/2,
1A–E. (D) shows the MSE of the corresponding estimations.



Table 1

The estimation of thermal noise (normalized on the benchmark value) in

RF-OFF time courses

Gaussian Rayleigh Simplex Average COMBE

Subject 1 0.6679 1.0195 0.5451 1 1.0000

Subject 2 0.6859 1.0470 0.5601 1 1.0003
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small, both the Average and COMBE methods (in yellow

and red) yield accurate and unbiased estimates. As the

standard deviation of phase fluctuation increases, the Average

method produces bias significantly more than the COMBE

method. Overall, the latter consistently gives the most

accurate unbiased estimation of the noise standard deviation

when r0 varied from 0 to p/2, with an ANR of one. Fig. 2D

shows that the COMBE method (in red) consistently

produces the lowest overall variability in terms of the MSE

for the estimation of the noise standard deviation among

the five methods.
4. Experiments and results

All experimental fMRI data were obtained from a GE

Signa 3.0-T scanner (GE Medical Systems, Milwaukee, WI)

using a single-channel receiving coil. The experiment was

conducted on two healthy young subjects using approved

protocol from the Institutional Review Board and signed

consent forms from the subjects. To demonstrate the

performance of the five methods of noise estimation, a

single-shot gradient-echo continued fMRI EPI sequence was

employed with the following imaging parameters: TR=1 s,

TE=30 ms, field of view =24 cm, single-slice covering,

slice thickness = 4 mm, matrix size = 64�64, band-

width=125 kHz. There were 220 repetitions. Each fMRI

scan was conducted using a continued EPI sequence, with

one axial slice across the upper part of the brain.

This continued EPI sequence comprises two parts. The

first half scan used a 908 flip-angle radiofrequency (RF)

pulse (i.e., 110 repetitions of RF-ON scan). In the second

half, the RF pulse was nullified (i.e., 110 repetitions in RF-

OFF scan). Therefore, the second half of the fMRI scan

provided acquisition of pure thermal noise [4]. RF-ON time

courses that were extracted from the first half (discarding

the first and last five time points) were utilized to examine

and compare the performances of the five estimation

methods. RF-OFF time courses that were extracted from

the second half (discarding the first and last five time points)

were employed to estimate the underlying noise standard

deviation. The estimated standard deviation of thermal noise

for each method was defined as the average of the estimated

standard deviations from all RF-OFF time courses in the

image, which were obtained by the corresponding method.

Since there were no artifacts existing in RF-OFF time
Fig. 3. Illustration of continued EPI data acquisition and corresponding

RF-ON and RF-OFF datasets.
courses, the estimation by the Average method was

designated as benchmark values. Fig. 3 illustrates the data

assignment for processing from the continued EPI sequence.

All five methods were applied to RF-OFF time courses to

compare their performances, and all estimation results were

normalized by the corresponding benchmark value and

presented in Table 1. For Subject 1, the Gaussian method

yielded the normalized RF-OFF estimate of the thermal

noise standard deviation for the whole image as 0.6679,

1.0195 for the Rayleigh method, 1.00001 for the COMBE

method and 0.5451 for the Simplex method. For Subject 2,

RF-OFF estimates for the thermal noise standard deviation

gave 0.6859 for the Gaussian method, 1.0470 for the

Rayleigh method, 1.0003 for the COMBE method and

0.5601 for the Simplex method. The COMBE method

agrees with the Average method in estimating benchmark

values.

To further evaluate the five estimation methods, the

following steps were taken with RF-ON time courses. First,

we segmented the brain region from the nonbrain region

(background region) by using the plug-in bdraw datasetQ in
the software package AFNI (Analysis of Functional Neuro-

Images) [22]. Then, each of the five methods was applied to

every background voxel time course to obtain the voxelwise

estimate of the artifact level, the standard deviation of phase

fluctuation and the standard deviation of thermal noise.

With the benchmark value (i.e., the underlying standard

deviation of thermal noise), the ANR for each voxel time

course was available. Then, all voxel time courses with a

phase fluctuation standard deviation of b0.2 (determined by

using Eq. (9)) and an ANR level of no more than 10 were

pooled together as reliable voxel time course sets. For

Subject 1, the number of background voxels (nonbrain

region) was 2154 (i.e., 52.59% of whole-image voxels),

while the number of reliable voxels reached 735 (i.e.,

17.94% of whole-image voxels or 34.12% of background

voxels). For Subject 2, the number of background voxels

(nonbrain region) was 2318 (i.e., 56.59% of whole-image

voxels), while the number of reliable voxels reached 539

(i.e., 13.15% of whole-image voxels or 25.03% of

background voxels).

For each subject, within reliable voxels, the estimated

noise from each method was aggregated into ANR sets

according to their corresponding ANRs. The aggregation of

the estimation was based on rounding the ANRs to their

nearest integers (e.g., a voxel time course with ANR=3.7

was aggregated to a set with ANR=4, while ANR=0.4 was

included in the set with ANR=0). Within each ANR set, the

mean value and MSE of the estimations were obtained. All



Table 2

The estimation of thermal noise (normalized mean value) on integer ANR

sets from reliable background voxel time courses

ANR Gaussian Rayleigh Simplex Average COMBE

(A) Estimation for Subject 1

0 0.7318 1.1171 0.6605 0.9139 0.9072

1 0.8763 1.3375 0.7519 0.9643 0.9458

2 0.9622 1.4687 0.8215 1.0196 0.9849

3 0.9769 1.4911 0.7976 1.0224 0.9810

4 1.0019 1.5293 0.7854 1.0427 0.9965

5 1.0332 1.5771 0.9139 1.0716 1.0118

6 1.0109 1.5430 0.8815 1.0637 1.0057

7 1.0182 1.5542 0.9142 1.0853 1.0228

8 1.0273 1.5681 0.9061 1.0834 1.0262

9 1.0452 1.5954 0.9849 1.1457 1.0332

10 1.0290 1.5706 0.9088 1.1119 1.0231

(B) Estimation for Subject 2

0 0.7601 1.1602 0.6728 0.9522 0.9464

1 0.8870 1.3538 0.6941 0.9948 0.9765

2 0.9872 1.5069 0.8648 1.0421 1.0064

3 1.0387 1.5854 0.9048 1.0745 1.0235

4 1.0439 1.5934 0.9642 1.1031 1.0366

5 1.0923 1.6673 0.9615 1.1604 1.0833

6 1.1207 1.7107 1.0054 1.2458 1.1595

7 1.0440 1.5936 0.7610 1.1247 1.0546

8 1.1046 1.6860 0.8843 1.2145 1.1067

9 1.1757 1.7946 0.9680 1.3057 1.1834

10 1.1224 1.7133 0.9490 1.2670 1.1381
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mean values of each ANR set were divided by the

benchmark values to obtain normalized estimation results.

Thus, the dependency estimations of the ANR from the

experiment data were at hand, which are also illustrated in

Fig. 4.

The normalized estimation results are shown in Fig. 4

and listed in Table 2. As shown in Fig. 4, the five

estimations repeat the pattern that was shown in Fig. 2A:

the Gaussian method underestimates when the ANR is

small; the Rayleigh method overestimates over all ANR

levels; the Simplex method underestimates and introduces

significant large variabilities (i.e., the MSEs); the Average

method shows significant bias when the ANR increases; and

the COMBE method yields much less bias through all

ANRs. Hence, it provides the most optimal estimation

among the five methods. The normalized estimation results

are also provided in Table 2. If we define F10% as an

acceptable range (superposed as gray bars on Fig. 4A) for

the estimation of the standard deviation of thermal noise,

then as seen in Fig. 4A for Subject 1, the Gaussian method

(in blue) is good from ANR=2 to ANR=10. The Rayleigh

method (in green) has no good range. The Simplex method

(in black) is reasonable from ANR=7 to ANR=10. The

Average method (in yellow) is acceptable from ANR=0 to

ANR=8. Finally, the COMBE method (in red) is superior to

the other methods through all ANR sets (0–10). The scan for

Subject 2 presented more significant artifacts and, therefore,

decreased acceptable regions for the estimation of all five
Fig. 4. Estimation of thermal noise on experimental results. The solid blue lines co

black lines are for the Simplex method; red lines are for the COMBE method; whi

Subject 1, scanning reliable background voxels with ANR sets from 0 to 10. (B) sh

for Subject 2. (D) shows the MSEs of the corresponding estimations. The superpose

within F10% of errors for the estimation of the standard deviation of thermal no
methods. Still, the COMBE method outperforms all the

others. As seen in Fig. 4C for Subject 2, the acceptable

range (i.e.,F10% error; superposed as gray bars on Fig. 4C)
rrespond to the Gaussian method; green lines are for the Rayleigh method;

le yellow lines are for the Average method. (A) presents the estimations for

ows the MSEs of the corresponding estimations. (C) presents the estimations

d gray horizontal bars in (A) and (C) indicate the defined acceptable regions

ise.



Fig. 5. Histogram of reliable voxel sets for the ANR level. (A) represents Subject 1. (B) pertains to Subject 2. The vertical axis is the ratio of the number of

voxels in each ANR set to the number of all reliable voxels for each subject.
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for the Gaussian method (in blue) is ANR=2–5, no good

range for the Rayleigh method (in green), ANR=3–6 for

the Simplex method (in black), ANR=0–3 for the Average

method (in yellow), while the COMBE method (in red) is

superior to the other methods with the longest range,

ANR=0–5. The COMBE method also produces the lowest

MSE among all five methods for both subjects, as shown

in Fig. 4C and D. Histograms for the number of reliable

voxels for the subjects in terms of ANR levels are

presented in Fig. 5.
5. Discussion

For comparison, the five methods (Gaussian, Rayleigh,

Simplex, Average and COMBE) were employed to estimate

thermal noise in fMRI datasets when a significant source of

artifact noise was considered. With theoretical simulation

and experimental fMRI datasets, the COMBE method,

which we have described, provides the best noise estimation

among the five. The Gaussian and Rayleigh methods cannot

provide accurate and reliable estimates in the presence of

artifacts. It is very difficult to select an artifact-free region in

magnitude images acquired by fast-imaging pulse sequen-

ces, such as EPI and spiral. Thus, a method that can tolerate

the presence of artifacts is necessary. The Simplex method is

very time consuming, is easily trapped into local minimum

and cannot ensure accurate convergence for a considerable

number of voxel time courses. The Average method can

provide accurate thermal noise estimation, if phase fluctua-

tions are small. However, our experimental results indicate

that phase fluctuations clearly exist, resulting in significant

overestimation by the Average method. The newly proposed

COMBE method not only employs the complex-valued

dataset (thereby avoiding the disadvantages of magnitude

images) but also identifies voxel sets based on artifact levels

and phase fluctuations with its step-by-step procedures.

It is important to clarify several key issues. First, the

benchmark of the underlying standard deviation of thermal

noise is determined using the estimation of Average method

from RF-OFF time courses, which is extracted from the

same continued EPI acquisition. In the past, thermal noise
was determined by a separate scan with no RF pulse [4].

The continued scan further eliminates uncontrollable factors

between the setups of the scans to ensure that the statistical

characteristics of thermal noise will not be changed.

Although phantom studies have confirmed this assumption

(data not shown here), the complexity involving human

subjects can undermine the validation of the benchmark

value by some unforeseeable causes. This issue needs

further investigation.

There are several noticeable discrepancies between

theoretical simulation and experimental results. First, when

the ANR increases, the COMBE method also begins to

overestimate thermal noise for the experiment data even

with a restricted standard deviation of phase fluctuation

(rhb0.2). This is primarily because the fluctuation of the

artifacts in the time domain cDS(t), which was described in

the Theory section, begins to play an observable role. None

of the methods can avoid the effect of this fluctuation. The

existence of significant artifact fluctuation in large ANR

situations is confirmed by the overestimation of the

Gaussian method (in blue). This indicates that, in addition

to thermal noise, there are other temporal magnitude

fluctuations. It is interesting to note that even with the

fluctuation of artifacts in play, the COMBE estimation

performs at least as well as the Gaussian method. This

demonstrates that both methods yield the combined variance

of thermal noise and artifact fluctuation, which are optimal

under the circumstance. As stated in the Theory section, the

artifact proportionality c determines what degree of artifact

fluctuations will be ghosted into background voxel time

courses. The ghosted fluctuation cDS(t) cannot be neglected
when compared to the standard deviation of thermal noise

r0. Therefore, the estimation will show some bias. In reality,

those voxels with high ANR levels, which contain non-

negligible artifact fluctuations, can be excluded from the

estimation to avoid contamination by artifact fluctuation.

Second, the Rayleigh method significantly overestimates

thermal noise even with the set with ANR=0, although,

theoretically, it should give the correct answer. There are the

following possible causes: The set with ANR=0 may

include a significant portion of nonzero ANR voxel time
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courses because the set is composed of voxel time courses

with the ANR from 0 to 0.5; or the benchmark value

possibly underestimates thermal noise for RF-ON time

courses; thermal noise may deviate slightly from the

Gaussian distribution of real and imaginary channel data

from experimental data. Third, it is possible that the Simplex

method significantly underperforms in experimental data as

compared to the simulations. We have come up with two

explanations. Perhaps, experimental data were more com-

plicated, imposing challenges on the Simplex method to

reach the global minimum. Actually, there were a significant

number of reliable voxel time courses that were rejected by

the MATLAB program due to divergence. The second

premise is that the possible non-Gaussian nature of thermal

noise distribution, which undermines the foundation of the

Simplex method, is based on the Rician distribution of voxel

time courses.

Although thermal noise has been viewed as independently

Gaussian distributed in both I channel (real-part data) and Q

channel (imaginary-part data), this rule could be challenged.

We investigated this in experimental data by computing the

kurtosis for RF-OFF time courses. Theoretically, the kurtosis

for a Gaussian-distributed random variable should be 3. In

our data, they were 3.0818F0.5146 for I channel (real data)

and 3.0701F0.5019 for Q channel (imaginary data) for

Subject 1; and 3.0718F0.5048 for I channel (real data) and

3.0628F0.4977 for Q channel (imaginary data) for Subject 2.

In addition, we conducted a simulation with matched datasets

(4096 Gaussian-distributed voxel time courses with 100 time

points) in MATLAB, and the simulated kurtosis was

3.0008F0.4938. The difference is not statistically significant.

However, the difference between mean values, which usually

will be taken as the ultimate estimation result, is noticeable. In

addition, in RF-OFF time courses, the Rayleigh method still

overestimates thermal noise by nearly 2% for Subject 1 and

by 5% for Subject 2. Although the discrepancy of statistical

characteristics can be neglected in most circumstances, it

does diminish the validation of the Rayleigh method and the

Simplex method.

Even though real-noise data show a slight deviation

from Gaussian distribution, we still recommend disregard-

ing this issue in conventional linear reconstructed fMRI

data. Still, recent emerging nonlinear reconstruction

schema presented non-Gaussian-distributed thermal noise

[23–25] and rendered the magnitude image incapable of

being modeled as a Rician distribution [26]. This

invalidated both the Rayleigh method and the Simplex

method. The COMBE method does not assume a specific

statistical distribution for thermal noise. Therefore, it can

adapt to new reconstruction schemes that do not produce

Gaussian noise, as long as they retain the independence of

the I and Q channels and remain stationary of thermal

noise in the time domain. The Average method in Eq. (14)

does not have to rely on the premise of the Gaussian

distribution of thermal noise. However, ML approaches

cannot be used to reach the Average method.
There are two goals for noise estimation. First, the

emphasis is on overall noise estimation, which assumes that

the same noise distribution in the whole image remains

identical over both the spatial domain and the time domain.

Therefore, by collecting a sufficient number of voxels, the

COMBE method can yield an optimal estimate. Parallel

imaging such as SENSE [27] yields noise that is not uniform

over the image. The proposed COMBE method can be

implemented for individual voxel noise estimation. Because

of its broad adaptive capability, it can be applied to more

types of voxels with different properties compared to other

methods listed in this study.

In current high-field studies, the SNR is generally

sufficient for most applications, which makes noise estima-

tion a less important topic in regular BOLD activation

studies. However, there are still two fields requiring accurate

noise estimation. One is functional connectivity study,

which focuses on one sort of physiologic noise (spontane-

ous low-frequency fluctuation). The intensity of the

fluctuation is comparable to the standard deviation of

thermal noise [8,28,29]. In addition, the evaluation of the

development of novel reconstruction algorithms requires

accurate estimation. The proposed COMBE method not

only provides an accurate estimation of thermal noise but

also gives the measurement of the artifacts (and the phase

fluctuation of the artifacts), which is an important gauge for

sequence design and reconstruction development [30,31]

(e.g., a better reconstruction schema yields less presence of

artifacts).

In conclusion, in the abovementioned fMRI studies, the

COMBE method can be employed to estimate the thermal

noise level in the presence of artifacts and phase

fluctuation. In addition, it provides an optimal and reliable

estimation by adapting to voxel time courses with a wider

variety of characteristics than other methods. Further, it

requires fewer assumptions, specifically the statistical

distribution of thermal noise required by conventional

methods. Thus, it is suitable for use in more fMRI studies,

especially functional connectivity studies and reconstruc-

tion optimization.
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