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A B S T R A C T   

Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of 
brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich 
source of information for understanding brain functions. Traditional fMRI analyses have largely focused on 
magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose 
a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our 
model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude 
and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. 
We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and 
employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigor
ously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping 
experiment. The results demonstrate the model’s effectiveness in accurately identifying brain regions acti
vated in response to specific tasks, distinguishing between magnitude and phase activation.   

1. Introduction 

Functional magnetic resonance imaging (fMRI) has become indis
pensable in a variety of applications ranging from diagnosis of patho
logical conditions to the investigation of complex physiological 
processes in the human brain. During acquisition, fMRI inherently 
generates complex-valued signals characterized by real and imaginary 
components, and further summarized as magnitude and phase. This 
complex structure arises from the forward and inverse Fourier trans
formations executed in the data collection process, which are affected by 
phase imperfections [1]. These signals may exhibit changes in magni
tude, phase, or both over time in response to a stimulus, as shown in 
Fig. 1. 

The magnitude changes in complex-valued fMRI (cv-fMRI) are 
fundamentally driven by the blood‑oxygenation-level-dependent 
(BOLD) effect, which operates through a cascade of hemodynamic re
sponses. Neuronal activity leads to increased demand of oxygen, so the 
freshly oxygenated blood fluxes into the active region and displaces 
deoxygenated blood, leading to an overall increase in the oxygenation 
level of the blood in that region. These changes in blood oxygenation 
cause a change in BOLD signal and magnetic susceptibility, affecting the 

magnitude of MR signal. Thus, the BOLD effect can be considered an 
indirect measure of neuronal activity, mediated through vascular 
changes [2,3]. 

On the other hand, phase changes are influenced not only by the 
BOLD effect but also by the electrical neuronal activity directly. These 
neuronal activations generate moving charges, creating localized elec
tromagnetic fields. These induced electromagnetic fields, in turn, in
fluence the phase of the MRI signal. For this reason, the phase changes 
are able to reveal the aspects of neuronal activity or other phenomena 
that might be undetected by magnitude-based analyses [5]. Importantly, 
previous work [6] has illustrated that the complex-valued model, which 
incorporates phase information, exhibits superior power of detection 
over the magnitude-only model. By accurately modeling these phase 
changes, researchers can gain insights into the more direct effects of 
neuronal activity on the MRI signal, potentially leading to more precise 
and informative interpretations of fMRI data [7]. This is especially 
crucial in understanding complex brain functions and improving the 
accuracy of fMRI in research and clinical applications. 

Traditionally, fMRI studies that aim to map brain activity have 
predominantly focused on analyzing only the magnitude of these MR 
signals [8,9]. The phase components are frequently disregarded during 
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the preprocessing steps. The magnitude-only analytical framework has 
its limitations. The first major limitation is that the omission of phase 
data results in the underutilization of valuable information that could be 
pertinent to understanding neurophysiological mechanisms. The second 
limitation, particularly relevant in studies that employ linear modeling 
[8,9], concerns the statistical assumptions made during the identifica
tion of active voxels (volumetric pixels in the imaging data). In such 
analyses, the expected BOLD response is usually modeled by the 
convolution of a “boxcar” binary stimulus function with either a gamma 
or double-gamma hemodynamic response function (HRF), then a voxel 
is identified as “active” if the magnitude of its complex-valued fMRI 
signal shows a statistically significant variation with the expected BOLD 
response. This practice assumes that the error terms in the models are 
normally distributed. However, while the original real and imaginary 
components may follow a normal distribution, the magnitude actually 
adheres to a Ricean distribution that approximates a normal distribution 
only when the signal-to-noise ratios (SNRs) are sufficiently large 
[10,11]. Given that large SNRs are not universally guaranteed in fMRI 
studies, this statistical assumption of normally distributed error terms 
becomes less reliable, consequently diminishing the power and reli
ability of the analysis. 

In contrast, emerging research utilizing cv-fMRI data offers a more 
nuanced and comprehensive approach. By incorporating both the 
magnitude and phase of the MR signals [6,12–17], or modeling real and 
imaginary components that both contain magnitude and phase infor
mation [18,19], cv-fMRI studies pave the way for the development of 
more robust and statistically powerful models. These models are better 
able to handle variations in SNR and can fully exploit the available data, 
thereby offering potentially deeper and more accurate insights into task- 
related neuronal activity. 

To accurately determine task-related brain activation maps from 
fMRI signals, fully Bayesian approaches have garnered attention due to 
their capacity to effectively model both spatial and temporal correla
tions. However, existing implementations of fully Bayesian methods in 
fMRI analysis have demonstrated notable shortcomings. For instance, 
certain studies have applied the fully Bayesian approach only to 
magnitude data [20,21], leading to underutilization of available data 
and flawed statistical assumptions as previously discussed. Additionally, 
others have employed fully Bayesian methods on cv-fMRI data, yet 
relied on a Cartesian model [22,23], which is limited to identifying 
active voxels without providing specific insights into the type of acti
vation, be it in terms of magnitude, phase, or a combination of both. 

In this paper, we propose a novel fully Bayesian model for mapping 
brain activity using single-subject cv-fMRI time series. Our model is 
designed to determine which voxels exhibit significant fMRI signal 
changes in response to a particular task, specifying the type and strength 
of these changes. This proposed Bayesian approach for fMRI data 

analysis is distinctive in its comprehensive utilization of both the real 
and imaginary components of fMRI data. It is capable of independently 
predicting different types of activation maps, in terms of magnitude, or 
phase, or both, capturing spatial correlations, and ensuring computa
tional efficiency. 

To effectively capture spatial associations present in cv-fMRI data, 
our approach incorporates Gaussian Markov random fields [GMRFs; 
24]. Moreover, we enhance computational efficiency by employing 
image partitioning and parallel computation strategies in our Markov 
chain Monte Carlo [MCMC; 25] algorithms. 

The paper is structured as follows: Section 2 introduces our proposed 
model, its parameters, and brain parcellation strategy. Section 3.1 pre
sents simulation studies and compares our approach with existing 
methods. In Section 3.2, we apply our model to a real finger-tapping 
experiment dataset. Section 4 summarizes our findings and suggests 
future research directions. 

2. Material and methods 

In this section, we present our model designed for mapping brain 
activity using cv-fMRI data. Additionally, we introduce the brain par
cellation strategy, which facilitates the parallel computation. Following 
this, we detail the implementation of a GMRF prior that effectively 
captures the spatial correlations inherent within the fMRI data. Finally, 
we describe an MCMC algorithm for approximating the posterior dis
tribution of the parameters of interest. 

2.1. Model formulation 

The polar model of [13] has gained significant attention for modeling 
complex-valued fMRI data. Originating from the initial formulation with 
dynamic magnitude and constant phase [6], the model has undergone 
several iterations [12,14] to arrive at its current version to model both 
dynamic magnitude and dynamic phase. For a certain voxel v (where v =

1, …,V) at time t (where t = 1, …, T), its real and imaginary parts of 
complex-valued fMRI signal, yv,Rt and yv,It , can be modeled as: 
(

yv,Rt
yv,It

)

=

(
ρv,tcosθv,t
ρv,tsinθv,t

)

+

(
εv,Rt
εv,It

)

,

(
εv,Rt
εv,It

)

∼ N
(
0,σ2

vI2
)
,

where ρv,t and θv,t are temporally varying magnitude and phase given by: 

ρv,t = βv,0 + xtβv,1,

θv,t = γv,0 + utγv,1,

where xt and ut are the expected BOLD response and neuronal electro
magnetic signal, respectively, at time t. Thus, for all time points: 

Fig. 1. Illustration of potential changes in complex-valued fMRI time series [4].  
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yv =

(
AR(γv)

AI(γv)

)

Xβv + εv, εv ∼ N
(
0,σ2

vI2T
)
, (1)  

where yv =
[(

yv,R

)′
,
(

yv,I

)′ ]′
∈ ℝ2T stacks real and imaginary compo

nents of cv-fMRI signal, and X = [1,x] ∈ ℝT×2 is the design matrix for the 
magnitude composed of ones and expected BOLD response x. The 
matrices AR(γv),AI(γv) ∈ ℝT×T are diagonal as: 

AR(γv)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cos
(
γv,0 + u1γv,1

)
0 ⋯ 0

0 cos
(
γv,0 + u2γv,1

)
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ cos
(
γv,0 + utγv,1

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

AI(γv)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

sin
(
γv,0 + u1γv,1

)
0 ⋯ 0

0 sin
(
γv,0 + u2γv,1

)
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ sin
(
γv,0 + utγv,1

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

with a more compact form: 

AR(γv) = diag[cos(Uγv) ], AI(γv) = diag[sin(Uγv) ],

where U = [1,u] ∈ ℝT×2 is the design matrix for the phase composed of 

ones and neuronal electromagnetic signal u. Therefore, βv =
[
βv,0, βv,1

]′
∈ ℝ2 and γv =

[
γv,0, γv,1

]′
∈ ℝ2 are magnitude- and phase- 

related regression coefficients, respectively. The voxel-specific error 
term εv follows a multivariate normal distribution with the variance- 
covariance matrix σ2

v I2T , and a Jeffreys prior can be assigned to σ2
v as 

p
(
σ2

v
)
∝1/σ2

v . 

2.2. Brain Parcellation and spatial priors 

Spatial correlations are a notable characteristic in fMRI signal data. 
Given that voxels represent an artificial segmentation of the brain’s 
structure, they frequently display behaviors that are closely aligned with 
adjacent voxels [4,26–28]. To effectively model these spatial de
pendencies, it is beneficial to incorporate spatial structuring in the priors 
of γv and βv or in the hyperparameters of these priors. Moreover, a 
strategy of brain parcellation is applied to facilitate the parallel 
computation. 

2.2.1. Brain parcellation 
In the study by [21], a technique for brain parcellation was intro

duced, focusing on the identification of active voxels within individual 
parcels before integrating these findings into a comprehensive map of 
brain activity. This approach involves dividing brain images into par
cels, each containing 500–1000 voxels. By processing each parcel 
independently using an identical model and method, the technique 
allowed for parallel computation, enhancing computational efficiency. 
Similarly, [23] adopted a comparable approach but differed in their 
strategy of dividing the brain into parcels of roughly equal geometric 
size. Both studies demonstrated that this parcellation strategy effectively 
minimizes edge effects, ensuring that the classification of border voxels 
in each parcel remains largely unaffected. Following the methodology of 
[23], we partitioned two- or three-dimensional fMRI images into a set 
number, G, of parcels, each of approximately equal geometric size. The 
choice of G is based on empirical judgment, and as indicated by both 
[21,23], variations within a reasonable range of G do not significantly 
impact the results. 

2.2.2. Prior distributions of βv and γv 
For each parcel g (where g = 1,…,G) encompassing Vg voxels, we 

classify a voxel v (where v = 1,…,Vg) based on its activity. Specifically, a 
voxel is classified magnitude-active if βv,1 ∕= 0, and phase-active if 
γv,1 ∕= 0. Adhering to the spike-and-slab prior [29], the model is 
expressed as follows: 

βv∣λv, τ2
g ∼ λvN 2

(
0,τ2

gI
)
+ (1 − λv)N 2

⎛

⎝0,

⎛

⎝
τ2

g 0
0 0

⎞

⎠

⎞

⎠,

γv∣ωv, ξ2
b ∼ ωvN 2

(
0,ξ2

gI
)
+ (1 − ωv)N 2

⎛

⎝0,

⎛

⎝
ξ2

g 0
0 0

⎞

⎠

⎞

⎠.

In this formulation, λv,ωv ∈ {0,1} indicate the status of voxel v: λv =

1 for a magnitude-active voxel and ωv = 1 for a phase-active voxel, with 
0 indicating inactivity in respective domains. The parameters τ2

g and ξ2
g 

represent parcel-specific variances. These variances are constant for all 
voxels within a particular parcel but may vary across different parcels, 

and are assigned a Jeffreys prior, that is, p
(

τ2
g

)
∝1/τ2

g and p
(

ξ2
g

)
∝1/ξ2

g , 

for g = 1,…,G. The prior distributions can be succinctly represented as: 

βv∣λv, τ2
g ∼ N 2

(
0,τ2

gΛv

)
, whereΛv =

( 1 0
0 λv

)

,

γv∣ωv, ξ2
g ∼ N 2

(
0,ξ2

gΩv

)
, whereΩv =

( 1 0
0 ωv

)

.

2.2.3. Spatial prior on λv and ωv 
To capture both spatial dependencies and the sparsity of active 

voxels in brain imaging, we implement a prior distribution for λv and ωv. 
This approach is rooted in the hypothesis that voxels are more likely to 
mirror the activity (active/inactive) of their neighboring voxels [8,30], 
and there should be only a few active voxels across the entire brain from 
a simple task experiment [31,32]. We employ the sparse spatial gener
alized linear mixed model (sSGLMM) prior, formulated by [33], and 
later adopted by [21,23,34]. For voxel v (where v = 1, …, Vg) within 
parcel g (where g = 1,…,G), from the perspective of the magnitude, we 
suppose that: 

λv∣ηλ,v∼
iid

B ern
{

Φ
(
ψλ + ηλ,v

) }
,

ηλ,v∣δλ,g ∼ N 1
(
m′

vδλ,g, 1
)
,

δλ,g∣κλ,g ∼ N q

{
0,
(
κλ,gMg

′QgMg
)− 1
}
,

κλ,g ∼ G amma(aκ, bκ).

From the perspective of the phase: 

ωv∣ηω,v∼
iid

B ern
{

Φ
(
ψω + ηω,v

) }
,

ηω,v∣δω,g ∼ N 1
(
m′

vδω,g, 1
)
,

δω,g∣κω,g ∼ N q

{
0,
(
κω,gMg

′QgMg
)− 1
}
,

κω,g ∼ G amma(aκ, bκ).

In this sSGLMM prior, Φ(⋅) represents the cumulative distribution 
function (CDF) of the standard normal distribution. The terms ψλ,ψω ∈

ℝ are fixed tuning parameters. The terms ηλ,v, ηω,v ∈ ℝ are auxiliary pa
rameters for the probit link functions. Spatial dependencies are modeled 
through constructs derived from the adjacency matrix Ag of parcel g. 
This matrix, Ag ∈ {0,1}Vg×Vg , specifies neighborhood relations among 
voxels, with Ag,uv = 1 indicating neighboring voxels u and v (based on 
user-defined criteria, typically voxels sharing an edge or a corner), and 
0 otherwise. The matrix Mg ∈ ℝVg×q is composed of the first q principal 
eigenvectors of Ag. The row vector m′

v ∈ ℝ1×q is the vth row of Mg, which 
is called “synthetic spatial predictors” [34]. The matrix Qg ∈ ℝVg×Vg is 
the graph Laplacian, that is, Qg = diag

(
Ag1Vg

)
− Ag. The vectors δλ,g,

δω,g ∈ ℝq×1 are spatial random effects, and κλ,g, κω,g ∈ ℝ are spatial 
smoothing parameters. 

This sSGLMM prior captures the spatial correlations by using GMRFs, 
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and introduces the sparsity by the selective inclusion of eigenvectors in 
Mg. Both [21,23] show it is good to capture the spatial correlations in 
fMRI data that align well with the parcellation strategy. In our simula
tion studies, the best-performing values of ψλ and ψω are pre-selected 
from a candidate list. For the real data, [21] suggests the initial 
setting of Φ− 1(0.02) = − 2.05, with later adjustments based on previ
ous experiments’ active voxel proportions. Moreover, we adopt q = 5 
(when Vg ≈ 200), as shown by [34] that q can be remarkably smaller 
than Vg. The Gamma distribution parameters, aκ =

1
2 and bκ = 2000 are 

the same for both magnitude and phase, leading to a large mean for κλ,g 

and κω,g (aκbκ=1000), minimizing the risk of detecting spurious activity 
due to noise or other confounding factors. 

2.3. MCMC algorithm and posterior distributions 

We employ Gibbs sampling to obtain the joint and marginal condi
tional distributions of parameters of interest. Only the full conditional 
posterior distribution of γv is accessed via the Metropolis–Hastings al
gorithm [35,36], the others follow known and available distributions. 
Detailed derivations and the required full conditional distributions are 
provided in the online supplementary material. To assess the conver
gence of the algorithm, we adopt the fixed-width diagnostic technique 
suggested by [37]. Convergence is considered achieved when the Monte 
Carlo Standard Error (MCSE) for all λv and ωv drops below 0.05, leading 
us to run 103 iterations. After discarding the burn-in phase, the means of 
the sampled parameters are taken as point estimates. If λ̂v > 0.925, the 
voxel is magnitude-active; if ω̂v > 0.925, it is phase-active. [30] pro
posed the threshold of 0.8722 regarding the significance level α = 0.05. 
Since our approach is similar to a two-step sequential test, we use 
Bonferroni correction to make α = 0.05/2 = 0.025, leading to the 
adjustment of threshold from 0.8722 to 0.925. 

3. Results 

3.1. Simulation studies 

This section presents two distinct simulation studies. The first study 
focuses on a single map that comprises three types of active regions: one 
region is solely magnitude-active, another is solely phase-active, and the 
third is both magnitude- and phase-active. The second study involves 
multiple datasets, each containing only one type of activation on their 
maps. For comparative evaluation, we consider the following models:  

• The model proposed by [21], referred to as MO, models magnitude- 
only data. For a certain voxel v, v = 1,…,V, over time T: 

yv,M = Xβv,M + εv, εv ∼ N
(
0,σ2

vIT
)

where yv,M ∈ ℝT is the magnitude of complex-valued fMRI signal, and 
X = [1,x] ∈ ℝT×2 is the design matrix composed of ones and expected 

BOLD response x. The vector βv,M =
(
βv,M0

, βv,M1

)′ are regression 
coefficients.  

• The model delineated by [23], based on [18]’s Cartesian model and 
referred to as CV-R&I, models complex-valued data by modeling the 
real and imaginary components: 

yv =

(X 0
0 X

)( βv,R

βv,I

)

+ εv, εv ∼ N
(
0,σ2

vI2T
)
,

where yv =
[(

yv,R

)′
,
(

yv,I

)′ ]′
∈ ℝ2T is the stack of real and imaginary 

components of cv-fMRI signal. The vectors βv,R =
(
βv,R0

, βv,R1

)′ and βv,I =
(
βv,I0 , βv,I1

)′ are regression coefficients regarding real and imaginary 
components of cv-fMRI signal, respectively.  

• The model (1), referred to as CV-M&P, is based on [13]’s polar model 
and models complex-valued data while characterizing magnitude 
and phase. 

All three models adhere to a fully Bayesian approach, employ the 
sSGLMM spatial prior with brain parcellation strategy, and utilize Gibbs 
sampling to approximate their respective posterior distributions. The 
number of parcels G is set to 16 for all models. Other tuning parameters, 
such as ψ = Φ− 1(0.35) for MO, ψ = Φ− 1(0.30) for CV-R&I, and ψ = ω =

Φ− 1(0.42) for CV-M&P, are predetermined based on their superior 
performance in prediction accuracy among the range of candidate 
values. The thresholds for identifying active voxels are set at 0.8722 for 
MO and CV-R&I, as specified in their work, while CV-M&P employs a 
threshold of 0.925, in accordance with Section 2.3. 

All results are generated by running the code on a custom-built 
desktop computer with an Intel Core i9-9980XE CPU (3.00GHz, 3001 
Mhz, 18 cores, 36 logical processors), NVIDIA GeForce RTX 2080 Ti 
GPU, 64 GB RAM, and operating on Windows 10 Pro. 

Fig. 2. (a) Designed stimulus; (b) Expected BOLD response; (c) True activation map.  
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3.1.1. Single simulation 

3.1.1.1. Designed stimulus and expected BOLD response. The designed 

task-related stimulus S is a binary signal comprised of five repeated 
epochs, each spanning 40 time points, resulting in a total duration of T =

200 time points. Each epoch features the stimulus being alternately 
active and inactive, with both states persisting for 20 time points. We 

Fig. 3. (a) and (e) are true magnitude and phase activation maps; (b) and (f) are estimated activation maps as derived from CV-M&P; (c) and (g) are true β1 and γ1; 
(d) and (h) are estimated β1 and γ1 as derived from CV-M&P. 

Fig. 4. (a)-(c) are estimated activation maps as derived from MO, CV-R&I, and CV-M&P, respectively.  

Fig. 5. (a)-(c) are improperly estimated parameters as derived from MO and CV-R&I.  

Table 1 
Metrics of a single simulated dataset produced by the MO, CV-R&I, and CV-M&P models.  

Model Accuracy Precision Recall F1 Score AUC β1 slope γ1 slope Time (s) 

MO 0.9248 0.9726 0.5392 0.6938 0.8910 0.8630 NA 1.54 
CV-R&I 0.9688 0.9731 0.8253 0.8931 0.9868 1.0301 33.427 3.93 
CV-M&P 0.9680 0.9436 0.8481 0.8933 0.9896 0.9731 0.9462 17.87  
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model the expected BOLD response x by convolving this stimulus with a 
double-gamma HRF. Illustrations of both the designed stimulus and the 
expected BOLD response are provided in Fig. 2a and b, respectively, and 
are consistently used across all our simulation datasets. 

3.1.1.2. True activation map and true strength map. The true activation 
map contains three active regions on a 50 × 50 panel, comprising two 
circles and one square, each with a radius of five. The exact locations of 
these regions are depicted in Fig. 2c. We assign distinct types of acti
vation to each region: region 1 exhibits only magnitude activation, re
gion 2 exhibits only phase activation, and region 3 exhibits both 
magnitude and phase activation, corresponding to the types illustrated 
in Fig. 1a, c, and b, respectively. 

Utilizing the specifyregion function in the neuRosim library 
[38] in R [39], we initially generate a strength map with decay rates of 
0.05, 0.05, and 0.15 for the three regions, respectively. This setup en
sures that the central voxel of each active region has a strength of one, 
diminishing to zero towards the edges at the specified decay rate. For the 

true magnitude strengths, indicative of voxel response in magnitude to 
the stimulus, we multiply the strengths in regions 1 and 3 by 0.04909, 
following [6] who chose that value to mimic the standard deviation in 
real human data from empirical experience. We nullify the strengths in 
region 2, as represented in Fig. 3c. Similarly, for the true phase 
strengths, reflective of voxel response in phase, we multiply the 
strengths in regions 2 and 3 by a factor of π/36 and reduce the strengths 
in region 1 to zero, as illustrated in Fig. 3 g. This methodology ensures 
that each region’s activation profile is accurately mapped according to 
its designated stimulus response type. 

3.1.1.3. Simulating fMRI signals. We then simulate data according to Eq. 
(2): 

yv,Rt =
(
β0 + xtβv,1

)
cos
(
γ0 + utγv,1

)
+ εv,Rt, εv,Rt ∼ N

(
0, σ2),

yv,It =
(
β0 + xtβv,1

)
sin
(
γ0 + utγv,1

)
+ εv,It, εv,It ∼ N

(
0, σ2),

(2)  

where β0 = 0.4909, γ0 = π/4, and σ = 0.04909 are set constant for all 
voxels, and xt is the expected BOLD response x from Fig. 2b at time t. It 
should be noted that we also use u = x as the regressor for phase here 
when generating the data, but it could be its own neuronal electro
magnetic signal u for the phase in some cases. The signal-to-noise ratio 
for the magnitude (SNRMag) is thereby fixed at β0/σ = 10. The true 
values of β1 and γ1 generated previously in Figs. 3c and 3 g are used, 
yielding the contrast-to-noise ratios for magnitude (CNRMag) and phase 
(CNRPh) as detailed in Eq. (3): 

CNRMag =
(
maxβv,1

)/
σ = 0.04909

/
0.04909 = 1,

CNRPh =
(
maxγv,1

)/
SNRMag = (π/36)

/
10. (3)  

3.1.1.4. Results. Fig. 3 presents both the true and estimated activation 
maps for magnitude and phase as derived from the CV-M&P model, 
alongside the corresponding true and estimated parameters β1 and γ1. 
Notably, CV-M&P effectively identifies separate regions that are active 
in magnitude and phase, and provides proper estimates for the param
eters β1 and γ1. In the estimated activation maps (Figs. 3b and 3f), the 
overlap in the predicted active regions corresponds to the square-shaped 
region 3 in the true map (Fig. 2c), which is characterized by both 
magnitude and phase activation. When the predicted region 3 is 
excluded from these estimated maps, the remaining areas align well 
with the circular regions 1 and 2 in Fig. 2c, representing solely 
magnitude-active and solely phase-active voxels, respectively. 

By synthesizing the estimated activation maps for both magnitude 
and phase (Figs. 3b and 3f), we construct a composite activation map 
and compare it against results from MO and CV-R&I. Fig. 4 presents 
these comparative maps. Performance evaluation reveals that MO fails 
the competition, primarily due to its inability to detect the phase-only 
active region 2. Conversely, both CV-R&I and CV-M&P deliver 
competitive results. 

The analysis also extends to comparing the parameter estimates 
across the three models. As MO and CV-R&I do not explicitly charac
terize parameters β1 and γ1 in their models, we resort to indirect 
methods for their estimation. For the MO model, we use the estimated 
slope of the BOLD signal, β̂v,M1 , as an estimator for βv,1, while for CV- 
R&I, the square root of the sum of squares of the estimated slopes, 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

β̂v,R1

)2
+
(

β̂v,I1
)2

√

, serves as an estimator for βv,1. As for γ1, MO cannot 
estimate this parameter due to its limitation to magnitude-only data. In 
contrast, CV-R&I employs arctan

(
β̂v,I1/β̂v,R1

)
as an estimator for γ1. 

These results are illustrated in Fig. 5. Upon examination of Fig. 5a, we 
observe that while MO’s estimated β1 map appears to closely align with 
the true β1 map (Fig. 3c), it still slightly underestimates values in region 
3. Similarly, as seen in Fig. 5b, CV-R&I not only falsely estimates the 
non-existent β1 in the phase-only active region 2, but also tends to 
overestimate β1 in region 3. This overestimation of β1 in region 3 where 

Table 2 
Characteristics of true maps.  

Map size Number of active regions Radius Shape Decay rate (ρ)

50 × 50 3 2 to 6 sphere or cube 0 to 0.3  

Table 3 
Summary of average metrics across 100 simulated datasets produced by the MO, 
CV-R&I, and CV-M&P models. The values in parentheses are min, max, and 
standard deviation.  

Data 
Type 

Measure MO CV-R&I CV-M&P 

Mag. 
-only 

Accuracy 
0.9645(0.9208, 
0.9940, 0.0153) 

0.9555(0.9032, 
0.9916, 0.0188) 

0.9598(0.9132, 
0.9900, 0.0160) 

Precision 0.9647(0.9157, 
0.9917, 0.0164) 

0.9601(0.9078, 
0.9964, 0.0166) 

0.9317(0.8515, 
0.9805, 0.0224) 

Recall 0.7629(0.6052, 
0.9680, 0.0707) 

0.6966(0.5263, 
0.9406, 0.0840) 

0.7534(0.6111, 
0.9634, 0.0721) 

F1 Score 
0.8502(0.7366, 
0.9716, 0.0437) 

0.8046(0.6741, 
0.9515, 0.0557) 

0.8311(0.7294, 
0.9444, 0.0435) 

AUC 
0.9760(0.9485, 
0.9991, 0.0107) 

0.9605(0.9227, 
0.9963, 0.0154) 

0.9793(0.9605, 
0.9983, 0.0081) 

β1 slope 0.8696(0.7927, 
0.9466, 0.0327) 

0.8337(0.7451, 
0.9356, 0.0406) 

0.9771(0.9337, 
1.0170, 0.0190) 

γ1 slope NA NA NA 

Ph. 
-only 

Accuracy 
0.8638(0.7576, 
0.9428, 0.0418) 

0.9390(0.8696, 
0.9848, 0.0234) 

0.9459(0.8868, 
0.9832, 0.0201) 

Precision 
0.2102(0.0714, 
0.6000, 0.1097) 

0.9481(0.8829, 
0.9862, 0.0207) 

0.9192(0.8324, 
0.9735, 0.0303) 

Recall 0.0059(0.0017, 
0.0201, 0.0034) 

0.5718(0.4207, 
0.9026, 0.0970) 

0.6481(0.5146, 
0.9090, 0.0881) 

F1 Score 0.0114(0.0034, 
0.0373, 0.0065) 

0.7088(0.5831, 
0.9269, 0.0725) 

0.7569(0.6456, 
0.9225, 0.0604) 

AUC 
0.5277(0.4898, 
0.6001, 0.0214) 

0.9326(0.8844, 
0.9930, 0.0237) 

0.9544(0.9216, 
0.9952, 0.0150) 

β1 slope NA NA NA 

γ1 slope NA 
39.813(30.031, 
45.799, 3.3285) 

0.9439(0.8744, 
1.0271, 0.0289) 

Both 

Accuracy 0.9644(0.9192, 
0.9912, 0.0144) 

0.9835(0.9616, 
0.9984, 0.0071) 

0.9769(0.9544, 
0.9896, 0.0069) 

Precision 
0.9643(0.9017, 
0.9892, 0.0146) 

0.9798(0.9354, 
0.9967, 0.0106) 

0.9134(0.7870, 
0.9617, 0.0294) 

Recall 
0.7606(0.6358, 
0.9662, 0.0651) 

0.8949(0.8216, 
0.9925, 0.0362) 

0.9073(0.8457, 
0.9927, 0.0329) 

F1 Score 0.8489(0.7703, 
0.9592, 0.0398) 

0.9350(0.8926, 
0.9908, 0.0202) 

0.9097(0.8299, 
0.9539, 0.0208) 

AUC 0.9763(0.9537, 
0.9992, 0.0103) 

0.9939(0.9846, 
0.9999, 0.0035) 

0.9940(0.9873, 
0.9997, 0.0026) 

β1 slope 
0.8710(0.7879, 
0.9789, 0.0321) 

1.2346(1.1693, 
1.3360, 0.0305) 

0.9843(0.9365, 
1.0316, 0.0183) 

γ1 slope NA 
26.643(19.307, 
30.993, 2.4747) 

0.9534(0.8958, 
1.0146, 0.0253)  

Z. Wang et al.                                                                                                                                                                                                                                   



Magnetic Resonance Imaging 109 (2024) 271–285

277

voxels exhibit both magnitude- and phase-active, is consistent with the 
findings in [23]. Lastly, Fig. 5c reveals the CV-R&I’s estimated γ1 map 
significantly deviates from the true γ1 map, as showcased in Fig. 3 g. 

The numerical evaluation metrics are summarized in Table 1, where 
we employ accuracy, precision, recall, F1-score, and the area under the 
receiver operating characteristic curve (ROC-AUC) to gauge classifica
tion performance. We also employ the regression slope between true and 
estimated parameters to quantify the estimation performance, in which 
the closer it is to one, the better. In terms of classification, CV-M&P 
outperforms its counterparts in various key metrics, including recall, F1- 
score, and AUC. While the margin of superiority may not be pronounced, 
CV-M&P offers two distinct advantages over its counterparts: it allows 
for the independent prediction of magnitude and phase activation maps, 
as shown in Fig. 3b and 3f, while the other two approaches cannot, and 
provides accurate estimation for both β1 and γ1, as the slopes (0.9731 
and 0.9462) are close to one. Further evidence from multiple simulation 
studies, to be discussed in the subsequent section, reinforces these 
findings. 

3.1.1.5. Event-related designs. We consider in this Subsection and in 
Subsection 3.2 so-called block designs for task fMRI. However, event- 
related designs are also commonly used [40]. While these designs of 
course have different design matrices associated with them, our pro
posed CV-M&P model is able to accommodate them as well. In Appendix 
B, we conduct a simulation study similar to that presented here, but with 

an event-related design instead of a block design. The performance of 
the CV-M&P model is nearly identical to that that which is presented 
here, thus illustrating the wide applicability of the proposed approach. 

3.1.2. Multiple simulations 

3.1.2.1. Generating random maps and simulating fMRI signals. We 
generate 100 random true strength maps using the parameters outlined 
in Table 2 and the specifyregion function. The true strength maps 
are then scaled by factors of 0.04909 and π/36 to obtain 100 true β1 
maps and 100 true γ1 maps, respectively. Using Eq. (2) and the expected 
BOLD response x in Fig. 2b, we generate three datasets from each pair of 
true β1 and γ1 maps with the following assignments:  

• β1 present, γ1 absent (all active voxels are solely magnitude-active)  
• β1 absent, γ1 present (all active voxels are solely phase-active)  
• β1 present, γ1 present (all active voxels are both magnitude- and 

phase-active) 

The values for β0, γ0, and σ are held constant as specified in Section 
3.1.1, with values 0.4909, π/4, and 0.04909, respectively, resulting in 
CNRMag = 1 and CNRPh = (π/36)/10. In total, we have 300 datasets for 
analysis. 

3.1.2.2. Results. Table 3 presents the performance metrics for each 

Fig. 6. Estimated magnitude activation, β0, β1, phase activation, γ1, γ0 maps for a real human brain dataset as derived by the CV-M&P model.  
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method across these diverse datasets. In terms of classification, MO 
delivers superior performance in almost all evaluated metrics for data
sets featuring exclusively magnitude-active voxels, which is expected 
given its design specificity for magnitude-based activity. However, such 
an assumption of magnitude-only activity is often unrealistic in real- 
world applications. When considering datasets comprising of solely 
phase-active voxels, CV-M&P excels in all metrics except precision, 
thereby establishing its superiority in detecting phase-based activity. For 
mixed activity involving both magnitude and phase, CV-R&I takes the 
lead in accuracy, precision, and F1-score metrics, whereas CV-M&P 
dominates in recall and AUC. 

CV-M&P once again stands out with respect to parameter estimation. 
Specifically, its true vs estimated parameter slopes are close to one when 
the parameters are present in the simulation, indicating accurate esti
mations. In contrast, this metric from both MO and CV-R&I deviates 
from the ideal value of one. As explained by [23], under conditions 
where all active voxels are solely magnitude-active, the Cartesian model 

of [18] and the polar model of [13] (CV-R&I and CV-M&P, respectively) 
are approximately equivalent. Hence, in such scenario, CV-R&I can 
properly estimate β1, although not surpassing the performance of CV- 
M&P. In other scenarios, both MO and CV-R&I fall short, either failing to 
estimate γ1 or inaccurately estimating both β1 and γ1. 

3.2. Analysis of human CV-fMRI data 

In this study, we employ the experimental data previously analyzed 
by [19,22,23]. This dataset originates from a unilateral finger-tapping 
experiment conducted using a 3.0-Tesla General Electric Signa LX MRI 
scanner. The experimental design comprises 16.33 epochs, each con
sisting of alternating periods of 15 s on and 15 s off. Consequently, the 
total number of time points is T = 490, excluding the warm-up phase. 
The acquired dataset has seven slices, each with dimensions 96× 96, 
and our analysis focuses on the six most active slices. For all examined 
models, we set the number of parcels G = 25. Specific tuning parameters 

Fig. 7. Estimated activation maps for a real human brain dataset as derived by the MO, CV-R&I, and CV-M&P models.  
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are fixed based on the experience: for the MO model, ψ = Φ− 1(0.02); for 
CV-R&I, ψ = Φ− 1(0.1); and for CV-M&P, ψ = ω = Φ− 1(0.20). The 
thresholds for identifying active voxels are set to values as follows: 
0.8722 for both MO and CV-R&I, and 0.925 for CV-M&P, in alignment 
with Section 2.3 and the simulation studies. 

In Fig. 6, we present the results derived from the CV-M&P model. 
Distinct patterns are observed: the estimated β0 maps mirror the patterns 
of magnitude in the background, the estimated γ0 maps highlight the 
phase’s transition lines across different color zones, and both the esti
mated β1 and γ1 maps reflect patterns consistent with the estimated 
magnitude and phase activation maps. Such patterns are indicative of 
the accuracy of our approach in both classification and estimation. 

By integrating the magnitude- and phase-activation maps derived by 
CV-M&P model, we form comprehensive estimated activation maps. 
They are subsequently compared with activation maps estimated by MO 
and CV-R&I models, as shown in Fig. 7, revealing significant alignment. 
Specifically, the two central and central-left active regions detected by 
CV-M&P are consistent with the findings reported by [19,22,23]. 
Furthermore, these regions align with known anatomical areas typically 
activated during finger-tapping tasks. The central region may corre
spond to the Primary Motor Cortex (M1) or Supplementary Motor Area 
(SMA), both of which play pivotal roles in voluntary movement and 
motor planning [41,42]. Adjacently, the central-left region might 
represent the Primary Somatosensory Cortex (S1) or the Posterior Pa
rietal Cortex, responsible for tactile sensory information processing and 
sensory-motor integration, respectively [43]. Notably, beyond these 
well-established regions, CV-M&P uncovers additional active regions at 
the posterior of the brain. These could be caused by brain motion during 
the data collection. 

In terms of computational efficiency, MO, CV-R&I, and CV-M&P 
required 12.32 s, 32.59 s, and 910.20 s, respectively, to complete 103 

iterations. Despite CV-M&P’s computational demand and increased 
execution time, its drawbacks are mitigated by its potential for scal
ability. As highlighted in the works of [21,23], the employment of a 
brain parcellation strategy along with the sSGLMM spatial prior has 
minimal effects on the prediction results, as long as the total parcel 
number G is in a reasonable range. Given that this dataset can be further 
divided into more parcels for parallel processing, and considering our 
computational resources are currently limited to 16 CPU cores, the 
computational efficiency of the CV-M&P model can be substantially 
improved. 

4. Discussion 

Throughout our investigations on both simulated and real human 
datasets, the CV-M&P model consistently demonstrates its capability to 
precisely identify voxels that exhibit significant reactions to stimuli, 
whether in magnitude, in phase, or in a combination of both. Comparing 
with the polar model of [13] that uses hypothesis testing approaches 
[6,12–17], our fully Bayesian framework can capture the spatial corre
lations of fMRI data, and therefore improve the model flexibility. On the 
other hand, comparing with other fully Bayesian approaches, but based 

on the Cartesian model [18,22,23], our CV-M&P model rectifies the 
constraints inherent in the Cartesian models, which can detect active 
voxels but remains ambiguous about the exact type of the activation 
[16]. Moreover, the CV-M&P model excels in providing precise 
parameter estimates, offering a more nuanced framework for delin
eating brain activation patterns in task-based fMRI analyses. 

There are multiple avenues for advancing this research. These 
include the exploration of more complex models that account for tem
poral correlations, models that fit the non-circular data wherein the real 
and imaginary components of the signal are correlated, and efforts 
aimed at optimizing computational efficiency. Further, the equal-sized 
or equal-volume parcellation strategies have shown good empirical 
performance [21,23]. However, the reasons for this behavior have not 
been thoroughly investigated. We defer this to future work. 

Lastly, we remark that the model proposed in this paper is intended 
for and motivated by task-based fMRI studies. A large number of fMRI 
studies conducted now are with resting state fMRI [rsfMRI; [44]]. As 
rsfMRI is primarily concerned with learning networks and connectivity, 
rather than voxel- or ROI-specific task-related changes in signal, there 
would need to be fundamental changes to what we propose here to make 
it appropriate for such studies. We feel that extending our proposed 
work or otherwise thoroughly investigating the role of both magnitude 
and phase in the detection of resting-state connectivity is an avenue 
worth exploring. This could perhaps be done by following the work of 
[45], who studied correlations of complex-valued time series collected 
in cv-fMRI. We leave such research to future investigation. 
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Appendix A. Conditional Posterior Distributions for Gibbs Sampling 

We need the full conditional posterior distributions of 

βv, λv, γv,ωv, σ2
v , τ2

g, ξ
2
g, ηλ,v, δλ,g, κλ,g, ηω,v, δω,g, κω,g  

for the Gibbs sampling. All derivations will omit the subscript of g (parcel index) from the parcel-level parameters τ2
g , ξ

2
g , δλ,g, κλ,g, δω,g, κω,g, since all 

parcels run the algorithm identically. 
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A.1. Full conditional distributions of λv and ωv 

The full conditional distribution of λv (is) 

π
(
λv|yv

r , βv, γv,ωv, σ2
v , τ2, ξ2, ηλ,v

)
= B ern(Pλv ),

where 

Pλv = p
(
λv = 1|yv

r , βv, γv,ωv, σ2
v , τ2, ξ2, ηλ,v

)

=
p
(
λv = 1|ηλ,v

)

p
(
λv = 1|ηλ,v

)
+

L0

L1
⋅p
(
λv = 0|ηλ,v

)

=
Φ
(
ψλ + ηλ,v

)

Φ
(
ψλ + ηλ,v

)
+

L0

L1
⋅
[
1 − Φ

(
ψλ + ηλ,v

) ],

and L0 and L1 are the joint densities of yv, βv, λv, γv,ωv, σ2
v , τ2, ξ2 given λv = 0 and λv = 1. Let L be such joint density, that is, 

L = p
(
yv, βv, λv, γv,ωv, σ2

v , τ2, ξ2)∝p
(
yv|βv, λv, γv,ωv, σ2

v

)
p
(
βv|λv, τ2).

Define: 

Av =

(
Cv
Sv

)

, where Cv = diag[cos(UΩvγv) ], Sv = diag[sin(UΩvγv) ],

(Note, Av is orthogonal, i.e., A′
vAv = I2T.), then, 

p
(
yv|βv, λv, γv,ωv, σ2

v

)

=
(
2πσ2

v

)−
2T
2 exp

{

−
1

2σ2
v
(yv − AvXΛvβv)

′
(yv − AvXΛvβv)

}

=
(
2πσ2

v

)−
2T
2 exp

{

−
1

2σ2
v

[
y′

vyv − 2(AvXΛvβv)
′yv + (Λvβv)

′X′XΛvβv
]
}

,

and 

p
(
βv|λv, τ2) =

(
2πτ2)−

1+λv
2 exp

{

−
1

2τ2β′
vΛvβv

}

.

Thus, 

L∝
(
2πτ2)−

1+λv
2 exp

{

−
1

2σ2
v
[ − 2(AvXΛvβv)

′yv +(Λvβv)
′X′XΛvβv ] −

1
2τ2β′

vΛvβv

}

.

Let av be the flattened version of Av, that is, av is a 2T × 1 vector as 

av = Av1T =

(
cos(UΩvγv)

sin(UΩvγv)

)

Also, define x(2) as the second column of X, thus, x(2) is a T × 1 vector of expected BOLD response; define x*
(2) =

(
x(2)
x(2)

)

as a 2T × 1 vector to match 

the dimension, then, 

L0

L1
=

L|λv=0

L|λv=1

=
(
2πτ2)

1
2exp

{

−
1

2σ2
v

[
2βv,1

(
x*
(2) ⊙ av

)′
yv − 2βv,0βv,1x′

(2)1T − β2
v,1x′

(2)x(2)

]
+

1
2τ2β2

v,1

}

.

We flatten Av and use Hadamard product ⊙ here to lessen the computational burden. Similarly, the full conditional distribution of ωv is 

π
(
ωv|yv

r , βv, λv, γv, σ2
v , τ2, ξ2, ηv

)
= B ern(Pωv ),

where 

Pωv =
Φ
(
ψω + ηω,v

)

Φ
(
ψω + ηω,v

)
+ L0

L1
⋅
[
1 − Φ

(
ψω + ηω,v

) ],

where 
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L∝
(
2πξ2)−

1+ωv
2 exp

{
1
σ2

v
(AvXΛvβv)

′yv −
1

2ξ2γ′
vΩvγv

}

,

and 

L0

L1
=

L|ωv=0

L|ωv=1

=
(
2πξ2)

1
2exp

{
1
σ2

v

[(
Av|ωv=0 − Av|ωv=1

)
XΛvβv

]′
yv +

1
2ξ2γ2

v,1

}

.

Keep simplifying it, when λv = 0, 

L0

L1
=
(
2πξ2)1

2exp
{

1
σ2

v
βv,0

(
av|ωv=0 − av|ωv=1

)′
yv +

1
2ξ2γ2

v,1

}

.

When λv = 1, 

L0

L1
=
(
2πξ2)1

2exp
{

1
σ2

v

[(
βv,012T + βv,1x*

(2)

)
⊙
(

av|ωv=0 − av|ωv=1

) ]′
yv +

1
2ξ2γ2

v,1

}

.

A.2. Full conditional distribution of βv 

When λv = 1, the full conditional distribution of βv is 

π
(
βv|yv, λv = 1, γv,ωv, σ2

v , τ2, ξ2)

∝p
(
yv, βv, λv = 1, γv,ωv, σ2

v , τ2, ξ2)

∝p
(
yv|βv, λv = 1, γv,ωv, σ2

v

)
p
(
βv|λv = 1, τ2)

∝exp
{

−
1

2σ2
v
(yv − AvXβv)

′
(yv − AvXβv)

}

exp
{

−
1

2τ2β′
vβv

}

∝exp
{

−
1
2

[

β′
v
(AvX)

′
(AvX)

σ2
v

βv − 2β′
v
(AvX)

′

σ2
v

yv + β′
v

1
τ2βv

]}

= exp

⎧
⎪⎨

⎪⎩
−

1
2

⎡

⎢
⎣β′

v

(AvX)
′
(AvX) +

σ2
v

τ2 I

σ2
v

βv − 2β′
v
(AvX)

′

σ2
v

yv

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

= exp

⎧
⎪⎨

⎪⎩
−

1
2

⎡

⎢
⎣β′

v

X′X +
σ2

v

τ2 I

σ2
v

βv − 2β′
v
(AvX)

′

σ2
v

yv

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.

Therefore, 

π
(
βv|yv, λv = 1, γv,ωv, σ2

v , τ2, ξ2) = N 2

(
μβv

,Σβv

)
,

where 

μβv
=

(

X′X +
σ2

v

τ2 I
)− 1

(AvX)
′yv,

Σβv = σ2
v

(

X′X +
σ2

v

τ2 I
)− 1

,

where AvX can be calculated as 
[
av, x*

(2) ⊙ av

]
for faster computation. When λv = 0, it’s easy to show: 

π
(
βv,0|yv, λv = 0, γv,ωv, σ2

v , τ2, ξ2) = N

⎛

⎜
⎜
⎝
(Av1T)

′yv

T +
σ2

v
τ2

,
σ2

v

T +
σ2

v
τ2

⎞

⎟
⎟
⎠,

and βv,1 = 0 with probability 1, where Av1T is just av. 

A.3. Sampling γv 

We apply Metropolis-Hastings algorithm to sample γv. A random walk proposal, 
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γ*
v ∣γv ∼ N 2

(
Ωvγv, Ω′

vΣγv Ωv
)
,

is used, where γ*
v and γv are proposed parameter and current state, respectively, and Σγv is a tuning parameter. We use the current indicator of phase 

status, Ωv, to secure it proposes γ*
v =

(
γ*

v,0 ∕= 0
γ*

v,1 = 0

)

when the phase is inactive. Let pγv (⋅) be the proposal density, then the acceptance ratio is 

rγv =
π
(
γ*

v |yv, βv, λv,ωv, σ2
v , τ2, ξ2)pγv

(
γv|γ*

v

)

π
(
γv|yv, βv, λv,ωv, σ2

v , τ2, ξ2)pγv

(
γ*

v |γv
)

=
p
(
yv|βv, λv, γ*

v ,ωv, σ2
v

)
p
(
γ*

v |ωv, ξ2)

p
(
yv|βv, λv, γv,ωv, σ2

v

)
p
(
γv|ωv, ξ2),

where 

p
(
yv|βv, λv, γv,ωv, σ2

v

)
∝exp

{

−
1

2σ2
v
(yv − AvXΛvβv)

′
(yv − AvXΛvβv)

}

∝exp
{

1
σ2

v
(AvXΛvβv)

′yv

}

,

p
(
γv|ωv, ξ2)∝exp

{

−
1

2ξ2γ′
vΩvγv

}

.

Simplify the ratio, when λv = 0, 

rγv = exp
{

1
σ2

v
βv,0

(
av
⃒
⃒

γv=γ*
v
− av

⃒
⃒

γv=γv

)′
yv −

1
2ξ2

(
γ*,2

v,0 − γ2
v,0

)}

.

When λv = 1, 

rγv = exp
{

1
σ2

v

[(
βv,012T + βv,1x*

(2)

)
⊙
(

av
⃒
⃒

γv=γ*
v
− av

⃒
⃒

γv=γv

) ]′
yv −

1
2ξ2

(
γ*′

v γ*
v − γ′

vγv
)
}

.

We generate a dummy variable dγv ∼ U (0,1), and if dγv < rγv , we update γv by γ*
v, otherwise remain γv. 

A.4. Full conditional distribution of σ2
v 

Assigning a Jeffreys prior, p
(
σ2

v
)
∝1/σ2

v , we have: 

π
(
σ2

v |yv, ⋅
)
= ℐG

(
2T
2
,

1
2
(yv − AvXΛvβv)

′
(yv − AvXΛvβv)

)

.

Again, to save computational time, AvXΛvβv can be calculated as βv,0av when λv = 0, or 
(

βv,012T + βv,1x*
(2)

)
⊙ av when λv = 1. 

A.5. Full conditional distributions of τ2 and ξ2 

The full conditional distribution of τ2 should be related to all voxels’ β0’s and magnitude-active voxels’ β1’s. Assigning a Jeffreys prior, p
(
τ2)∝1/τ2, 

we have: 

π
(
τ2|yv, ⋅

)
= ℐG

(
1
2
∑V

v=1
1′

2Λv12,
1
2
∑V

v=1
β′

vΛvβv

)

.

Equivalently, 

π
(
τ2|yv, ⋅

)
= ℐG

(
1
2

(

V +
∑V

v=1
λv

)

,
1
2
∑V

v=1

[
β2

v,0 +
(
λvβv,1

)2
]
)

.

Similarly, the full conditional distribution of ξ2 should be related to all voxels’ γ0’s and phase-active voxels’ γ1’s, that is, 

π
(
ξ2|yv, ⋅

)
= ℐG

(
1
2
∑V

v=1
1′

2Ωv12,
1
2
∑V

v=1
γ′

vΩvγv

)

.

Equivalently, 

π
(
ξ2|yv, ⋅

)
= ℐG

(
1
2

(

V +
∑V

v=1
ωv

)

,
1
2
∑V

v=1

[
γ2

v,0 +
(
ωvγv,1

)2
]
)

.

A.6. Full conditional distributions of ηv, δ, and κ 

Let Qs = M′QM. then we follow the supplementary material in [23], we have: 

Z. Wang et al.                                                                                                                                                                                                                                   



Magnetic Resonance Imaging 109 (2024) 271–285

283

π
(
ηλ,v|λv, κλ

)
=

⎛

⎜
⎜
⎜
⎝

TN

(

0,
1
κλ

(
1 + mv

′Q− 1
s mv

)
, 0, ∞

)

if λv = 1

TN

(

0,
1
κλ

(
1 + mv

′Q− 1
s mv

)
, − ∞, 0

)

if λv = 0
,

π
(
ηω,v|ωv, κω

)
=

⎛

⎜
⎜
⎜
⎝

TN

(

0,
1
κω

(
1 + mv

′Q− 1
s mv

)
, 0, ∞

)

if ωv = 1

TN

(

0,
1
κω

(
1 + mv

′Q− 1
s mv

)
, − ∞, 0

)

if ωv = 0
,

where TN denotes the truncated normal distribution. Let ηλ =
(
ηλ,1,…, ηλ,V

)′ and ηω =
(
ηω,1,…, ηω,V

)′, then: 

π(δλ|ηλ, κλ) = N q

(
1
κλ
(Qs + M′M)

− 1M′ηλ ,
1
κλ
(Qs + M′M)

− 1
)

,

π(δω|ηω, κω) = N q

(
1
κω
(Qs + M′M)

− 1M′ηω ,
1
κω
(Qs + M′M)

− 1
)

.

Moreover, 

π(κλ|ηλ) = G amma

(

a =
V + 1

2
, b =

[
1
2

(
∑V

v=1

η2
λ,v

(
1 + mv

′Q− 1
s mv

)

)

+
1

2000

]− 1)

,

π(κω|ηω) = G amma

(

a =
V + 1

2
, b =

[
1
2

(
∑V

v=1

η2
ω,v

(
1 + mv

′Q− 1
s mv

)

)

+
1

2000

]− 1)

,

where b is the scale. 

Appendix B. Event-related fmri simulation study 

A simulated event-related fMRI signal is also used to verify the performance of the CV-M&P approach. Fig. B.8a displays the pulse stimulus in the 
event-related fMRI simulation, which differs from the block stimulus used in the task-related simulation shown in Fig. 2a. Utilizing the same pa
rameters described in Section 3.1.1, we simulate a dataset with three active regions, as depicted in Fig. B.8c. Fig. B.9 presents the estimated maps 
derived from CV-M&P. The approach’s performance is comparable to that observed in the task-related fMRI simulation. That is, it successfully 
predicted the activation maps individually in terms of magnitude and phase and estimated the parameters properly.

Fig. B.8. (a) Designed stimulus; (b) Expected BOLD response; (c) True activation map for an event-related fMRI simulation study.   
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Fig. B.9. (a) and (e) are true magnitude and phase activation maps; (b) and (f) are estimated activation maps as derived from CV-M&P; (c) and (g) are true β1 and γ1; 
(d) and (h) are estimated β1 and γ1 as derived from CV-M&P in an event-related fMRI simulation study. 
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