

INTRODUCTION

In Functional Magnetic Resonance Imaging (fMRI) studies, the time to measure a volume image is dependent upon how rapidly the necessary amount of data needed to reconstruct an image can be measured. In order to accelerate the number of images measured per unit of time, a topic of study has been to measure less data but still be able to reconstruct a high-quality In Eq 2, \otimes denotes the Kronecker image. In order to reconstruct images using less data, multiple receive coils are used where each coil measures sensitivity-weighted images. Initially, accelerated imaging was aimed at in-plane acceleration where lines of spatial frequency data are skipped, and each coil measured fewer lines of spatial frequency. In SENSitivity Encoding (SENSE) [1] and Parallel Imaging technique, each excitation in time Slice (SMS) techniques were developed and discussed. The SMS technique the TR dimension. Valued Slices will be presented.

METHOD

CAIPIRINHA and CAIPIVAT: Imaging using SMS is widely used, and it allows for acquiring fMRI data with high resolution within a reduced repetition time (TR). One of the main considerations of SMS study is diminishing the influence of the geometry factor (g-factor) of the coil array. The imaging shifted technique of the new method is based on the "Controlled Aliasing In Parallel Imaging Results In Higher Acceleration" (CAIPIRINHA) [3] and the "MultiSlice CAIPIRINHA Using View Angle Tilting Technique" (CAIPIVAT) [4]. A unique image shift is accomplished by applying a specific phase modulation to each line in the k-space as in Figure 1. In the CAIPI study, the signal-tonoise (SNR) ratio is given by Eq 1

$$SNR_{CAIPI} = \sqrt{N_s} \frac{SNR_{Full}}{a_{CAIPI}\sqrt{R}}$$

The g-factor, which is given by $g_{CAIPI} = \sqrt{(S^H \Psi^{-1}S)^{-1}(S^H \Psi^{-1}S)}$, is not a <u>constant number but varies across each voxel within the images. The short</u>

distance between two aliased voxels will increase the g-factor value and the corresponding SNR ratio will decrease. The image shifting technique will increase the distance between two aliased voxels, therefore reducing the g-factor influence.

Figure 1: The 1D CAIPIRINHA diagram. Every odd line in k-space is unchanged and the phase c transform, the image has a unique shift in phase encoding direction.

Images can not only be shifted in the phase encoding direction (vertical in Figure 1) but also can be shifted in the frequency encoding direction (horizontal in Figure 1) by applying a global phase addition to A/D converter. In the mSPECS-CAIPI model, images will shift in a cyclical pattern. Hadamard Phase Encoding: The Hadamard phase encoding technique is a well-developed volume excitation method [5]. The conventional Magnetic C. Sagittal View of Time Series Resonance (MR) imaging techniques have been limited by the size of the matrix for the acquired aliased images. The Hadamard encoding method allows the increment of the size of the acquired aliased image matrix by aliasing in both frequency and phase encoding dimensions. The Hadamard

A Highly-Accelerated Image Reconstruction Method by Simultaneous Encoded Slices with CAIPI in FMRI Ke Xu¹ and Daniel B. Rowe^{1,2}

¹Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI, USA ²Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA

METHOD

matrix is given by Eq 2.

$$H_{2^n} = \begin{bmatrix} H_{2^{n-1}} & H_{2^{n-1}} \\ H_{2^{n-1}} & -H_{2^{n-1}} \end{bmatrix} = H_2 \otimes H_{2^n}$$

product. The Hadamard matrix is a square and orthogonal matrix with elements of either 1 or -1. In the mSPECS-CAIPI approach

a)	Γ +	+	+	
и —	+	_	+	
$n_4 -$	+	+	—	
	L+	—	—	
b)	1	2	3	
TR=1	+	+	+	
2	+	_	+	
3	+	+	_	
4	+	_		
5	+	+	+	
6	+	_	+	
7	+	+	_	
8	+			
Figure 2: The diagram of				

techniques [2], a single slice has been excited, and partial lines of k-space series is sequentially coordinated with a unique Hadamard encoding aliasing \mathbf{z} skipped, resulting in a sensitivity-weighted aliased image for each coil, that is pattern as in Figure 2. Same as the sequential properties of imaging shifted combined into a single complete image. More recently, Simultaneous Multi- technique, the Hadamard phase encoding aliasing pattern will cycle through along

allows for a more efficient approach to acquiring images. Multiple slices are **Bootstrap Sampling and Artificial Aliasing of Calibration Images:** In the acquired at the same time and aliased together in one excitation, and hence, mSPECS-CAIPI model, for each excitation, N_s bootstrap sampled coil slices the image-acquiring time will decrease significantly with a factor of the total images will be randomly chosen from the fully sampled calibration reference number of aliased slices per unit of time. Thus, a through-plane imaging shifts patterns for each TR. The relationship of the number of acceleration was achieved by SMS techniques. A novel SMS technique called mean calibration images will be artificially aliased, and this process will be artificially aliased, and this process will be artificially aliased. A CAIPI Approach of Multi-Coil Separation of Parallel Encoded Complex- repeated for each TR. According to the mSPECS-CAIPI model, the process of the total number of images. The in-plane acceleration will not be included into the second s acquired images and the artificial aliasing calibration images can be described as simulated data. The SNR ratio is calculated by $SNR = \beta_0 / \sigma$, β_0 is the baseline Eq 3, with X_A is the acquired aliasing matrix and C_A is the artificial aliasing matrix. voxel value and σ is the standard deviation of the noise. The g-factor is The measurement error is normally distributed

	$y = \begin{bmatrix} a \\ v \end{bmatrix} = \begin{bmatrix} X_A \beta \\ C_A \mu \end{bmatrix}$
	$(X_A)_{\gamma,\delta} = \begin{bmatrix} H_{\delta,1}R_{\gamma,1} \begin{pmatrix} S_{1,1} \\ \vdots \\ S_{N_c,1} \end{pmatrix}, \dots, H_{\delta,N_s} \end{bmatrix}$
	$(C_A)_{\gamma,\delta} = \begin{bmatrix} \overline{H_{\delta,1}R_{\gamma,1}} \begin{pmatrix} S_{1,1} \\ \vdots \\ S_{N_c,1} \end{pmatrix}, \dots, \overline{H_{\delta,N_s}} \end{bmatrix}$
A. Calibration Images s_{11} s_{11} s_{11} s_{11} s_{21} s_{22} s_{21} s_{21} s_{21} s_{22} s_{21} s_{21} s_{21} s_{21} s_{21} s_{21} s_{21} s_{21} s_{21} s_{22} s_{21} s_{21} s_{22} s_{21} s_{21} s_{22} s_{21} s_{21} s_{22} s_{21} s_{22} s_{21} s_{22} s_{22} s_{21} s_{22} s_{22} s_{21} s_{22} s_{22} s_{21} s_{22} s_{22} s_{22} s_{22} s_{21} s_{22} s_{22} s_{22} s_{22} s_{22} s_{22} s_{22} s_{22} s_{22} s_{21} s_{22} s_{22} s_{22} s_{22} s_{22} s_{22} s_{22} s_{22} s_{22} s_{23} s_{24} s_{24} s_{24} s_{24} s_{24} s_{25} s_{2}	B. Acquired Aliased Time Series TR_{11} TR_{12} TR_{22} TR_{22} $TR_{n-1,2}$ $TR_{n-1,2}$ $TR_{n,2}$
C. Sagittal View of Time Series	D. Separation Process
	$\begin{bmatrix} \widehat{S_{11}} \\ \widehat{S_{12}} \end{bmatrix} = \frac{\begin{bmatrix} TR_{11} \\ TR_{12} \end{bmatrix} + \begin{bmatrix} \overline{TR_{11}} \\ \overline{TR_{12}} \end{bmatrix}}{2} = \frac{\begin{bmatrix} S_{11} + S_{11} \\ S_{12} + S_{12} \end{bmatrix} + \begin{bmatrix} \widehat{S_{11}} - \widehat{S_{11}} \\ \overline{S_{12}} - \overline{S_{12}} \end{bmatrix}}{2}$ $\begin{bmatrix} \overline{TR_{21}} \end{bmatrix} \begin{bmatrix} TR_{21} \end{bmatrix} \begin{bmatrix} \overline{S_{21}} + \overline{S_{21}} \end{bmatrix} \begin{bmatrix} S_{21} - S_{21} \end{bmatrix}$
	$\begin{bmatrix} \widehat{S_{21}} \\ \widehat{S_{22}} \end{bmatrix} = \frac{\begin{bmatrix} \widehat{TR_{22}} \end{bmatrix} - \begin{bmatrix} TR_{22} \end{bmatrix}}{2} = \frac{\begin{bmatrix} \widehat{S_{22}} + \widehat{S_{22}} \end{bmatrix} - \begin{bmatrix} S_{22} - S_{22} \end{bmatrix}}{2}$
$TR_{1} = Slice_{1} + Slice_{2} + \varepsilon$ $TR_{2} = Slice_{1} - Slice_{2} + \varepsilon$ 'Sagittal images are from https://my-ms.org/mri_brain_sagittal.htm.	$\begin{bmatrix} TR_{11} \\ TR_{12} \end{bmatrix}$ and $\begin{bmatrix} TR_{21} \\ TR_{22} \end{bmatrix}$ are acquired aliased images from time series. $\begin{bmatrix} \widehat{TR_{11}} \\ \widehat{TR_{12}} \end{bmatrix}$ and $\begin{bmatrix} \widehat{TR_{21}} \\ \widehat{TR_{22}} \end{bmatrix}$ are artificial aliased calibration images.
A. Calibration Images	B. Acquired Aliased Time Series
S_{11} S_{11} S_{12} n_{callb} S_{22} S_{21} S_{21} S_{21} R_{callb} S_{21} R_{callb} S_{21} R_{callb} S_{21} R_{callb}	$ \begin{array}{c} TR_{11} \\ TR_{12} \\ TR_{22} \\ TR_{22} \\ TR_{n-1} \\ TR_{n-1} \\ TR_{n-2} \\ TR_{n-2$
C. Sagittal View of Time Series	D. Separation Process
	$\begin{bmatrix} \widehat{S_{11}} \\ \widehat{S_{12}} \end{bmatrix} = \frac{\begin{bmatrix} TR_{11} \\ TR_{12} \end{bmatrix} + \begin{bmatrix} \overline{TR_{11}} \\ \overline{TR_{12}} \end{bmatrix}}{2} = \frac{\begin{bmatrix} S_{11} + S_{22} \\ S_{12} + S_{21} \end{bmatrix} + \begin{bmatrix} \widehat{S_{11}} - \widehat{S_{22}} \\ \overline{S_{12}} - \overline{S_{21}} \end{bmatrix}}{2}$
	$\begin{bmatrix} \widehat{S_{21}} \\ \widehat{S_{22}} \end{bmatrix} = \frac{\begin{bmatrix} \overline{TR_{21}} \\ \overline{TR_{22}} \end{bmatrix} - \begin{bmatrix} TR_{21} \\ TR_{22} \end{bmatrix}}{2} = \frac{\begin{bmatrix} \widehat{S_{12}} + \widehat{S_{21}} \\ \widehat{S_{11}} + \widehat{S_{22}} \end{bmatrix} - \begin{bmatrix} S_{12} - S_{21} \\ S_{11} - S_{22} \end{bmatrix}}{2}$
$TR_{1} = Slice_{1} + Slice_{2} + \varepsilon$ $TR_{2} = Slice_{1} - Slice_{2} + \varepsilon$	$\begin{bmatrix} TR_{11} \\ TR_{12} \end{bmatrix}$ and $\begin{bmatrix} TR_{21} \\ TR_{22} \end{bmatrix}$ are acquired aliased images from time series. $\begin{bmatrix} \widehat{TR_{11}} \\ \widehat{TR_{12}} \end{bmatrix}$ and $\begin{bmatrix} \widehat{TR_{21}} \\ \widehat{TR_{22}} \end{bmatrix}$ are artificial aliased calibration images.
A. Calibration Images	B. Acquired Aliased Time Series
S_{11} S_{11} S_{11} S_{22} S_{2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $\begin{bmatrix} \widehat{S_{11}} \\ \widehat{S_{1}} \end{bmatrix} = \frac{\begin{bmatrix} TR_{11} \\ TR_{12} \end{bmatrix} + \begin{bmatrix} \overline{TR_{11}} \\ \overline{TR_{12}} \end{bmatrix}}{2} = \frac{\begin{bmatrix} S_{11L} + S_{22R} \\ S_{12L} + S_{21R} \end{bmatrix} + \begin{bmatrix} \widehat{S_{11L}} - \widehat{S_{22R}} \\ \widehat{S_{12L}} - \widehat{S_{21R}} \end{bmatrix}}{2}$

 $\begin{bmatrix} \widehat{S_{21}} \end{bmatrix} = \frac{\begin{bmatrix} \widehat{TR_{21}} \\ \widehat{TR_{22}} \end{bmatrix} - \begin{bmatrix} TR_{21} \\ TR_{22} \end{bmatrix}}{\begin{bmatrix} \widehat{S_{12R}} + \widehat{S_{21L}} \\ \widehat{S_{11R}} + \widehat{S_{22L}} \end{bmatrix} - \begin{bmatrix} S_{12R} - S_{21L} \\ S_{11R} - S_{22L} \end{bmatrix}$

 $\begin{bmatrix} R_{11} \\ R_{12} \end{bmatrix}$ and $\begin{bmatrix} TR_{21} \\ TR_{22} \end{bmatrix}$ are acquired aliased images from time series. $\begin{bmatrix} \overline{TR_{11}} \\ \overline{TR_{12}} \end{bmatrix}$ and $\begin{bmatrix} \overline{TR_{21}} \\ \overline{TR_{22}} \end{bmatrix}$ are artificial ased calibration images. The $S_{i,j,k}$ denotes the *i*th slice, *j*th part, and *k* denotes the direction of

D. Separation Process

 $TR_1 = Slice_1 + Slice_2 + \varepsilon$

 $TR_2 = Slice_1 - Slice_2 + \varepsilon$

images are from https://my-ms.org/mri brain sagittal.htm

$$+ \begin{bmatrix} \varepsilon \\ C\eta \end{bmatrix},$$

$$R_{\gamma,N_{S}} \begin{pmatrix} S_{1,N_{S}} \\ \vdots \\ S_{N_{C},N_{S}} \end{pmatrix}], X_{A} = \begin{bmatrix} (X_{A})_{1} \\ \vdots \\ (X_{A})_{N_{\alpha}} \end{bmatrix},$$

$$R_{\gamma,N_{S}} \begin{pmatrix} S_{1,N_{S}} \\ \vdots \\ S_{N_{C},N_{S}} \end{pmatrix}], C_{A} = \begin{bmatrix} (C_{A})_{1} \\ \vdots \\ (C_{A})_{N_{\alpha}} \end{bmatrix}.$$

$$(5)$$

The least squares estimation is oined method, which leads Eq 3 to Eq 6:

covariance for the acquired aliasing measurement error is $cov(\varepsilon) =$ $\sigma^2 I_{2N_cN_{\alpha}}$, and the covariance for the artificial aliasing measurement error is $cov(C\eta) = \sigma^2 I_{2N_SN_c(N_SN_r-1)}$. With the support of the bootstrap sampling technique, the variation of the artificial aliasing calibration images will retain, thus $\tau^2 = \sigma^2$, and the covariance of $\hat{\beta}$ is given by Eq 7:

 $cov(\hat{\beta}) = \sigma^2 (X'_A X_A + C'_A C_A)^{-1}.$ (7) Therefore, the correlation induced by the un-aliasing process is minimized, and the inter-slice signal leakage artifacts are eliminated.

Figure 3: The mSPECS image reconstruction method (first two rows). The mSPECS-CAIPIRINHA image reconstruction method (middle two rows). The mSPECS-CAIPIVAT image reconstruction method (last two rows.). A are calibration images. B are simulated acquired aliased time series images. C are sagittal view of the time series images. are separation process for each method.

(1)	Pruessmann KP et al. SENSE: S
(2)	Griswold MA et al. Generalized a
	47:1202-1210, 2002.
(3)	Breuer FA et al. Controlled alias
	multi-slice imaging. Magn Reson
(4)	Kim Min-Oh et al. MultiSlice CAI
	2016 Mar;2(1):43-48.
(5)	Souza SP et al. SIMA-simulta
	excitation. J Comput Assist Tomo
	 (1) (2) (3) (4) (5)

MARQUETTE UNIVERSITY

RESULTS

activation detection maps for mSPECS. mSPECS-CAIPIRINHA for a random voxel inside the task block for through-plane A = 2, A = 4, and A = 8 (right)

REFERENCES

Sensitivity Encoding for fast MRI. MRM 42:952-962, 1999. autocalibrating partially parallel acquisition (GRAPPA). Magn Reson Med,

calculated

according to the

[6] technique.

sing in parallel imaging results in higher acceleration (CAIPIRINHA) for Med 2005 Mar;53(3):684-91. IPIRINHA Using View Angle Tilting Technique (CAIPIVAT). Tomography.

aneous multislice acquisition of MR images by Hadamard-encoded ogr 1988;12;1026-1030.

(6) Rowe DB et al. A complex way to compute fMRI activation. Neuroimage. 2004 Nov;23(3):1078-92.