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Abstract

Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling

the exploration of brain activity through complex-valued signals. Traditional fMRI analyses have

largely focused on magnitude information, often overlooking the potential insights offered by phase

data, and therefore, lead to underutilization of available data and flawed statistical assumptions.

This dissertation proposes two efficient, fully Bayesian approaches for the analysis of complex-valued

functional magnetic resonance imaging (cv-fMRI) time series.

Chapter 2 introduces the model, referred to as CV-sSGLMM, using the real and imaginary

components of cv-fMRI data and sparse spatial generalized linear mixed model prior. This model

extends the Cartesian model proposed by Lee et al. (2007) through the incorporation of Gaussian

Markov random fields (GMRFs) and autoregressive models, enabling the capture of both spatial

and temporal correlations in cv-fMRI data. Notably, CV-sSGLMM utilizes brain parcellation and

parallel computation techniques to achieve reduction in computational time comparing with the

current state-of-the-art, without sacrificing predictive accuracy.

Chapter 3 presents the model characterizing magnitude and phase of the cv-fMRI data,

referred to as CV-M&P, which builds upon the polar model proposed by Rowe (2005a). This

model provides a nuanced mapping of brain activity by mapping magnitude and phase activations

individually in response to a stimulus. In doing so, it addresses a significant gap in the current

literature—specifically, the lack of models that efficiently incorporate phase information through

Bayesian methods.

Collectively, both models outperform existing approaches in some key predictive metrics

and deepen our understanding of the inherent complexities of cv-fMRI signals. These advancements

are promising for enhancing our understanding of healthy brain functions and may offer valuable

insights for early diagnosis of neurological disorders.
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Dedication

This work is dedicated to those living with brain diseases. Through advancements like

fMRI, we strive for earlier diagnosis and more effective treatment strategies. May progress in this

field bring hope and improved care for all affected.
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Chapter 1

Introduction

1.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-invasive imaging technique that has revolu-

tionized the field of medical diagnostics and research, particularly in the realm of neuroimaging.

Developed in the late 20th century, MRI employs magnetic fields and radiofrequency pulses to cre-

ate high-resolution, cross-sectional images of internal structures. It has become indispensable in

a variety of applications ranging from diagnosis of pathological conditions to the investigation of

complex physiological processes in the human brain.

The core technology of MRI relies on the phenomenon of nuclear magnetic resonance (NMR).

In an MRI study, a gradient magnetic field is applied, primarily affecting the hydrogen protons in the

brain due to their abundance. This magnetic field serves dual functions. Firstly, it aligns the spin of

protons, and when a coil is placed adjacent to the brain, the spinning protons generate a changing

magnetic field that induces a current in the coil, as per Faraday’s law of electromagnetic induction.

This induced electromotive force (EMF) serves as the initial signal captured by the MRI system.

Subsequent signal processing techniques, such as demodulation, are employed to transform this raw

EMF into a more interpretable form. Secondly, the gradient magnetic field spatially encodes the

region of interest. The recorded time-domain signals are transformed into k-space representations

through Fourier transformation methods. The signal in k-space is a representation of the proton

spin densities (PSDs) across spatial domains, thus enabling image reconstruction through inverse

Fourier transformations. Upon conversion back to the spatial domain, images are rendered based
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on contrasts in PSDs (Brown et al., 2014).

Functional magnetic resonance imaging (fMRI) is a subtype of MRI specifically optimized

for higher temporal resolution and functional analyses. While conventional MRI captures static

anatomical details, fMRI extends the utility by enabling the examination of metabolic functions

over time.

1.2 Blood-Oxygenation-Level-Dependent Signal and Brain Ac-

tivation

The blood-oxygenation-level-dependent (BOLD) signal serves as a proxy for neuronal activ-

ity, enabling fMRI to monitor dynamic changes in brain activity over time indirectly but effectively

(Bandettini et al., 1992). In task-based fMRI experiments, subjects are exposed to specific inter-

mittent stimuli, such as visual cues or motor tasks. Neuronal activation in targeted brain regions

increases in response to these stimuli, elevating local oxygen consumption. This metabolic alteration

triggers changes in the BOLD signal within the affected regions. Furthermore, the BOLD fluctu-

ations impact local magnetic susceptibility, thereby affecting the resulting fMRI signal (Lindquist,

2008).

The existing literature has demonstrated that the expected BOLD response in a brain

region undergoing activation can be accurately modeled by the convolution of a “boxcar” binary

stimulus function with either a gamma or double-gamma hemodynamic response function (HRF)

(Boynton et al., 1996; Lindquist et al., 2009). This “boxcar” stimulus comprises recurring on-off

periods, as illustrated in Figure 1.1 in the upper section. Upon convolution with the double-gamma

HRF, a modeled expected BOLD response is generated, which is represented in the lower section

of Figure 1.1. Armed with this expected BOLD response, one can then identify regions within the

brain where the temporal fluctuations in the fMRI signal significantly align with the modeled BOLD

response. Such regions are thereby classified as being “active” in response to the stimulus.
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Figure 1.1: Designed stimulus and expected BOLD response.

1.3 Magnitude-Only and Complex-Valued fMRI Signal Anal-

yses

MRI inherently generates complex-valued signals characterized by real and imaginary com-

ponents. This complex structure arises from the forward and inverse Fourier transformations exe-

cuted in the data collection process, which are affected by phase imperfections (Brown et al., 2014).

Traditionally, fMRI studies that aim to map brain activity have predominantly focused on ana-

lyzing only the magnitude of these MR signals (Friston et al., 1994; Lindquist, 2008). The phase

components are frequently disregarded during the preprocessing steps.

The magnitude-only analytical framework has its limitations. The first major limitation is

that the omission of phase data results in the underutilization of valuable information that could

be pertinent to understanding neurophysiological mechanisms. The second limitation, particularly

relevant in studies that employ statistical modeling, concerns the statistical assumptions made dur-

ing the identification of active voxels (volumetric pixels in the imaging data). In such analyses, a

voxel is identified as “active” if the magnitude of its complex-valued fMRI (cv-fMRI) signal signifi-

cantly varies with the expected BOLD response to a given stimulus. This practice assumes that the

error terms in the models are normally distributed. However, while the original real and imaginary
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components may follow a normal distribution, the magnitude actually adheres to a Ricean distri-

bution (Rice, 1944; Gudbjartsson and Patz, 1995). The Ricean distribution approximates a normal

distribution only when the signal-to-noise ratio (SNR) is sufficiently high. Given that high SNRs

are not universally guaranteed in fMRI studies, this statistical assumption becomes less reliable and

exacerbates the limitation, consequently diminishing the power and reliability of the analysis.

In contrast, emerging research utilizing cv-fMRI data offers a more nuanced and compre-

hensive approach (Rowe and Logan, 2004, 2005; Rowe, 2005a,b; Lee et al., 2007; Rowe et al., 2007;

Rowe, 2009; Adrian et al., 2018; Yu et al., 2018, 2023). By incorporating both the real and imaginary

components of the MR signals, cv-fMRI studies pave the way for the development of more robust

and statistically powerful models. These models are better to handle variations in SNR and can

fully exploit the available data, thereby offering potentially deeper and more accurate insights into

task-related neuronal activity.

1.4 Research Objectives

Existing approaches to fMRI data analysis exhibit limitations that either hinder the inter-

pretability of findings or sacrifice the richness of the available data. For instance, non-model-based

techniques like support vector machine (SVM; Wang et al., 2007), independent component analysis

(ICA; Calhoun et al., 2002; Yu et al., 2015), and linear discriminant analysis (LDA; Mandelkow et al.,

2016) fall short in capturing the inherent spatiotemporal correlations in fMRI time series. Moreover,

although these methods offer some level of prediction accuracy, their lack of interpretability renders

them suboptimal for comprehensive scientific inquiry.

Conversely, model-based strategies, particularly those employing a fully Bayesian frame-

work, have the advantage of capturing spatiotemporal correlations naturally occurring in the fMRI

data. However, most of these approaches have been applied solely to magnitude-only fMRI data

(Zhang et al., 2015; Musgrove et al., 2016), thereby discarding half of information from complex-

valued signals and introducing problematic statistical assumptions, as detailed in Section 1.3.

Emerging research in cv-fMRI signal analysis does show promise. These approaches attempt

to address the limitations of magnitude-only studies by incorporating both the real and imaginary

components of the MR signals. Despite these advances, many of these studies rely on hypothesis

testing and lack the flexibility to formulate comprehensive spatiotemporal models (Rowe and Logan,
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2004, 2005; Rowe, 2005a,b; Lee et al., 2007; Rowe et al., 2007; Rowe, 2009; Adrian et al., 2018),

thereby leaving room for methodological improvement.

Given this landscape, we propose two fully Bayesian approaches for brain activity mapping

using single-subject cv-fMRI time series. These models aim to achieve a confluence of important

objectives:

• To effectively utilize both the real and imaginary components of the fMRI data, thereby

overcoming the limitations associated with magnitude-only analyses.

• To capture the inherent spatiotemporal correlations within the fMRI data, thus enhancing the

predictive accuracy of the models.

• To deliver computational efficiency, thereby making the models feasible for application in both

academic and clinical settings.

Chapter 2 builds upon the Cartesian model proposed by Lee et al. (2007), with a focus on

modeling both the real and imaginary components of cv-fMRI signals. Chapter 3 extends the polar

model proposed by Rowe (2005a), aiming to characterize both the magnitude and phase components

of cv-fMRI signals. These models are designed to not only accurately predict active voxels but also to

quantify the intensity of their activation. Successful completion of these objectives will advance our

understanding of healthy brain function and hold promise for the non-invasive and early diagnosis

of neurological disorders, such as Alzheimer’s disease (Machulda et al., 2003).
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Chapter 2

Efficient Fully Bayesian

Approaches to Brain Activity

Mapping with Complex-Valued

fMRI Data: Analysis of Real and

Imaginary Components in a

Cartesian Model

2.1 Introduction

In this chapter, we propose a fully Bayesian approach based on Lee et al. (2007)’s Cartesian

model for brain activity mapping using single-subject cv-fMRI time series. Specifically, we aim

to determine which voxels’ fMRI signal, in terms of either real or imaginary components, change

significantly in response to a particular task, as well as the amount of the change. Our proposed

approach uses autoregressive models for the temporal correlations and Gaussian Markov random
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fields (GMRFs; Rue and Held, 2005) to capture spatial associations in the cv-fMRI data. Moreover,

we employ image partitioning and parallel computation to facilitate computationally efficient Markov

chain Monte Carlo (MCMC; Gelfand and Smith, 1990) algorithms.

The remainder of the chapter is organized as follows. Section 2.2 details our proposed

model, outlines the priors and posteriors, and explains our strategy for brain partitioning. We

demonstrate estimation and inference in Section 2.3, where we use simulated datasets to test the

performance of our model in terms of the determination of brain activity maps. Section 2.4 shows

the results of implementing our proposed approach on cv-fMRI data obtained from a real finger-

tapping experiment. Lastly, Section 2.5 summarizes our findings, highlights our contributions, and

outlines potential work for future research in this domain.

2.2 Model

In this section, we present our model for brain activity mapping with cv-fMRI data, including

an equivalent real-valued representation. We also describe the brain parcellation strategy for parallel

computation. We derive the posterior distribution of the parameters of interest, as well as an MCMC

algorithm for accessing it.

2.2.1 Model Formulation

The fMRI signals, both real- and complex-valued, are known to exhibit temporal corre-

lations. This can be captured by autoregressive (AR) error structure. Thus, our complex-valued

model is based on that proposed by Lee et al. (2007), with some modifications. For the vth voxel,

v = 1, ..., V , the measured signal is modeled as

yv = xβv + rvρv + εv, (2.1)

where all terms are complex-valued except x. The term yv ∈ CT is the vector of signals at voxel

v collected at evenly-spaced time points, where T is the total observed time points, and x ∈ RT

is the vector of the expected BOLD response associated with a particular stimulus, with βv ∈ C

the associated regression coefficient. We assume that low-frequency trends in yv have been removed

by preprocessing, and that both yv and x are centered. The term rv ∈ CT is the vector of lag-1
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prediction errors for the assumed AR(1) model, with ρv ∈ C the scalar autoregression coefficient. The

AR(1) model has been shown to often be sufficient for capturing temporal dynamics in fMRI data

Cox (1996). We suppose that the error term εv follows the standard complex normal distribution,

that is, εv ∼ CNT (µ
v = 0,λv = 2σ2

vI,C
v = 0), where CNT denotes a complex normal distribution of

dimension T with mean µv, complex-valued, Hermitian and non-negative definite covariance matrix

λv, and complex-valued symmetric relation matrix Cv. In Appendix A.1, we provide details similar

to those presented by Rowe (2009) that demonstrate the equivalence between the model of Lee et al.

(2007) and the cv-fMRI model proposed by Rowe and Logan (2004) with constant phase.

Picinbono (1996) and Yu et al. (2018) provide an equivalent real-valued representation of

model (2.1) as

yvRe

yvIm


︸ ︷︷ ︸

yv
r

=

x 0

0 x


︸ ︷︷ ︸

Xr

βvRe
βvIm


︸ ︷︷ ︸

βv
r

+

rvRe −rvIm

rvIm rvRe


︸ ︷︷ ︸

Rv
r

ρvRe
ρvIm


︸ ︷︷ ︸

ρv
r

+

εvRe

εvIm


︸ ︷︷ ︸

εv
r

, (2.2)

where all terms are real-valued. Using the symbols in the underbraces, this is more concisely written

as

yvr = Xrβ
v
r +Rv

rρ
v
r + εvr , εvr ∼ N2T (0,Σ

v),

where

Σv =

Σv
Re,Re Σv

Re,Im

Σv
Im,Re Σv

Im,Im

 ,

and

Σv
Re,Re =

1
2Re(λ

v +Cv) = σ2
vIT , Σv

Re,Im = 1
2Im(−λv +Cv) = 0T ,

Σv
Im,Re =

1
2Im(λv +Cv) = 0T , Σv

Im,Im = 1
2Re(λ

v −Cv) = σ2
vIT .

Observe that our assumption on the covariance structure here simply means that Σv = σ2
vI2T . We

assign the voxel-specific variances σ2
v and autoregression coefficient ρvr Jeffreys prior and uniform

prior, respectively. That is, p(σ2
v) = 1/σ2

v and p(ρvr) = 1, for v = 1, . . . , V .

2.2.2 Brain Parcellation and Spatial Priors

In addition to temporal dependence, fMRI signals also exhibit spatial associations. These

spatial dependencies can originate from several sources, including the inherent noise of the data
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(Krüger and Glover, 2001), unmodeled neuronal activation (Bianciardi et al., 2009), and preprocess-

ing steps, such as spatial normalization (Friston et al., 1995), image reconstruction (Rowe et al.,

2009), and spatial smoothing (Mikl et al., 2008). Hence voxels, as artificial partitions of the human

brain, often exhibit behavior similar to that of their neighbors. These spatial dependencies can be

modeled by imposing spatial structure in the prior on βv or the hyperparameters in such priors.

Brain Parcellation Musgrove et al. (2016) propose a brain parcellation technique that seeks

to identify active voxels within each parcel/partition, and subsequently combines these results to

generate a comprehensive whole-brain activity map. The authors partition their brain images into

initial parcels of size approximately 500 voxels each. If a parcel is found to be too large or too small,

it is broken down into voxels and these voxels are merged into adjacent parcels while ensuring the

merged parcels contain less than 1000 voxels each. Alternatively, the partitioning strategy could be

based on anatomical atlases such as Brodmann areas (Amunts et al., 2000; Tzourio-Mazoyer et al.,

2002), or based on equal geometric size in the image rather than equal numbers of contained voxels.

Musgrove et al. (2016) remark that this method of partitioning induces negligible edge effects, that

is, the classification of voxels on the borders of parcels is not strongly affected.

In our study, we partition the two- or three-dimensional fMRI image into G parcels of

approximately equal geometric size. We then process each parcel independently using the same

model and method, facilitating parallel computation and hence computational efficiency. We find

that our parcellation strategy incurs minimal edge effects, echoing the observations of Musgrove

et al. (2016). We discuss the optimal number of parcels and corresponding number of voxels in each

parcel in Section 2.3.

Prior Distribution of βv For parcel g, g = 1, . . . , G, containing Vg voxels, a voxel v (v =

1, . . . , Vg) is classified as an active voxel under the stimulus if its regression coefficient of slope

βv = βvRe + iβvIm ̸= 0, where i is the imaginary unit. As this is a variable selection problem, we use

a spike-and-slab prior (Mitchell and Beauchamp, 1988; Yu et al., 2018):

βv | λv ∼ λvCN1(0, 2τ
2
g , 0) + (1− λv)I0, (2.3)

where I0 denotes the point mass at 0. The binary indicator λv ∈ {0, 1} reflects the status of a voxel.

Specifically, λv = 1 indicates that voxel v is responding to the task, while λv = 0 otherwise. We take
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τ2g ∈ R to be constant across all voxels within each parcel. Yu et al. (2018) shows that a real-valued

representation of (2.3) is given by:

βvr =

βvRe
βvIm

 | λv ∼ N2(0, λvτ
2
g I).

The parcel specific variances τ2g are assigned a Jeffreys prior, p(τ2g ) = 1/τ2g , g = 1, . . . , G.

Spatial Prior on λv To further reduce computational effort and to capture pertinent spatial

structure with a low-dimensional representation, we employ the sparse spatial generalized linear

mixed model (sSGLMM) prior, as developed by Hughes and Haran (2013) and Musgrove et al.

(2016), which is in turn an extension of the the prior proposed by Reich et al. (2006). Such priors

use GMRFs and reduce the dimension by examining the spectra of the associated Markov graphs.

For voxel v (v = 1, ..., Vg) within parcel g (g = 1, ..., G), we suppose that

λv | ηv
iid∼ Bern {Φ(ψ + ηv)} ,

ηv | δg ∼ N1 (m
′
vδg, 1) ,

δg | κg ∼ Nq

{
0, (κgMg

′QgMg)
−1
}
,

κg ∼ Gamma (aκ, bκ) ,

(2.4)

where Φ(·) denotes the CDF of standard normal distribution and ψ ∈ R is a fixed tuning parameter.

The terms m′
v, Mg, and Qg are derived from the adjacency matrix Ag of parcel g. The adjacency

matrix Ag ∈ {0, 1}Vg×Vg is such that Ag,uv = 1 if voxels u and v are neighbors in the image, and 0

otherwise, where “neighbor” is defined by the user. Typically, voxels that share an edge or a corner

are taken to be neighbors. The matrix Mg ∈ RVg×q contains the first q principal eigenvectors of

Ag, typically with q ≪ Vg. The term m′
v is a 1 × q row vector of “synthetic spatial predictors”

(Hughes and Haran, 2013) corresponding to the vth row of Mg. The matrix Qg = diag(Ag1Vg
)−Ag

is the graph Laplacian. The term δg is a q× 1 vector of spatial random effects, and κg is the spatial

smoothing parameter.

The design of the prior distribution for binary indicator λv aims to capture both spatial

dependencies and the sparsity of active voxels. This reflects the hypothesis that a voxel is more

likely to be active/inactive if their neighboring voxels are also active/inactive (Friston et al., 1994;
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Smith and Fahrmeir, 2007). Furthermore, in the context of simple tasks, only a small percentage of

voxels across the entire brain are expected to be active (Rao et al., 1996; Epstein and Kanwisher,

1998). Thus the sSGLMM prior is well-suited to the work and compatible with the parcellation

approach. Hughes and Haran (2013) remark that Mg is capable of capturing smooth patterns of

spatial variation at various scales.

The parameters ψ, q, aκ, and bκ are fixed a priori and determined based on several factors.

In our simulation studies, we examine various values of ψ to identify the one providing the highest

prediction accuracy. For real human datasets, the initial value of ψ is set to Φ−1(0.02) = −2.05 for

all voxels, following the suggestion of Musgrove et al. (2016). This value can be further adjusted

based on the proportion of active voxels detected in previous experiments. We set q = 5 (when

Vg is approximately 200) per Hughes and Haran (2013), indicating that such a reduction is often

feasible. We find there is no detectable difference using larger q. The shape and scale parameters of

the gamma distribution, aκ = 1
2 and bκ = 2000 respectively, are selected to yield a large mean for

κg (aκbκ=1000). This choice serves to reduce the chances of creating misleading spatial structures

in the posterior distribution, mitigating the risk of identifying spurious brain activity patterns that

could be attributed to noise or other confounding factors.

2.2.3 MCMC Algorithm and Posterior Distributions

We use Gibbs sampling to obtain the joint and marginal posterior distributions of parameters

of interest. The necessary full conditional distributions and derivations are outlined in Appendix A.2.

The fixed-width approach proposed by Flegal et al. (2008) is used to diagnose convergence. Specifi-

cally, we consider the algorithm to have converged if the Monte Carlo standard error (MCSE) of any

λv is less than 0.05. In our numerical studies that follow, we run 103 iterations. We take the means

of the sampled parameters (after discarding burn-in iterations) as the point estimates. Active voxels

are determined by λ̂v > 0.8722 (Smith and Fahrmeir, 2007), and β̂vRe and β̂
v
Im are used to construct

the estimated strength maps, indicating how strongly they react with the simulus, computed as√
(β̂vRe)

2 + (β̂vIm)2.
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2.3 Simulation Studies

In this section, we simulate three types of two-dimensional complex-valued time series of

fMRI signals: data with iid noise, data with noise following AR(1) temporal dependence, and a more

realistic simulated iid dataset imitating the human brain. We evaluate three models based on their

performance in both classification and estimation fidelity. The models under consideration include:

• The model of Musgrove et al. (2016), which uses a sSGLMM prior for magnitude-only data

and incorporates brain parcellation (denoted as MO-sSGLMM).

• The model of Yu et al. (2018) for cv-fMRI, which does not incorporate a spatial prior or brain

parcellation (denoted as CV-nonSpatial). In this model, the prior for λv in model (2.4) is

taken to be λv | ηv
iid∼ Bern(ηv), ηv ∼ Beta(1, 1).

• Our proposed model, which uses an sSGLMM prior for complex-valued data and incorporates

brain parcellation (denoted as CV-sSGLMM).

All three models are fully Bayesian, suitable for autoregressive noise, and leverage Gibbs sampling to

approximate their respective posterior distributions. Both MO-sSGLMM and CV-sSGLMM use the

best combination of parcel number G and tuning parameter ψ in terms of the prediction accuracy

(G = 9 and ψ = Φ−1(0.47) for both), and determine the active voxels by thresholding at λ̂v > 0.8722.

The CV-nonSpatial model uses a threshold of 0.5, as suggested by Yu et al. (2018).

Following the model comparisons, we concentrate on our proposed CV-sSGLMM model to

examine the impacts of the tuning parameter ψ, the number of parcels G, and the length of time

series T . Additional results for marginal posterior distributions, time series, and phase are provided

in Appendix A.3.

All of the results are generated by running the code on a custom-built desktop computer

with an Intel Core i9-9980XE CPU (3.00GHz, 3001 Mhz, 18 cores, 36 logical processors), NVIDIA

GeForce RTX 2080 Ti GPU, 64 GB RAM, and operating on Windows 10 Pro.

2.3.1 Simulated Datasets with IID Noise and AR(1) Noise

We discuss how we generate the true maps and simulate fMRI signals here, followed by the

results.
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Figure 2.1: (a) Designed stimulus; (b) Expected BOLD response; (c) True activation map; (d) True
strength map.

Designed Stimulus, Expected BOLD Response, and True Activation/Strength map

We use the same pattern of stimulus as simulated by Yu et al. (2018). The designed stimulus is

a binary signal s consisting of five epochs, each with a duration of 40 time points, resulting in a

total of T = 200 time points. Within each epoch, the stimulus is turned on and off for an equal

duration of 20 time points. The expected BOLD response, denoted as x, is generated by convolving

the stimulus signal with a double-gamma HRF. Both the designed stimulus and expected BOLD

response, depicted in Figures 2.1a and 2.1b, are shared for all simulated datasets.

To simulate 100 replicates on a 50 × 50 panel, we use the specifyregion function in the

neuRosim library (Welvaert et al., 2011) in R (R Core Team, 2023). Each map features three non-

overlapping active regions with varying characteristics such as centers, shapes, radii, and decay rates

as shown in Table 2.1. The central voxel of an active region has a strength of one, indicating it

reacts strongest with the stimulus, while the strengths of the surrounding active voxels decrease

based on their distance to the center and the decay rate ϱ. These strengths are further scaled by a

multiplier of 0.04909 (which determines the contrast-to-noise ratio via Eq. (2.5)), yielding a range of

0 to 0.04909. Examples of the true activation map and true strength map are shown in Figures 2.1c

and 2.1d.

Simulating fMRI Signals with Non-AR Noise and AR(1) Noise We simulate 100 datasets

with iid noise using the expected BOLD response and each true strength map for CV-nonSpatial
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Table 2.1: Characteristics of true maps.

Map size Number of active regions Radius Shape Decay rate (ϱ)
50×50 3 2 to 6 sphere or cube 0 to 0.3

and CV-sSGLMM. We then extract the moduli to use with MO-sSGLMM. The cv-fMRI signal of

voxel v at time t is simulated by:

yvt,Re = (β0 + βv1xt)cos(θ) + εvt,Re, εvt,Re ∼ N (0, σ2),

yvt,Im = (β0 + βv1xt)sin(θ) + εvt,Im, εvt,Im ∼ N (0, σ2),

(2.5)

where xt represents the expected BOLD response from Figure 2.1b at time t, and βv1 refers to the true

strength of voxel v taken from Figure 2.1d. The phase, θ, is set to be the constant π/4, and σ is set

to the constant 0.04909. As a result, the maximum contrast-to-noise ratio (CNR) is maxβv1/σ = 1.

We determine the intercept β0 based on the signal-to-noise ratio (SNR) such that SNR = β0/σ = 10,

leading to β0 = 0.4909.

Next, we generate 100 datasets with AR(1) noise in a similar manner as Eq. (2.5). The

difference lies in the simulation of error terms, which is done so that

εvt,Re
εvt,Im

 =

0.2 −0.9

0.9 0.2


εvt−1,Re

εvt−1,Im

+

ξvRe
ξvIm

 ,

ξvRe
ξvIm

 ∼ N2

(
0, σ2I

)
.

This is a real-valued equivalent of the complex AR(1) error model:

εvt = (0.2 + 0.9i)εvt−1 + ξv, ξv ∼ CN1(0, 2σ
2, 0). (2.6)

Results Results from our simulations are displayed in Figure 2.2, which depicts the estimated

maps for a single dataset. The yellow grid lines correspond to the partitions in cases of brain par-

cellation. The performance across the three models reveals a consistent trend. All models perform

well for the iid case, while MO-sSGLMM fails to detect any activity in the presence of the AR(1)

noise. This is because the complex-valued AR structure in equation (2.6) cannot be recovered after

extracting the moduli of the data. Further quantitative results, such as the receiver operating charac-

teristic area under curve (ROC-AUC), true vs estimated strength regression slope, true vs estimated
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strength concordance correlation coefficient (CCC), and true vs estimated strength pairwise mean

square error (X-Y pairwise MSE), are illustrated in Figure 2.3. These offer a comprehensive per-

formance evaluation in terms of classification and estimation. Figure 2.3 shows similar comparative

performance as can be gleaned from Figure 2.2. All procedures do well in the presence of iid noise,

whereas both complex-valued models considerably outperform the magnitude-only model when the

errors are correlated. In each case, we can observe slightly better MSE, CCC, and estimation fidelity

(Figure 2.3(b), (c), (d), (f), (g), (h)), but these are small when compared to the outperformance of

the complex-valued models versus magnitude only.

Table 2.2 summarizes the average metrics across 100 iid noise and 100 AR(1) noise replicated

datasets. In the iid case, the F1-score, slope, CCC, and X-Y MSE clearly favor MO-sSGLMM,

followed by our CV-sSGLMM, and CV-nonSpatial ranks last. This demonstrates the proficiency of

MO-sSGLMM on datasets where the necessity to capture complex-valued noise dependence is not

crucial. The ROC-AUC score of MO-sSGLMM is comparable to that of CV-nonSpatial, and slightly

surpasses that of our proposed CV-sSGLMM.

In the analysis of AR(1) datasets, our proposed CV-sSGLMM shows a clear advantage over

the two competitors. Due to MO-sSGLMM’s limitations already shown, we focus our compari-

son here between CV-nonSpatial and CV-sSGLMM. The CV-sSGLMM outperforms CV-nonSpatial

across multiple metrics, such as F1-score, slope, CCC, and X-Y MSE. The superior performance of

the CV-sSGLMM in terms of both classification and estimation can be attributed to the inclusion

of the sSGLMM prior. In addition to our results, the value of using spatial priors to enhance the

model’s performance on correlated datasets has been demonstrated by Yu et al. (2023). Perhaps

the most notable and favorable performance of our proposed model is in the vastly computational

efficiency due to the brain parcellation and parallel computation, 5.39 seconds with CV-sSGLMM

versus 42.2 seconds for the CV-nonSpatial. In other words, we obtain results as good or better than

current state-of-the-art, but are able to do so 87% faster.

Effects of Experimental and Parameter Settings on CV-sSGLMM The performance of our

CV-sSGLMM is determined in part by three choices: the tuning parameter ψ, the parcel number G,

and the time length T . Here we assess their influence using the AR(1) data exclusively. For a single

dataset, estimated activation maps generated from varying these settings are depicted in Figure 2.4,

with their corresponding estimated strength maps displayed in Figure 2.5. A summary of average
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Figure 2.2: (a)-(c) are estimated activation maps for a non-AR dataset as produced by the MO-
sSGLMM, CV-nonSpatial, and CV-sSGLMM models, respectively. (d)-(f) are estimated activation
maps for an AR(1) dataset, as derived from the same models. (g)-(l) are the corresponding estimated
strength maps.
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Figure 2.3: (a)-(d) are the ROC curves and plots comparing true versus estimated strength for a
non-AR dataset. (e)-(h) are analogous plots for an AR(1) dataset.

Table 2.2: Summary of average metrics across 100 non-AR and 100 AR(1) datasets produced by the
MO-sSGLMM, CV-nonSpatial, and CV-sSGLMM models.

AR type Mode Accuracy Precision Recall F1 Score AUC Slope CCC X-Y MSE Time (s)

non-AR

MO-sSGLMM 0.9693 0.9440 0.8160 0.8741 0.9774 0.8586 0.9008 2.06e-5 2.4

CV-nonSpatial 0.9540 0.9632 0.6687 0.7853 0.9751 0.6771 0.8222 3.04e-5 41.9

CV-sSGLMM 0.9622 0.9277 0.7742 0.8424 0.9625 0.8186 0.8627 2.54e-5 5.51

AR(1)
CV-nonSpatial 0.9765 0.9733 0.8407 0.9012 0.9927 0.8040 0.9096 1.69e-5 42.2

CV-sSGLMM 0.9797 0.9381 0.9039 0.9201 0.9879 0.8816 0.9145 1.60e-5 5.39
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metrics over 100 replicated datasets is shown in Table 2.3.

Figure 2.4(a)-(c) illustrates the results using ψ values of Φ−1(0.02), Φ−1(0.20), Φ−1(0.35),

respectively, which govern the a priori likelihood of a voxel being determined active. Along with

Figure 2.2(f) using ψ = Φ−1(0.47), we can observe a trade-off in selecting ψ: larger values lead to an

increase in active voxels and false positives, whereas smaller values result in fewer active voxels and

increased false negatives, all of which are as expected. In a simulated scenario, the optimal ψ can be

determined by maximizing metrics like prediction accuracy or F1-score. In practical applications,

ψ can be tuned to achieve a target percentage of active voxels based on prior experiments, cross-

validation, WAIC (Watanabe, 2010), etc.

The effects of varying G = 1, 4, 16 are exhibited in Figure 2.4(d)-(f), respectively. Along with

Figure 2.2(f) using G = 9, we observe negligible edge effects, that is, voxel classifications at parcel

borders remain unaffected. Some metrics, such as F1-score, slope, CCC, and X-Y MSE, even exhibit

slight improvements through G = 1, 4, 9. Moreover, the computation time drops significantly as G

increases, as expected. These results coincide with the findings of Musgrove et al. (2016). However,

with G = 16, performance starts decreasing compared to that of using G = 9 due to insufficient

number of voxels within each parcel. The choice of G and corresponding parcel size Vg can be guided

by prior experience or domain-specific knowledge of, e.g., anatomical regions.

Figure 2.4(g)-(i) depicts the impact of varying the time length T = 80, 500, 1000, respec-

tively. The length of each epoch remains the same as 40 time points so that the number of epochs

will change correspondingly. Along with Figure 2.2(f) using T = 200, we observe improvements

in both classification and estimation as T increases. In this case, an accuracy of 100% is achieved

when T = 1000, and its estimated strength map almost perfectly reproduces the truth. It is worth

noting that we adopt a relatively low ψ = Φ−1(0.02) for T = 1000, suggesting a stringent selection

of active voxels. Thus, when an ample number of repeated epochs are available for the stimulus,

the signal is strong enough to let us select most of the positive voxels while avoiding false positives.

This suggests that choosing a low ψ can enhance discriminative capability.

2.3.2 Realistic Simulation

Here we simulate a dataset similar to that has done by Yu et al. (2018) in which we mimic

the environmental conditions of a human brain. The data contain iid noise. The dataset comprises

seven slices, each of size 96 × 96 voxels, with signals generated across T = 490 time points. The
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Figure 2.4: (a)-(c) are estimated activation maps for an AR(1) dataset as produced by the CV-
sSGLMM model using various tuning parameters ψ’s. (d)-(f) are estimated activation maps using
various parcel numbers G’s. (g)-(i) are estimated activation maps derived from datasets with various
time lengths T ’s.
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Figure 2.5: (a)-(c) are estimated strength maps for an AR(1) dataset as produced by the CV-
sSGLMM model using various tuning parameters ψ’s. (d)-(f) are estimated strength maps using
various parcel numbers G’s. (g)-(i) are estimated strength maps derived from datasets with various
time lengths T ’s.
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Parameter Accuracy Precision Recall F1 Score AUC Slope CCC X-Y MSE Time (s)

ψ = Φ−1(0.02) 0.9486 0.9985 0.6179 0.7585 0.9908 0.8180 0.8924 2.16e-5 5.39

ψ = Φ−1(0.20) 0.9728 0.9823 0.8123 0.8880 0.9878 0.8894 0.9316 1.38e-5 5.66

ψ = Φ−1(0.35) 0.9783 0.9628 0.8706 0.9136 0.9876 0.8893 0.9251 1.47e-5 5.71

G = 1 0.9784 0.9220 0.9096 0.9151 0.9929 0.8129 0.8818 2.09e-5 63.37

G = 4 0.9796 0.9381 0.9352 0.9064 0.9908 0.8464 0.9010 1.83e-5 12.06

G = 16 0.9787 0.9306 0.9045 0.9167 0.9874 0.8944 0.9142 1.68e-5 3.74

T = 80 0.9325 0.9070 0.5449 0.6765 0.8952 0.6961 0.7537 4.22e-5 3.62

T = 500 0.9986 0.9982 0.9919 0.9951 0.9999 0.9749 0.9881 2.59e-5 11.98

T = 1000 0.9999 0.9997 1 0.9999 1 0.9889 0.9950 0.11e-5 21.17

Table 2.3: Summary of average metrics across 100 AR(1) datasets produced by the CV-sSGLMM
model using different parameters.

brain’s active regions are two 5× 5× 5 cubes formed by two 5× 5 squares within each of slice 2-6.

In contrast to the data produced by Eq. (2.5), which exhibits a constant phase, this dataset has a

dynamic phase. The cv-fMRI signal for voxel v at time t is thus simulated as

yvt,Re = (β0 + βv1xt)cos(θ0 + θv1xt) + εvt,Re, εvt,Re ∼ N (0, σ2),

yvt,Im = (β0 + βv1xt)sin(θ0 + θv1xt) + εvt,Im, εvt,Im ∼ N (0, σ2).

The slice with the greatest maximum magnitude and phase CNR is slice 4 (Eq. (2.7)):

CNRMag = (maxβv1 )/σ = 0.5/1,

CNRPh = (max θv1)/SNRMag = (π/120)/25.

(2.7)

Activation then decreases from slice 4 to slices 3 and 5 and is weakest in slices 2 and 6. Slices 1

and 7 exhibit no activation. It is important to note that, with dynamic phase, the model from

Lee et al. (2007) is not equivalent to that from Rowe (2005a) as indicated in Rowe (2009). This

discrepancy suggests the proposed model is under model misspecification in this scenario. However,

as both βvRe and β
v
Im in model (2.2) include magnitude and phase information, and given that prior

studies (Yu et al., 2018, 2023) have used the Lee et al. (2007)-based model to process this dataset,

we deem it worthwhile to test our model on these data. We set G = 49 and a threshold of 0.8722

for both MO-sSGLMM and CV-sSGLMM, with ψ set to Φ−1(0.50) and Φ−1(0.11), respectively. For

CV-nonSpatial, the threshold is set to 0.5, again following the advice of Yu et al. (2018). Activation

maps are presented in Figure 2.6. We indeed observe that our model tends to overestimate the

strength. Since the strengths are overestimated, we scale the estimated strength to the range of

true strength in the corresponding slice. True and (scaled) estimated strength maps are displayed
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in Figure 2.7.

Further numerical results, displayed in Table 2.4, show a pattern of the CV-sSGLMM model

outperforming both the MO-sSGLMM and CV-nonSpatial models across different slices in terms of

detecting true positives (TP). It should be noted, however, that the MO-sSGLMM model achieves

a 100% precision (no false positives, FP) for most slices, albeit at the cost of a low recall rate

(high false negatives, FN), indicating that the model is more conservative in identifying activated

voxels. For the CV-nonSpatial model, although it exhibits good precision across the slices, the recall

rates remain lower, specifically in the slices with weaker activation strengths (slices 2 and 6). This

performance pattern suggests that the model struggles to detect activations in areas with low CNR,

highlighting a limitation when dealing with real-world fMRI datasets that often feature low CNR. In

comparison, the CV-sSGLMM model consistently detects a higher number of true positives across

all slices, demonstrating a stronger detection power even in slices with weak activations (slices 2 and

6). This underscores the benefit of incorporating spatial information, which enhances the model’s

capacity to detect weaker activations in the presence of complex noise conditions. The model also

maintains a 100% precision across all slices, suggesting that the inclusion of spatial information does

not lead to an increase in false positives. As anticipated, both the MO-sSGLMM and CV-sSGLMM

models, which employ brain parcellation, demonstrate superior computational efficiency, even when

the parallel computation is gated by a 16-core CPU. This advantage becomes even more pronounced

when handling larger datasets.

2.4 Analysis of Human CV-fMRI Data

In this study, we consider the fMRI dataset that is analyzed by Yu et al. (2018), which

is acquired during a unilateral finger-tapping experiment on a 3.0-T General Electric Signa LX

MRI scanner. The experimental paradigm involves 16.33 epochs of alternating 15s on and 15s off

periods, leading to T = 490 time points. The data are sourced from seven slices, each of size

96 × 96. For the MO-sSGLMM and CV-sSGLMM models, we set the parcel number to G = 25

and again use a threshold of 0.8722 on the inclusion probabilities. The tuning parameter ψ is

set to Φ−1(0.02) and Φ−1(0.1), respectively. For CV-nonSpatial, the threshold is set to 0.5 as

before. The consequent activation and strength maps generated from these analyses are depicted

in Figure 2.8 and Figure 2.9. With computation times closely paralleling those in Section 2.3.2 due
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Figure 2.6: True and estimated activation maps for a realistic simulation as produced by the MO-
sSGLMM, CV-nonSpatial, and CV-sSGLMM models.
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Figure 2.7: True and (scaled) estimated strength maps for a realistic simulation as produced by the
MO-sSGLMM, CV-nonSpatial, and CV-sSGLMM models.
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Slice Model TP FP FN TN Precision Recall Time (s)

2

MO-sSGLMM 1 0 49 9166 1 0.02 11.59

CV-nonSpatial 5 0 45 9166 1 0.1 311.55

CV-sSGLMM 8 0 42 9166 1 0.16 27.86

3

MO-sSGLMM 22 2 28 9164 0.9166 0.44

same as
Slice 2

CV-nonSpatial 25 1 25 9165 0.9615 0.50

CV-sSGLMM 27 0 23 9166 1 0.54

4

MO-sSGLMM 30 1 20 9165 0.9677 0.60

CV-nonSpatial 30 1 20 9165 0.9677 060

CV-sSGLMM 35 0 15 9166 1 0.70

5

MO-sSGLMM 16 5 34 9161 0.7619 0.32

CV-nonSpatial 25 1 25 9165 0.9615 0.50

CV-sSGLMM 28 1 22 9165 0.9655 0.56

6

MO-sSGLMM 0 0 50 9166 NA 0

CV-nonSpatial 4 0 46 9166 1 0.08

CV-sSGLMM 13 0 37 9166 1 0.26

Table 2.4: Metrics of slices (50 positives and 9166 negatives on each slice) produced by the MO-
sSGLMM, CV-nonSpatial, and CV-sSGLMM models.

to comparable dataset sizes, all three models show the same patterns of activation maps. Our CV-

sSGLMM consistently demonstrates superior prediction power, particularly evident in the weakly

active areas observed in slices 1 and 7, maintaining its consistent performance as discussed in Section

2.3.2. The active regions identified through our CV-sSGLMM method align with those reported in

Yu et al. (2018), reinforcing the validity of our results and the efficacy of our proposed approach.

More importantly, the active regions correspond to areas of the brain that are known to typically

be engaged in finger-tapping tasks, affirming the biological relevance of our findings.

2.5 Conclusion

In this study, we propose an innovative fully Bayesian approach to brain activity mapping

using complex-valued fMRI data. The proposed model, which incorporates both the real and imag-

inary components of the fMRI data, provides a holistic perspective on brain activity mapping, over-

coming the limitations of the conventional magnitude-only analysis methods. This model showcases

the potential to detect task-related activation with higher accuracy. The adoption of an autoregres-

sive error structure, together with spatial priors, allows us to capture both temporal and spatial

correlations in brain activity. Moreover, the employment of brain parcellation and parallel compu-
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Figure 2.8: Estimated activation maps for a real human brain dataset as produced by the MO-
sSGLMM, CV-nonSpatial, and CV-sSGLMM models.
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Figure 2.9: Estimated strength maps for a real human brain dataset as produced by the MO-
sSGLMM, CV-nonSpatial, and CV-sSGLMM models.
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tation significantly enhances the model’s computational efficiency. Analyses of both simulated and

real fMRI data underscores the benefits of our approach, particularly when temporally-correlated,

complex-valued noise is present.

There are still areas for exploration. For instance, while we achieve significant results by

assuming the phases are constant, we believe that future Bayesian studies based on the dynamic

phase model of Rowe (2005a) should be proposed to account for potential phase variations during

brain activity (Petridou et al., 2013). Additionally, our current proposal assumes circular data, that

is, Cv = 0 for εv in model (2.1), implying that βvRe and βvIm are independent. It would be prudent

to develop a more generalized non-circular model where Cv ̸= 0 to account for the possibility of

non-circular data.
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Chapter 3

Efficient Fully Bayesian

Approaches to Brain Activity

Mapping with Complex-Valued

fMRI Data: Analysis of Magnitude

and Phase in a Polar Model

3.1 Introduction

Lee et al. (2007)’s Cartesian model we employ in Chapter 2 has gained significant attention

for modeling complex-valued fMRI data (Yu et al., 2018, 2023; Wang et al., 2023). However, this

model has notable limitations that warrant further investigation and refinement. Before delving into

the specifics, it is imperative to understand the inherent properties of cv-fMRI signals, as shown

in Figure 3.1. These signals may exhibit changes in magnitude, phase, or both in response to a

stimulus.

The magnitude changes in cv-fMRI are fundamentally driven by the BOLD effect, which op-

erates through a cascade of hemodynamic responses. Neuronal activity leads to increased metabolic
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Figure 3.1: Illustration of potential changes in complex-valued fMRI time series (Rowe, 2019).

demand, causing a rise in blood flow to the region. This influx of fresh blood displaces deoxygenated

blood, leading to an overall increase in the oxygenation level of the blood in that area. These changes

in blood oxygenation cause a change in BOLD signal and magnetic susceptibility, affecting the MR

signal magnitude. Thus, the BOLD effect can be considered an indirect measure of neuronal activity,

mediated through vascular changes (Boynton et al., 1996; Logothetis, 2008).

On the other hand, phase changes are influenced not only by the BOLD effect but also by

the electrical neuronal activities directly. These activities generate moving charges, and therefore

create magnetic field which changes the phase of MRI signal. For this reason, the phase changes

are able to reveal the aspects of neuronal activity or other phenomena that might be undetected

by magnitude-based analyses (Petridou et al., 2006). By accurately modeling these phase changes,

researchers can gain insights into the more direct effects of neuronal activity on the MRI signal,

potentially leading to more precise and informative interpretations of fMRI data (Feng et al., 2009).

This is especially crucial in understanding complex brain functions and improving the accuracy of

fMRI in research and clinical applications.

Upon re-examining the CV-sSGLMM model based on Lee’s Cartesian model, as discussed

in Chapter 2, its contributions to the detection of brain activation are mitigated by two main limita-

tions. First, it fails to properly model both the magnitude and phase components of cv-fMRI signals.

As such, it merely identifies active voxels without specifying the type of their activation—whether it

is magnitude-related, phase-related, or both. Second, the model only indicates the overall responsive
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strength of a voxel in reaction to the stimulus, lacking a precise metric for quantification in either

the magnitude or phase dimensions.

To overcome these limitations, Rowe (2005a)’s polar model serves as a more fitting alterna-

tive. Originating from Rowe and Logan’s initial formulation (Rowe and Logan, 2004) with dynamic

magnitude and constant phase, the model has undergone several iterations (Rowe and Logan, 2005;

Rowe, 2005b) to arrive at its current version to capture both dynamic magnitude and dynamic phase.

The primary objective of this chapter is to propose a fully Bayesian approach based on Rowe’s polar

model for detecting the magnitude and phase activation maps independently. Specifically, we aim

to identify which voxels exhibit significant changes in cv-fMRI signals in response to a stimulus, in

terms of magnitude, phase, or both, and to quantify how strongly they change in these perspec-

tives. By doing so, it offers a more nuanced and scientific framework for delineating brain activation

patterns in task-based fMRI analyses.

We leverage the sparse spatial generalized linear mixed mode (sSGLMM) prior and brain

parcellation strategy previously introduced in Chapter 2, aiming to capture spatial correlations and

facilitate parallel computation. Section 3.2 elaborates on our proposed model and gives the priors

and posteriors involved. Section 3.3 illustrates the model’s performance through simulated datasets.

Section 3.4 applies our proposed model to the cv-fMRI data obtained from a real finger-tapping

experiment, which is the same one as Chapter 2. Finally, Section 3.5 summarizes our research,

emphasizes its contributions, and suggests avenues for future exploration in this field.

3.2 Model

In this section, we introduce our model for mapping brain activity using magnitude and

phase of cv-fMRI data. We then proceed to derive the posterior distribution for the parameters

under consideration and provide an MCMC algorithm to estimate them.
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3.2.1 Model Formulation

For a certain voxel v (where v = 1, . . . , V ) at time t (where t = 1, . . . , T ), its real and

imaginary parts of complex-valued fMRI signal, yv,Rt and yv,It, can be modeled as:

yv,Rt
yv,It

 =

ρv,t cos θv,t
ρv,t sin θv,t

+

εv,Rt
εv,It

 ,

εv,Rt
εv,It

 ∼ N (0, σ2
vI2),

where ρv,t and θv,t are temporally varying magnitude and phase given by:

ρv,t = βv,0 + xtβv,1,

θv,t = γv,0 + utγv,1,

where xt and ut are the expected BOLD response and neuronal electromagnetic signal, respectively,

at time t. Thus, for all time points:

yv =

AR(γv)

AI(γv)

Xβv + εv, εv ∼ N (0, σ2
vI2T ), (3.1)

where yv = [(yv,R)
′, (yv,I)

′]
′ ∈ R2T stacks real and imaginary components of cv-fMRI signal, and

X = [1,x] ∈ RT×2 is the design matrix for the magnitude composed of ones and expected BOLD

response x. The matrices AR(γv),AI(γv) ∈ RT×T are diagonal as:

AR(γv) =



cos(γv,0 + u1γv,1) 0 · · · 0

0 cos(γv,0 + u2γv,1) · · · 0

...
...

. . .
...

0 0 · · · cos(γv,0 + utγv,1)


,

AI(γv) =



sin(γv,0 + u1γv,1) 0 · · · 0

0 sin(γv,0 + u2γv,1) · · · 0

...
...

. . .
...

0 0 · · · sin(γv,0 + utγv,1)


,
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with a more compact form:

AR(γv) = diag [cos (Uγv)] , AI(γv) = diag [sin (Uγv)] ,

where U = [1,u] ∈ RT×2 is the design matrix for the phase composed of ones and neuronal elec-

tromagnetic signal u. Therefore, βv = [βv,0, βv,1]
′ ∈ R2 and γv = [γv,0, γv,1]

′ ∈ R2 are magnitude-

and phase-related regression coefficients, respectively. The voxel-specific error term εv follows a

multivariate normal distribution with the variance-covariance matrix σ2
vI2T , and a Jeffreys prior can

be assigned to σ2
v as p(σ2

v) ∝ 1/σ2
v .

3.2.2 Brain Parcellation and Spatial Priors

Brain Parcellation We adopt the same brain parcellation strategy as outlined in Section 2.2.2,

wherein the brain is partitioned into G evenly distributed parcels to facilitate parallel computation.

This approach has been validated for its minimal edge effects in both the work by Musgrove et al.

(2016) and in Chapter 2.

Prior Distributions of βv and γv For each parcel g (where g = 1, . . . , G) encompassing Vg

voxels, we classify a voxel v (where v = 1, . . . , Vg) based on its activity. Specifically, a voxel is

classified magnitude-active if βv,1 ̸= 0, and phase-active if γv,1 ̸= 0. Adhering to the spike-and-slab

prior (Mitchell and Beauchamp, 1988), the model is expressed as follows:

βv | λv, τ2g ∼ λvN2

(
0, τ2g I

)
+ (1− λv)N2

0,

τ2g 0

0 0


 ,

γv | ωv, ξ2b ∼ ωvN2

(
0, ξ2gI

)
+ (1− ωv)N2

0,

ξ2g 0

0 0


 .

In this formulation, λv, ωv ∈ {0, 1} indicate the status of voxel v: λv = 1 for a magnitude-active

voxel and ωv = 1 for a phase-active voxel, with 0 indicating inactivity in respective domains. The

parameters τ2g and ξ2g represent parcel-specific variances. These variances are constant for all voxels

within a particular parcel but may vary across different parcels, and are assigned a Jeffreys prior,

that is, p(τ2g ) ∝ 1/τ2g and p(ξ2g) ∝ 1/ξ2g , for g = 1, . . . , G. The prior distributions can be succinctly
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represented as:

βv | λv, τ2g ∼ N2

(
0, τ2gΛv

)
, where Λv =

1 0

0 λv

 ,

γv | ωv, ξ2g ∼ N2

(
0, ξ2gΩv

)
, where Ωv =

1 0

0 ωv

 .

Spatial Priors on λv and ωv We employ the sparse spatial generalized linear mixed mode

(sSGLMM) prior introduced in Section 2.2.2 to capture spatial structures of fMRI signal and enforce

sparsity in the variable selection problem. For voxel v (where v = 1, ..., Vg) within parcel g (where

g = 1, ..., G), from the perspective of the magnitude, we suppose that:

λv | ηλ,v
iid∼ Bern {Φ(ψλ + ηλ,v)} ,

ηλ,v | δλ,g ∼ N1 (m
′
vδλ,g, 1) ,

δλ,g | κλ,g ∼ Nq

{
0, (κλ,gMg

′QgMg)
−1
}
,

κλ,g ∼ Gamma (aκ, bκ) .

From the perspective of the phase:

ωv | ηω,v
iid∼ Bern {Φ(ψω + ηω,v)} ,

ηω,v | δω,g ∼ N1 (m
′
vδω,g, 1) ,

δω,g | κω,g ∼ Nq

{
0, (κω,gMg

′QgMg)
−1
}
,

κω,g ∼ Gamma (aκ, bκ) .

Two prefixed tuning parameters, ψλ and ψω, are employed to regulate the proportion of predicted

magnitude-active and phase-active voxels, respectively. Additionally, we set aκ = 0.5 and bκ = 2000

for both κλ,g and κω,g in all parcels. Empirical evidence suggests that utilizing the same aκ and

bκ for both κλ,g and κω,g in all parcels is acceptable (Musgrove et al., 2016), provided the mean is

sufficiently large to minimize the risk of detecting spurious activity due to noise or other confounding

factors.
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3.2.3 MCMC Algorithm and Posterior Distributions

We employ Gibbs sampling to obtain the joint and marginal conditional distributions of

parameters of interest. Only the full conditional posterior distribution of γv is obtained by Metropo-

lis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), the others are in well-known dis-

tributions. Detailed derivations of these distributions, along with the full conditional distributions

required for sampling, are delineated in Appendix B.1. To assess the convergence of the algorithm,

we adopt the fixed-width diagnostic technique suggested by Flegal et al. (2008). Convergence is

considered achieved when the Monte Carlo Standard Error (MCSE) for all λv and ωv drops below

0.05, leading us to run 103 iterations. After discarding the burn-in phase, the means of the sampled

parameters are taken as point estimates. If λ̂v > 0.925, the voxel is magnitude-active; if ω̂v > 0.925,

it is phase-active. Smith and Fahrmeir (2007) proposed the threshold of 0.8722 regarding the signif-

icance level α = 0.05. Since our approach is similar to a two-step sequential test, we use Bonferroni

correction to make α = 0.05/2 = 0.025, leading to the adjustment of threshold from 0.8722 to 0.925.

3.3 Simulation Studies

This section presents two distinct simulation studies. The first study focuses on a single map

that comprises three types of active regions: one region is solely magnitude-active, another is solely

phase-active, and the third is both magnitude- and phase-active. The second study involves multiple

datasets, each containing only one type of activation on their maps. For comparative evaluation, we

consider the following models:

• The model proposed by Musgrove et al. (2016), referred to as MO, models magnitude-only

data. For a certain voxel v, v = 1, . . . , V , over time T :

yv,M = Xβv,M + εv, εv ∼ N (0, σ2
vIT )

where yv,M ∈ RT is the magnitude of complex-valued fMRI signal, and X = [1,x] ∈ RT×2

is the design matrix composed of ones and expected BOLD response x. The vector βv,M =

(βv,M0
, βv,M1

)′ are regression coefficients.

• The model delineated in Chapter 2, based on Lee et al. (2007)’s Cartesian model and referred
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to as CV-R&I. This model is referred to as CV-sSGLMM in Chapter 2, but we emphasize

its usage of real and imaginary components here rather than the sSGLMM prior. It models

complex-valued data by modeling the real and imaginary components:

yv =

X 0

0 X


βv,R

βv,I

+ εv, εv ∼ N (0, σ2
vI2T ),

where yv = [(yv,R)
′, (yv,I)

′]
′ ∈ R2T is the stack of real and imaginary components of cv-fMRI

signal. The vectors βv,R = (βv,R0 , βv,R1)
′ and βv,I = (βv,I0 , βv,I1)

′ are regression coefficients

regarding real and imaginary components of cv-fMRI signal, respectively.

• The model (3.1), referred to as CV-M&P, is based on Rowe (2005a)’s polar model and models

complex-valued data while characterizing magnitude and phase.

All three models adhere to a fully Bayesian approach, employ the sSGLMM spatial prior

with brain parcellation strategy, and utilize Gibbs sampling to approximate their respective posterior

distributions. The number of parcels G is set to 16 for all models. Other tuning parameters, such

as ψ = Φ−1(0.35) for MO, ψ = Φ−1(0.30) for CV-R&I, and ψ = ω = Φ−1(0.42) for CV-M&P, are

predetermined to optimize prediction accuracy. The thresholds for identifying active voxels are set

at 0.8722 for MO and CV-R&I, as specified in their work, while CV-M&P employs a threshold of

0.925, in accordance with Section 3.2.3.

All results are generated by running the code on a custom-built desktop computer with an

Intel Core i9-9980XE CPU (3.00GHz, 3001 Mhz, 18 cores, 36 logical processors), NVIDIA GeForce

RTX 2080 Ti GPU, 64 GB RAM, and operating on Windows 10 Pro.

3.3.1 Single Simulation

Designed stimulus and expected BOLD response The designed stimulus s is a binary signal

comprised of five repeated epochs, each spanning 40 time points, resulting in a total duration of

T = 200 time points. Each epoch features the stimulus being alternately active and inactive, with

both states persisting for 20 time points. We model the expected BOLD response x by convolving this

stimulus with a double-gamma HRF. Illustrations of both the designed stimulus and the expected

BOLD response are provided in Figures 3.2a and 3.2b, respectively, and are consistently used across

all our simulation datasets.

36



Figure 3.2: (a) Designed stimulus; (b) Expected BOLD response; (c) True activation map.

True activation map and true strength map The true activation map contains three active

regions on a 50 × 50 panel, comprising two circles and one square, each with a radius of five. The

exact locations of these regions are depicted in Figure 3.2c. We want to assign distinct types of

activation to each region: region 1 exhibits only magnitude activation, region 2 exhibits only phase

activation, and region 3 exhibits both magnitude and phase activation, corresponding to the types

illustrated in Figures 3.1a, 3.1c, and 3.1b, respectively.

Utilizing the specifyregion function in the neuRosim library (Welvaert et al., 2011) in R

(R Core Team, 2023), we initially generate a strength map with decay rates of 0.05, 0.05, and 0.15

for the three regions, respectively. This setup ensures that the central voxel of each active region

has a strength of one, diminishing to zero towards the edges at the specified decay rate. For the

true magnitude strengths, indicative of voxel response in magnitude to the stimulus, we multiply

the strengths in regions 1 and 3 by 0.04909 and nullify the strengths in region 2, as represented

in Figure 3.3c. Similarly, for the true phase strengths, reflective of voxel response in phase, we

multiply the strengths in regions 2 and 3 by a factor of π/36 and reduce the strengths in region 1

to zero, as illustrated in Figure 3.3g. This methodology ensures that each region’s activation profile

is accurately mapped according to its designated stimulus response type.
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Simulating fMRI signals We then simulate data according to Eq. (3.2):

yv,Rt = (β0 + xtβv,1)cos(γ0 + utγv,1) + εv,Rt, εv,Rt ∼ N (0, σ2),

yv,It = (β0 + xtβv,1)sin(γ0 + utγv,1) + εv,It, εv,It ∼ N (0, σ2),

(3.2)

where β0 = 0.4909, γ0 = π/4, and σ = 0.04909 are set constant for all voxels, and xt is the expected

BOLD response x from Figure 3.2b at time t. It should be noted that we also use u = x as the

regressor for phase here when generating the data, but it could be its own neuronal electromagnetic

signal u for the phase in some cases. The signal-to-noise ratio for the magnitude (SNRMag) is thereby

fixed at β0/σ = 10. The true values of β1 and γ1 generated previously in Figures 3.3c and 3.3g are

used, yielding the contrast-to-noise ratios for magnitude (CNRMag) and phase (CNRPh) as detailed

in Eq. (3.3):

CNRMag = (maxβv,1)/σ = 0.04909/0.04909 = 1,

CNRPh = (max γv,1)/SNRMag = (π/36)/10.

(3.3)

Results Figure 3.3 presents both the true and estimated activation maps for magnitude and phase

as derived from the CV-M&P model, alongside the corresponding true and estimated parameters

β1 and γ1. Notably, CV-M&P effectively identifies separate regions that are active in magnitude

and phase, and provides proper estimates for the parameters β1 and γ1. In the estimated activation

maps (Figures 3.3b and 3.3f), the overlap in the predicted active regions corresponds to the square-

shaped region 3 in the true map (Figure 3.2c), which is characterized by both magnitude and phase

activation. When the predicted region 3 is excluded from these estimated maps, the remaining areas

align well with the circular regions 1 and 2 in Figure 3.2c, representing solely magnitude-active and

solely phase-active voxels, respectively.

By synthesizing the estimated activation maps for both magnitude and phase (Figures 3.3b

and 3.3f), we construct a composite activation map and compare it against results from MO and

CV-R&I. Figure 3.4 presents these comparative maps. Performance evaluation reveals that MO fails

the competition, primarily due to its inability to detect the phase-only active region 2. Conversely,

both CV-R&I and CV-M&P deliver competitive results.

The analysis also extends to comparing the parameter estimations across the three models.

As MO and CV-R&I do not explicitly characterize parameters β1 and γ1 in their models, we resort

38



Figure 3.3: (a) and (e) are true magnitude and phase activation maps; (b) and (f) are estimated
activation maps as derived from CV-M&P; (c) and (g) are true β1 and γ1; (d) and (h) are estimated
β1 and γ1 as derived from CV-M&P.

Figure 3.4: (a)-(c) are estimated activation maps as derived from MO, CV-R&I, and CV-M&P,
respectively.
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Figure 3.5: (a)-(c) are improperly estimated parameters as derived from MO and CV-R&I.

to indirect methods for their estimation. For MO model, we use the estimated slope of the BOLD

signal, β̂v,M1
, as an estimate for βv,1, while for CV-R&I, the square root of the sum of squares of

the estimated slopes,

√(
β̂v,R1

)2
+
(
β̂v,I1

)2
, serves as an estimate for βv,1. As for γ1, MO cannot

estimate this parameter due to its limitation to magnitude-only data. In contrast, CV-R&I employs

arctan4

(
β̂v,I1/β̂v,R1

)
as an estimate for γ1. These results are illustrated in Figure 3.5. Upon

examination of Figure 3.5a, we observe that while MO’s estimated β1 map appears to closely align

with the true β1 map (Figure 3.3c), it still slightly underestimates values in region 3. Similarly,

as seen in Figure 3.5b, CV-R&I not only falsely estimates the non-existent β1 in the phase-only

active region 2, but also tends to overestimate β1 in region 3. This overestimation of β1 in region

3 where voxels exhibit both magnitude- and phase-active, is consistent with the findings in Wang

et al. (2023). Lastly, Figure 3.5c reveals the CV-R&I’s estimated γ1 map significantly deviates from

the true γ1 map, as showcased in Figure 3.3g.

The numerical evaluation metrics are summarized in Table 3.1, where we employ accuracy,

precision, recall, F1-score, and the area under the receiver operating characteristic curve (ROC-

AUC) to gauge classification performance. We also employ the regression slope between true and

estimated parameters to quantify the estimation performance, to expect it be close to one. In terms

of classification, CV-M&P outperforms its counterparts in various key metrics, including recall,

F1-score, and AUC. While the margin of superiority may not be pronounced, CV-M&P offers two

distinct advantages over its counterparts: it allows for the independent prediction of magnitude and

phase activation maps, as shown in Figure 3.3b and 3.3f, while the other two approaches cannot,

and provides accurate estimation for both β1 and γ1, as the slopes (0.9731 and 0.9462) are close to
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Table 3.1: Metrics of a single simulated dataset produced by the MO, CV-R&I, and CV-M&P
models.

Model Accuracy Precision Recall F1 Score AUC β1 slope γ1 slope Time (s)
MO 0.9248 0.9726 0.5392 0.6938 0.8910 0.8630 NA 1.54

CV-R&I 0.9688 0.9731 0.8253 0.8931 0.9868 1.0301 33.427 3.93
CV-M&P 0.9680 0.9436 0.8481 0.8933 0.9896 0.9731 0.9462 17.87

Table 3.2: Characteristics of true maps.

Map size Number of active regions Radius Shape Decay rate (ϱ)
50×50 3 2 to 6 sphere or cube 0 to 0.3

one. Further evidence from multiple simulation studies, to be discussed in the subsequent section,

will reinforce these findings.

3.3.2 Multiple Simulations

Generating Random Maps and Simulating fMRI Signals We generate 100 random true

strength maps using the parameters outlined in Table 3.2 and the specifyregion function. The

true strength maps are then scaled by factors of 0.04909 and π/36 to obtain 100 true β1 maps and

100 true γ1 maps, respectively. Using Eq. (3.2) and the expected BOLD response x in Figure 3.2b,

we generate three datasets from each pair of true β1 and γ1 maps with the following assignments:

• β1 present, γ1 absent (all active voxels are solely magnitude-active)

• β1 absent, γ1 present (all active voxels are solely phase-active)

• β1 present, γ1 present (all active voxels are both magnitude- and phase-active)

The values for β0, γ0, and σ are held constant as specified in Section 3.3.1, with values 0.4909, π/4,

and 0.04909, respectively, resulting CNRMag = 1 and CNRPh = (π/36)/10. In total, we have 300

datasets for analysis.

Results Table 3.3 presents the performance metrics for each method across these diverse datasets.

In terms of classification, MO delivers superior performance in almost all evaluated metrics for

datasets featuring exclusively magnitude-active voxels, which is expected given its design specificity
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Table 3.3: Summary of average metrics across 100 simulated datasets produced by the MO, CV-R&I,
and CV-M&P models. The values in parentheses are min, max, and standard deviation.

Data
Type

Measure MO CV-R&I CV-M&P

Mag.

-only

Accuracy 0.9645(0.9208, 0.9940, 0.0153) 0.9555(0.9032, 0.9916, 0.0188) 0.9598(0.9132, 0.9900, 0.0160)
Precision 0.9647(0.9157, 0.9917, 0.0164) 0.9601(0.9078, 0.9964, 0.0166) 0.9317(0.8515, 0.9805, 0.0224)
Recall 0.7629(0.6052, 0.9680, 0.0707) 0.6966(0.5263, 0.9406, 0.0840) 0.7534(0.6111, 0.9634, 0.0721)

F1 Score 0.8502(0.7366, 0.9716, 0.0437) 0.8046(0.6741, 0.9515, 0.0557) 0.8311(0.7294, 0.9444, 0.0435)
AUC 0.9760(0.9485, 0.9991, 0.0107) 0.9605(0.9227, 0.9963, 0.0154) 0.9793(0.9605, 0.9983, 0.0081)

β1 slope 0.8696(0.7927, 0.9466, 0.0327) 0.8337(0.7451, 0.9356, 0.0406) 0.9771(0.9337, 1.0170, 0.0190)
γ1 slope NA NA NA

Ph.
-only

Accuracy 0.8638(0.7576, 0.9428, 0.0418) 0.9390(0.8696, 0.9848, 0.0234) 0.9459(0.8868, 0.9832, 0.0201)
Precision 0.2102(0.0714, 0.6000, 0.1097) 0.9481(0.8829, 0.9862, 0.0207) 0.9192(0.8324, 0.9735, 0.0303)
Recall 0.0059(0.0017, 0.0201, 0.0034) 0.5718(0.4207, 0.9026, 0.0970) 0.6481(0.5146, 0.9090, 0.0881)

F1 Score 0.0114(0.0034, 0.0373, 0.0065) 0.7088(0.5831, 0.9269, 0.0725) 0.7569(0.6456, 0.9225, 0.0604)
AUC 0.5277(0.4898, 0.6001, 0.0214) 0.9326(0.8844, 0.9930, 0.0237) 0.9544(0.9216, 0.9952, 0.0150)

β1 slope NA NA NA
γ1 slope NA 39.813(30.031, 45.799, 3.3285) 0.9439(0.8744, 1.0271, 0.0289)

Both

Accuracy 0.9644(0.9192, 0.9912, 0.0144) 0.9835(0.9616, 0.9984, 0.0071) 0.9769(0.9544, 0.9896, 0.0069)
Precision 0.9643(0.9017, 0.9892, 0.0146) 0.9798(0.9354, 0.9967, 0.0106) 0.9134(0.7870, 0.9617, 0.0294)
Recall 0.7606(0.6358, 0.9662, 0.0651) 0.8949(0.8216, 0.9925, 0.0362) 0.9073(0.8457, 0.9927, 0.0329)

F1 Score 0.8489(0.7703, 0.9592, 0.0398) 0.9350(0.8926, 0.9908, 0.0202) 0.9097(0.8299, 0.9539, 0.0208)
AUC 0.9763(0.9537, 0.9992, 0.0103) 0.9939(0.9846, 0.9999, 0.0035) 0.9940(0.9873, 0.9997, 0.0026)

β1 slope 0.8710(0.7879, 0.9789, 0.0321) 1.2346(1.1693, 1.3360, 0.0305) 0.9843(0.9365, 1.0316, 0.0183)
γ1 slope NA 26.643(19.307, 30.993, 2.4747) 0.9534(0.8958, 1.0146, 0.0253)

for magnitude-based activity. However, such an assumption of magnitude-only activity is often unre-

alistic in real-world applications. When considering datasets comprising solely phase-active voxels,

CV-M&P excels in all metrics except precision, thereby establishing its superiority in detecting

phase-based activity. For mixed activity involving both magnitude and phase, CV-R&I takes the

lead in accuracy, precision, and F1-score metrics, whereas CV-M&P dominates in recall and AUC.

CV-M&P once again stands out with respect to parameter estimation. Specifically, its true

vs estimated parameter slopes are close to one when the parameters are present in the simulation,

indicating accurate estimations. In contrast, this metric from both MO and CV-R&I deviates from

the ideal value of one. It’s noteworthy that Wang et al. (2023) elaborates that under conditions where

all active voxels are solely magnitude-active, Lee et al. (2007)’s Cartesian model and Rowe (2005a)’s

polar model (CV-R&I and CV-M&P) are approximately equivalent. Hence, in such scenario, CV-

R&I can properly estimate β1, although not surpassing the performance of CV-M&P. In other

scenarios, both MO and CV-R&I fall short, either failing to estimate γ1 or inaccurately estimating

both β1 and γ1.

3.4 Analysis of Human CV-fMRI Data

In this study, we revisit the real data previously analyzed by Yu et al. (2018, 2023) and in

our own Section 2.4. This dataset originates from a unilateral finger-tapping experiment conducted
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using a 3.0-Tesla General Electric Signa LX MRI scanner. The experimental design comprises 16.33

epochs, each consisting of alternating periods of 15s on and 15s off. Consequently, the total number

of time points is T = 490, excluding the warm-up phase. The acquired dataset has seven slices,

each with dimensions 96 × 96, and our analysis focuses on the initial six slices. For all examined

models, we set the number of parcels G = 25. Specific tuning parameters are prefixed based on

the experience: for the MO model, ψ = Φ−1(0.02); for CV-R&I, ψ = Φ−1(0.1); and for CV-M&P,

ψ = ω = Φ−1(0.20). The thresholds for identifying active voxels are set to values as follows:

0.8722 for both MO and CV-R&I, and 0.925 for CV-M&P, in alignment with Section 3.2.3 and the

simulation studies.

In Figure 3.6, we present the results derived from the CV-M&P model. Distinct patterns are

observed: the estimated β0 maps mirror the patterns of magnitude in the background, the estimated

γ0 maps highlight the phase’s transition lines across different color zones, and both the estimated β1

and γ1 maps reflect patterns consistent with the estimated magnitude and phase activation maps.

Such patterns are indicative of the accuracy of our approach in both classification and estimation.

By integrating the magnitude- and phase-activation maps derived by CV-M&P model, we

form comprehensive estimated activation maps. They are subsequently compared with activation

maps estimated by MO and CV-R&I models, as shown in Figure 3.7, revealing significant alignment.

Specifically, the two central and central-left active regions detected by CV-M&P are consistent with

the findings reported in Yu et al. (2018, 2023) and Wang et al. (2023). Furthermore, these regions

align with known anatomical areas typically activated during finger-tapping tasks. The central

region may correspond to the Primary Motor Cortex (M1) or Supplementary Motor Area (SMA),

both of which play pivotal roles in voluntary movement and motor planning (Wilder Penfield, 1937;

Geyer et al., 1996). Adjacently, the central-left region might represent the Primary Somatosensory

Cortex (S1) or the Posterior Parietal Cortex, responsible for tactile sensory information processing

and sensory-motor integration, respectively (Culham and Valyear, 2006). Notably, beyond these

well-established regions, CV-M&P uncovers additional active regions at the posterior of the brain

image. These could be caused by the motion of brain during the data collection.
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Figure 3.6: Estimated magnitude activation, β0, β1, phase activation, γ1, γ0 maps for a real human
brain dataset as derived by the CV-M&P model.
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Figure 3.7: Estimated activation maps for a real human brain dataset as derived by the MO, CV-
R&I, and CV-M&P models.
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3.5 Conclusion

Throughout our investigations on both simulated and real human datasets, the CV-M&P

model consistently demonstrates its capability to precisely identify voxels that exhibit significant

reactions to stimuli, whether in magnitude, in phase, or in a combination of both. Comparing

with the polar model of Rowe (2005a), but using hypothesis testing approaches (Rowe and Logan,

2004, 2005; Rowe, 2005a,b; Rowe et al., 2007; Rowe, 2009; Adrian et al., 2018), our CV-M&P’s fully

Bayesian framework can capture the spatial correlations of fMRI data, and therefore improve the

model flexibly. On the other hand, comparing with other fully Bayesian approaches, but based on

the Cartesian model of Lee et al. (2007) (Yu et al., 2023; Wang et al., 2023), our CV-M&P model

rectifies the constraints inherent in the Cartesian models, which can detect active voxels but remains

ambiguous about the exact type of the activation, as described in Rowe (2009). Moreover, the CV-

M&P model excels in providing precise parameter estimates, offering a more nuanced and scientific

framework for delineating brain activation patterns in task-based fMRI analyses. As we anticipate

future work, there are multiple avenues for advancing this research. These include the exploration

of more complex models that account for temporal correlations, models that fit the non-circular

data wherein the real and imaginary components of the signal are correlated, and efforts aimed at

optimizing computational efficiency.
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Chapter 4

Conclusion

4.1 Summary of Research Contributions

The preceding chapters have presented a thorough investigation into brain activity mapping

using single-subject task-based complex-valued fMRI time series. Grounded in statistical modeling,

the dissertation pioneers two fully Bayesian approaches: CV-sSGLMM model based on the Cartesian

model proposed by Lee et al. (2007) and CV-M&P model based on the polar model proposed by

Rowe (2005a).

Chapter 2 introduces the CV-sSGLMM model that extends previous work by integrating

both spatial and temporal dimensions of complex-valued fMRI data. The CV-sSGLMM model

excels in handling cv-fMRI data with iid noise as well as AR(1) noise, showcasing an edge over

existing models in active voxel detection. Through an array of metrics, such as the accuracy, recall,

and F1-score, it establishes that the CV-sSGLMM model significantly outperforms its competitors,

particularly in cases involving AR(1) noise. Another noteworthy advancement of CV-sSGLMM is

the employment of brain parcellation and parallel computation, which enable a remarkable reduction

in computational time by 87% comparing with the current state-of-the-art without compromising

the prediction accuracy.

In contrast to the Cartesian model, which has inherent limitations, the poloar model offers

a more comprehensive understanding to the nature of cv-fMRI signals by characterizing both mag-

nitude and phase. As delineated in Chapter 3, our CV-M&P model maps the magnitude and phase

activations individually and achieves a more precise quantification of activation strength. When com-
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pared to existing Bayesian methods in cv-fMRI analyses that primarily rely on a Cartesian model

(Yu et al., 2018, 2023; Wang et al., 2023), our approach furnishes a more intricate and complete

understanding of brain activation, with special emphasis on phase information. Furthermore, in

comparison to cv-fMRI analyses based on the polar model, which predominantly employ hypothesis

testing (Rowe and Logan, 2004, 2005; Rowe, 2005a,b; Rowe et al., 2007; Rowe, 2009; Adrian et al.,

2018), our Bayesian approach offers a more flexible way of capturing the spatiotemporal correlations

present in fMRI data.

4.2 Broader Implications

The methodological advances and findings from this dissertation have broader implications

for neuroscience and medical imaging. The approaches can be particularly beneficial for studies

focusing on cognitive functions, neurodevelopmental disorders like autism (Dichter, 2012), and neu-

rodegenerative diseases such as Alzheimer’s disease (Machulda et al., 2003). The Bayesian models

proposed herein have the potential to be integrated into existing software packages, thereby provid-

ing researchers and clinicians with enhanced tools for mapping brain activity. The marked reduction

in computational time, particularly evident in the CV-sSGLMM model, suggests the feasibility of

real-time applications, thus opening doors to potential use in clinical settings.

Additionally, this work contributes to the broader area of brain activation mapping, com-

monly referred to as encoding. Previous studies have successfully employed encoding techniques

in various modalities, including visual (Rombouts et al., 1999), auditory (Jäncke et al., 1998), and

linguistic tasks (Jain and Huth, 2018). Such progress sets the stage for advancements in decoding,

which involves the reconstruction of tasks—be it images or language—based on brain activation

maps or fMRI signals. This holds particular significance for emerging areas like brain-computer

interactions (Shen et al., 2019).

4.3 Limitations and Future Directions

While the Bayesian approaches presented in this dissertation offer promising outcomes,

several directions for future research merit consideration. First, the existing Bayesian framework

could be enhanced to incorporate a more generalized non-circular model. This adaptation would
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account for potential correlations between the real and imaginary components of cv-fMRI signals,

as the current model operates under the assumption of circular data. Second, future efforts could

be devoted to refining the computational efficiency of the CV-M&P model, thereby reducing the

execution time and making it more practicable for real-world applications. Lastly, future work could

explore the extension of the model to a multi-subject Bayesian framework, facilitating more robust

generalizations across diverse populations.

4.4 Concluding Remarks

This dissertation has significantly advanced the field of brain activity mapping using fully

Bayesian approaches for cv-fMRI data. Through rigorous statistical modeling and validation, it

has demonstrated the superiority of the proposed Bayesian frameworks over existing models in

various aspects. As this body of work stands at the intersection of statistics, neuroscience, and

computer science, it opens up avenues for interdisciplinary research aimed at further unraveling the

complexities of the human brain.
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Appendix A Supplementary Materials for Chapter 2

A.1 Similarities Between Lee’s Cartesian Model and Rowe’s Polar Model

This appendix is influenced by Rowe (2009), and seeks to demonstrate that, when there’s

only one stimulus:

• Lee et al. (2007)’s model is approximately equivalent to Rowe (2005a)’s dynamic phase model

when the intercept in the magnitude is absent.

• Lee et al. (2007)’s model is fully equivalent to Rowe and Logan (2004)’s constant phase model.

For the first scenario, assuming no intercept in the magnitude, the vth voxel’s complex-valued fMRI

signal can be simulated using Rowe (2005a)’s dynamic phase model as per equation:

yvRe = Dv
Rexβ

v,

yvIm = Dv
Imxβv,

where yvRe and yvIm are simulated complex-valued fMRI vectors of length T , and x is the expected

BOLD response of length T with βv as a scalar. The matrices Dv
Re and D

v
Im are T ×T and diagonal

with cos (θ0 + θ1xt) and sin (θ0 + θ1xt) as the tth diagonal element, which represent the dynamic

phase. By equating this with the means of the Lee et al. (2007)’s model (without intercept), we

have:

xβvRe = Dv
Rexβ

v,

xβvIm = Dv
Imxβv,

where βvRe and βvIm are the scalar real and imaginary parts of the regression coefficient, and the

maximum likelihood estimators of them are:

β̂vRe = (x′x)
−1

x′Dv
Rexβ

v,

β̂vIm = (x′x)
−1

x′Dv
Imxβv,
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then,

β̂v,2Re + β̂v,2Im =
[
(x′x)

−1
x′Dv

Rexβ
v
]2

+
[
(x′x)

−1
x′Dv

Imxβv
]2

= βv,2 (x′x)
−2
[
(x′Dv

Rex)
2
+ (x′Dv

Imx)
2
]

= βv,2 (x′x)
−2

[x′Dv
Rexx

′Dv
Rex+ x′Dv

Imxx′Dv
Imx]

= βv,2 (x′x)
−2

[x′ (Dv
Rexx

′Dv
Re +Dv

Imxx′Dv
Im)x] .

Notice that Dv
Rexx

′Dv
Re and Dv

Imxx′Dv
Im are T × T symmetric matrices with the following terms

as the (i, j)th element, respectively:

xixj cos (θ0 + θ1xi) cos (θ0 + θ1xj),

xixj sin (θ0 + θ1xi) sin (θ0 + θ1xj).

Using the fact that cos (a) cos (b) + sin (a) sin (b) = cos (a− b), we have:

Dv
Rexx

′Dv
Re +Dv

Imxx′Dv
Im = xx′ ⊙P,

where P is a T × T symmetric matrix and P(i,j) = cos (θ1 (xi − xj)), and ⊙ denotes the point-wise

product. It’s important to note that in both simulated and real data, P closely approximates the

all-ones matrix 1T×T . This is because the difference between xi and xj is typically small, even when

considering the extreme values. After multiplying this small difference with a small θ1 and then

taking the cosine, the result tends to be very close to 1. Thus,

√
β̂v,2Re + β̂v,2Im ≈

√
βv,2 (x′x)

−2
[x′ (xx′)x] = βv.

In this case, Lee et al. (2007)’s model can be considered as approximately equivalent to Rowe

(2005a)’s dynamic phase model. For the second scenario, when the phase is constant and the

intercept is included in the magnitude, using Rowe and Logan (2004)’s constant phase model to
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simulate the data, we get:

yvRe = ΛvRe

(
1 x

)βv0
βv1

 ,

yvIm = ΛvIm

(
1 x

)βv0
βv1

 ,

where ΛvRe = cos (θ) IT×T and ΛvIm = sin (θ) IT×T . Upon equating this with the means of the Lee

et al. (2007)’s model, we have:

(
1 x

)βvRe,0
βvRe,1

 = ΛvRe

(
1 x

)βv0
βv1

 ,

(
1 x

)βvIm,0
βvIm,1

 = ΛvIm

(
1 x

)βv0
βv1

 .

Since ΛvRe and ΛvIm don’t contain x, we can remove the means so that to remove the intercept in

the model, which yields:

xcβ
v
Re,1 = ΛvRexcβ

v
1 ,

xcβ
v
Im,1 = ΛvImxcβ

v
1 ,

where xc is the centered x. This becomes similar to the previous model:

β̂v,2Re,1 + β̂v,2Im,1 = βv,21 (x′
cxc)

−2
[x′
c (xcx

′
c ⊙P)xc]

= βv,21 (x′
cxc)

−2
[x′
c (xcx

′
c)xc] = βv,21 ,

as P is exactly 1T×T now. Consequently, Lee et al. (2007)’s model is found to be equivalent to Rowe

and Logan (2004)’s constant phase model.

A.2 Full Conditional Posterior Distributions for CV-sSGLMM model

This appendix gives full conditional posterior distributions of λv,β
v
r ,ρ

v
r , σ

2
v , τ

2
g , ηv, δg, κg for

Gibbs sampling. All derivations will omit the subscript of g (parcel index) from the parcel-level

parameters τ2g , δg, and κg, since all parcels run the algorithm identically.
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Full Conditional Distribution of λv

For the voxel v (v = 1, ..., V ):

p(λv = 1 | yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2, ηv) =
p(λv = 1 | ηv)

p(λv = 1 | ηv) + L0

L1
·p(λv = 0 | ηv)

,

where

L0 = p(yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2 | λv = 0),

L1 = p(yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2 | λv = 1).

To determine L0 and L1, which are the joint distributions of yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2 under the condition

of λv = 0 and λv = 1, respectively, we recall the CV-sSGLMM model:

yv = xβv + rvρv + εv, εv ∼ CNT (0, 2σ
2
vI,0).

Applying Prais-Winsten transformation (order one backward operator) on yv and x, we have:

yv∗ = yvnow − ρvyvlag1,

xv∗ = xnow − ρvxlag1,

where yvnow and yvlag1 are vectors containing the last and the first T −1 elements in yv, respectively.

The vectors xnow and xlag1 are from x by the same rule of truncation. Now it becomes a model

without autoregressive errors:

yv∗ = xv∗βv + εv, εv ∼ CNT−1(0, 2σ
2
vI,0),

with equivalent real-valued representation:

yv∗Re

yv∗Im


︸ ︷︷ ︸

yv∗
r

=

xv∗Re −xv∗Im

xv∗Im xv∗Re


︸ ︷︷ ︸

Xv∗
r

βvRe
βvIm


︸ ︷︷ ︸

βv
r

+

εvRe

εvIm


︸ ︷︷ ︸

εv
r

.
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Using the symbols in underbraces for a more compact form:

yv∗r = Xv∗
r βvr + εvr , εvr ∼ N2(T−1)(0, σ

2
vI).

Therefore, when λv = 1:

L1 = p(yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2) ∝ p(yvr | βvr ,ρvr , σ2
v) p(β

v
r | τ2),

where

p(yvr | βvr ,ρvr , σ2
v) = (2πσ2

v)
− 2(T−1)

2 exp

{
− 1

2σ2
v

(yv∗r −Xv∗
r βvr)

′(yv∗r −Xv∗
r βvr)

}
,

p(βvr | τ2) = (2πτ2)−
2
2 exp

{
− 1

2τ2
(βvr)

′(βvr)

}
.

Similarly, when λv = 0:

L0 = p(yvr ,β
v
r = 0,ρvr , σ

2
v , τ

2) ∝ p(yvr | βvr = 0,ρvr , σ
2
v) p(β

v
r = 0 | τ2),

where

p(yvr | βvr = 0,ρvr , σ
2
v) = (2πσ2

v)
− 2(T−1)

2 exp

{
− 1

2σ2
v

(yv∗r )′(yv∗r )

}
,

p(βvr = 0 | τ2) = 1.

Integrating βvr out of L1 yields:

L∗
1 = (2πσ2

v)
− 2(T−1)

2 · σ
2
v

τ2
· exp

{
− 1

2σ2
v

(yv∗r )′yv∗r

}{
det

[
(Xv∗

r )′Xv∗
r +

σ2
v

τ2
I

]}− 1
2

· exp

{
1

2σ2
v

[(Xv∗
r )′yv∗r ] ′

[
(Xv∗

r )′Xv∗
r +

σ2
v

τ2
I

]−1

[(Xv∗
r )′yv∗r ]

}
.

Then, the ratio is:

L0

L∗
1

=
τ2

σ2
v

{
det
[
(Xv∗

r )′Xv∗
r +

σ2
v

τ2 I
]} 1

2

exp

{
1

2σ2
v
[(Xv∗

r )′yv∗r ] ′
[
(Xv∗

r )′Xv∗
r +

σ2
v

τ2 I
]−1

[(Xv∗
r )′yv∗r ]

} .
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Using this ratio and p(λv = 1 | ηv) = Φ(ψ + ηv), the full conditional distribution of λv is:

π(λv | yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2, ηv) = Bern (P ) ,

where

P = p(λv = 1 | yvr ,β
v
r ,ρ

v
r , σ

2
v , τ

2, ηv) =
Φ(ψ + ηv)

Φ(ψ + ηv) +
L0

L∗
1
· [1−Φ(ψ + ηv)]

.

Full Conditional Distribution of βvr

For the voxels with λv = 0, we assign them βvr = 0. For the voxels with λv = 1:

π(βvr | yvr ,ρvr , σ2
v , τ

2) ∝ p(yvr | βvr ,ρvr , σ2
v)p(β

v
r | τ2)

∝ exp

{
− 1

2σ2
v

(yv∗r −Xv∗
r βvr)

′(yv∗r −Xv∗
r βvr)

}
exp

{
− 1

2τ2
(βvr)

′(βvr)

}
∝ exp

{
−1

2

[
(βvr)

′ (X
v∗
r )′Xv∗

r

σ2
v

βvr − 2(βvr)
′ (X

v∗
r )′

σ2
v

yv∗r + (βvr)
′ 1

τ2
(βvr)

]}
= exp

{
−1

2

[
(βvr)

′ τ
2(Xv∗

r )′Xv∗
r + σ2

vI

σ2
vτ

2
βvr − 2(βvr)

′ (X
v∗
r )′

σ2
v

yv∗r

]}
,

which is a kernel of multivariate normal distribution. Thus:

π(βvr | yvr ,ρvr , σ2
v , τ

2, λv = 1) = N2(µβv
r
,Σβv

r
),

where

µβv
r
=

[
τ2(Xv∗

r )′Xv∗
r + σ2

vI

σ2
vτ

2

]−1
(Xv∗

r )′

σ2
v

yv∗r =

[
(Xv∗

r )′Xv∗
r +

σ2
v

τ2
I

]−1

(Xv∗
r )′yv∗r ,

Σβv
r
=

[
τ2(Xv∗

r )′Xv∗
r + σ2

vI

σ2
vτ

2

]−1

= σ2
v

[
(Xv∗

r )′Xv∗
r +

σ2
v

τ2
I

]−1

.

Full Conditional Distribution of ρvr

Since ρvr is the autoregression coefficient for AR(1) errors, let:

wv = yv − xβv
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be the predicted errors. Let wv
now and wv

lag1 be the vectors containing the last and the first T − 1

components in wv, then:

wv
now = wv

lag1ρ
v + εv, εv ∼ CNT−1(0, 2σ

2
vI,0),

with equivalent real-valued representation:

wv
now,Re

wv
now,Im


︸ ︷︷ ︸

wv
now,r

=

wv
lag1,Re −wv

lag1,Im

wv
lag1,Im wv

lag1,Re


︸ ︷︷ ︸

Wv
lag1,r

ρvRe
ρvIm


︸ ︷︷ ︸

ρv
r

+

εvRe

εvIm


︸ ︷︷ ︸

εv
r

.

Using the symbols in underbraces for a more compact form:

wv
now,r = Wv

lag1,rρ
v
r + εv, εv ∼ N2(T−1)(0, σ

2
vI).

Assigning a uniform prior, p(ρvr) ∝ 1, the full conditional distribution of ρvr is:

π(ρvr | yvr , ·) = N2(µρv
r
,Σρv

r
),

where

µρv
r
=
[
(Wv

lag1,r)
′Wv

lag1,r

]−1
(Wv

lag1,r)
′wv

now,r,

Σρv
r
= σ2

v

[
(Wv

lag1,r)
′Wv

lag1,r

]−1
.

Full Conditional Distribution of σvr

The full conditional distribution of σvr is also from:

wv
now,r = Wv

lag1,rρ
v
r + εv, εv ∼ N2(T−1)(0, σ

2
vI).

Assigning a Jeffreys prior, p(σ2
v) ∝ 1/σ2

v , we have:

π(σ2
v | yvr , ·) = IG

(
2(T − 1)

2
,

1

2
(wv

now,r −Wv
lag1,rρ

v
r)

′(wv
now,r −Wv

lag1,rρ
v
r)

)
.
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Full Conditional Distribution of τ2

The full conditional distribution of τ2 should be related to the number of active voxels

and could be imposed a Jeffreys prior, p(τ2) ∝ 1/τ2. After updating λ = (λ1, . . . , λV )
′ and filtering

βr = (β1
Re, · · · , βVRe, β1

Im, · · · , βVIm)′ by λ to make them strictly zeros and non-zeros in each iteration,

we have:

π(τ2 | βr) = IG
(
2λ′λ

2
,
1

2
βr

′βr

)
.

Full Conditional Distribution of ηv

Without considering the condition of λv, we focus on π(ηv | κ) first. Let Qs = M′QM and

Qκs = κQs = κM′QM, then:

π(ηv | κ) =
∫
π(ηv, δ | κ)dδ

=

∫
π(ηv | δ)π(δ | κ)dδ

=

∫
N (mv

′δ, 1)×N
(
0,Q−1

κs

)
dδ

∝
∫

exp

{
−η

2
v − 2mv

′δηv + δ′mvmv
′δ

2

}
exp

{
−δ′Qκsδ

2

}
dδ

= exp

{
−η

2
v

2

}∫
exp

{
−1

2
[δ′(Qκs +mvmv

′)δ − 2mv
′δηv]

}
dδ

= exp

{
− η2v

2 [1−mv
′(Qκs +mvmv

′)−1mv]
−1

}
.

Thus, ηv | κ follows normal distribution with mean 0 and variance:

[
1−mv

′(Qκs +mvmv
′)−1mv

]−1
.

By Woodbury’s matrix identity:

[
1−mv

′(Qκs +mvmv
′)−1mv

]−1
= 1 +mv

′Q−1
κsmv.

That is:

π(ηv | κ) = N (0, 1 +mv
′Q−1

κsmv).
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If the condition of λv is considered, by Albert and Chib (1993):

π(ηv | λv, δ) =


T N (mv

′δ, 1, 0, ∞) if λv = 1

T N (mv
′δ, 1, −∞, 0) if λv = 0

,

where T N denotes the truncated normal distribution. Thus, when λv = 1:

π(ηv | λv, κ) =
∫
π(ηv, δ | λv, κ)dδ

=

∫
π(ηv | λv, δ)π(δ | κ)dδ

=

∫
T N (mv

′δ, 1, 0, ∞)×N
(
0,Q−1

κs

)
dδ

= T N
(
0, 1 +mv

′Q−1
κsmv, 0, ∞

)
.

Similarly, when λv = 0:

π(ηv | λv, κ) = T N
(
0, 1 +mv

′Q−1
κsmv, −∞, 0

)
.

Notice that the variance 1+mv
′Q−1

κsmv = 1+mv
′(κQs)

−1mv. As κ functions as a spatial smoothing

parameter, it can be moved out of the parentheses to control the entire variance and play the same

role. That is:

π(ηv | λv, κ) =



T N (0, 1
κ

(
1 +mv

′Q−1
s mv

)︸ ︷︷ ︸
ν2
v

, 0, ∞) if λv = 1

T N (0, 1
κ

(
1 +mv

′Q−1
s mv

)︸ ︷︷ ︸
ν2
v

, −∞, 0) if λv = 0

.

Since I + MQ−1
s M′ doesn’t contain any parameters, it can be pre-calculated, then ν2v = 1 +

mv
′Q−1

s mv is its vth diagonal element. This will accelerate the computation.

Full Conditional Distribution of δ

The full conditional distribution of δ is:

π(δ | η, κ) = N
(
(Qκs +M′M)

−1
M′η, (Qκs +M′M)

−1
)
.
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Similar to how we deal with κ for ηv, this distribution becomes:

π(δ | η, κ) = N

 1

κ
(Qs +M′M)

−1︸ ︷︷ ︸
Q̂−1

s

M′η,
1

κ
(Qs +M′M)

−1︸ ︷︷ ︸
Q̂−1

s

 ,

where Q̂−1
s = (Qs +M′M)

−1
can be pre-calculated to accelerate the computation.

Full Conditional Distribution of κ

We assume η1, ..., ηV are conditionally independent when given κ, thus:

π(η | κ) =
V∏
v=1

π(ηv | κ)

=

[(
1

κ

)−V
2

V∏
v=1

(
1 +mv

′Q−1
s mv

)− 1
2

]
exp

{
−

V∑
v=1

η2v
2 · 1

κ · (1 +mv
′Q−1

s mv)

}

∝ κ
V
2 · exp

{
−κ · 1

2
·
V∑
v=1

η2v
(1 +mv

′Q−1
s mv)

}
.

Therefore, the full conditional distribution of κ is:

π(κ | η) ∝ π(η | κ)π(κ)

∝ κ
V
2 · exp

{
−κ · 1

2
·
V∑
v=1

η2v
(1 +mv

′Q−1
s mv)

}
· κ 1

2−1 · exp
{
− κ

2000

}
= κ

V +1
2 −1exp

{
−κ

[
1

2

(
V∑
v=1

η2v
(1 +mv

′Q−1
s mv)

)
+

1

2000

]}
.

That is:

π(κ | η) = Gamma

a =
V + 1

2
, b =

[
1

2

(
V∑
v=1

η2v
(1 +mv

′Q−1
s mv)

)
+

1

2000

]−1


= Gamma

(
a =

V + 1

2
, b =

[
1

2

(
η21
ν21

+ · · ·+ η2V
ν2V

)
+

1

2000

]−1
)
,

where b is the scale, and the details for ν2v are in the full conditional distribution of ηv.
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Figure 1: (a) is marginal posterior distributions of λ, βRe, and βIm for a voxel exhibiting high
strength. (b)-(c) are similar distributions for a medium-strength voxel and an inactive voxel, respec-
tively.

A.3 More Estimations by CV-sSGLMM

The CV-sSGLMM model is applied to estimate the marginal posterior distributions from

three distinct types of voxels (strongly active, moderately active, inactive) within an AR(1) dataset,

as showcased in Figure 1. The bell-shaped distributions of βRe and βIm corroborate the theoretical

derivation and affirm the reliable performance of the MCMC algorithm during the sampling process.

The true and estimated time series from these three voxel are presented in Figure 2. The congruence

between the generator using true parameters (in black) and that using estimated parameters (in red)

is evident. Additionally, both sets of time series aptly capture the pattern of the simulated time

series (in blue). This alignment serves as a further testament to the good estimation performance

of our CV-sSGLMM model. The phase of voxels is also estimated by the CV-sSGLMM model, and

the outcomes are displayed in Figure 3. Figure 3(a) presents the true phase map, which is constant

for all voxels as θ = π/4 ≈ 0.79. Figure 3(b) demonstrates that the CV-sSGLMM model effectively

estimated this phase map by θ̂v = arctan4

(
β̂vIm/β̂

v
Rm

)
.
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Figure 2: (a) is time series of generator using true parameters, generator using estimated param-
eters, and simulated time series (generator using true parameters with noise) of a voxel exhibiting
high strength. (b)-(c) are similar time series for a medium-strength voxel and an inactive voxel,
respectively.

Figure 3: (a) is the true phase map of an AR(1) dataset. (b) is the estimated phase map as produced
by the CV-sSGLMM model.
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Appendix B Supplementary Materials for Chapter 3

B.1 Full Conditional Posterior Distributions for CV-M&P Model

We need the full conditional posterior distributions of

βv, λv,γv, ωv, σ
2
v , τ

2
g , ξ

2
g , ηλ,v, δλ,g, κλ,g, ηω,v, δω,g, κω,g

for the Gibbs sampling. All derivations will omit the subscript of g (parcel index) from the parcel-

level parameters τ2g , ξ
2
g , δλ,g, κλ,g, δω,g, κω,g, since all parcels run the algorithm identically.

Full conditional distributions of λv and ωv

The full conditional distribution of λv is

π(λv | yvr ,βv,γv, ωv, σ2
v , τ

2, ξ2, ηλ,v) = Bern (Pλv
) ,

where

Pλv
= p(λv = 1 | yvr ,βv,γv, ωv, σ2

v , τ
2, ξ2, ηλ,v)

=
p(λv = 1 | ηλ,v)

p(λv = 1 | ηλ,v) + L0

L1
·p(λv = 0 | ηλ,v)

=
Φ(ψλ + ηλ,v)

Φ(ψλ + ηλ,v) +
L0

L1
· [1−Φ(ψλ + ηλ,v)]

,

and L0 and L1 are the joint densities of yv,βv, λv,γv, ωv, σ
2
v , τ

2, ξ2 given λv = 0 and λv = 1. Let L

be such joint density, that is,

L = p(yv,βv, λv,γv, ωv, σ
2
v , τ

2, ξ2) ∝ p(yv | βv, λv,γv, ωv, σ2
v)p(βv | λv, τ2).

Define:

Av =

Cv

Sv

 , where Cv = diag [cos (UΩvγv)] , Sv = diag [sin (UΩvγv)] ,
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(Note, Av is orthogonal, i.e., A′
vAv = I2T .), then,

p(yv | βv, λv,γv, ωv, σ2
v)

= (2πσ2
v)

− 2T
2 exp

{
− 1

2σ2
v

(yv −AvXΛvβv)
′
(yv −AvXΛvβv)

}
= (2πσ2

v)
− 2T

2 exp

{
− 1

2σ2
v

[
y′
vyv − 2 (AvXΛvβv)

′
yv + (Λvβv)

′
X′XΛvβv

]}
,

and

p(βv | λv, τ2) = (2πτ2)−
1+λv

2 exp

{
− 1

2τ2
β′
vΛvβv

}
.

Thus,

L ∝ (2πτ2)−
1+λv

2 exp

{
− 1

2σ2
v

[
−2 (AvXΛvβv)

′
yv + (Λvβv)

′
X′XΛvβv

]
− 1

2τ2
β′
vΛvβv

}
.

Let av be the flattened version of Av, that is, av is a 2T × 1 vector as

av = Av1T =

cos (UΩvγv)

sin (UΩvγv)


Also, define x(2) as the second column of X, thus, x(2) is a T ×1 vector of expected BOLD response;

define x∗
(2) =

x(2)

x(2)

 as a 2T × 1 vector to match the dimension, then,

L0

L1
=
L |λv=0

L |λv=1

= (2πτ2)
1
2 exp

{
− 1

2σ2
v

[
2βv,1

(
x∗
(2) ⊙ av

)′
yv − 2βv,0βv,1x

′
(2)1T − β2

v,1x
′
(2)x(2)

]
+

1

2τ2
β2
v,1

}
.

We flatten Av and use Hadamard product ⊙ here to lessen the computational burden. Similarly,

the full conditional distribution of ωv is

π(ωv | yvr ,βv, λv,γv, σ2
v , τ

2, ξ2, ηv) = Bern (Pωv ) ,

where

Pωv
=

Φ(ψω + ηω,v)

Φ(ψω + ηω,v) +
L0

L1
· [1−Φ(ψω + ηω,v)]

,
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where

L ∝ (2πξ2)−
1+ωv

2 exp

{
1

σ2
v

(AvXΛvβv)
′
yv −

1

2ξ2
γ′
vΩvγv

}
,

and

L0

L1
=
L |ωv=0

L |ωv=1

= (2πξ2)
1
2 exp

{
1

σ2
v

[(Av |ωv=0 −Av |ωv=1)XΛvβv]
′
yv +

1

2ξ2
γ2v,1

}
.

Keep simplifying it, when λv = 0,

L0

L1
= (2πξ2)

1
2 exp

{
1

σ2
v

βv,0 (av |ωv=0 −av |ωv=1)
′
yv +

1

2ξ2
γ2v,1

}
.

When λv = 1,

L0

L1
= (2πξ2)

1
2 exp

{
1

σ2
v

[(
βv,012T + βv,1x

∗
(2)

)
⊙ (av |ωv=0 −av |ωv=1)

]′
yv +

1

2ξ2
γ2v,1

}
.

Full conditional distribution of βv

When λv = 1, the full conditional distribution of βv is

π(βv | yv, λv = 1,γv, ωv, σ
2
v , τ

2, ξ2)

∝ p(yv,βv, λv = 1,γv, ωv, σ
2
v , τ

2, ξ2)

∝ p(yv | βv, λv = 1,γv, ωv, σ
2
v)p(βv | λv = 1, τ2)

∝ exp

{
− 1

2σ2
v

(yv −AvXβv)
′
(yv −AvXβv)

}
exp

{
− 1

2τ2
β′
vβv

}
∝ exp

{
−1

2

[
β′
v

(AvX)
′
(AvX)

σ2
v

βv − 2β′
v

(AvX)
′

σ2
v

yv + β′
v

1

τ2
βv

]}
= exp

{
−1

2

[
β′
v

(AvX)
′
(AvX) +

σ2
v

τ2 I

σ2
v

βv − 2β′
v

(AvX)
′

σ2
v

yv

]}

= exp

{
−1

2

[
β′
v

X′X+
σ2
v

τ2 I

σ2
v

βv − 2β′
v

(AvX)
′

σ2
v

yv

]}
.

Therefore,

π(βv | yv, λv = 1,γv, ωv, σ
2
v , τ

2, ξ2) = N2(µβv
,Σβv

),
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where

µβv
=

(
X′X+

σ2
v

τ2
I

)−1

(AvX)
′
yv,

Σβv
= σ2

v

(
X′X+

σ2
v

τ2
I

)−1

,

where AvX can be calculated as
[
av,x

∗
(2) ⊙ av

]
for faster computation. When λv = 0, it’s easy to

show:

π(βv,0 | yv, λv = 0,γv, ωv, σ
2
v , τ

2, ξ2) = N (
(Av1T )

′
yv

T +
σ2
v

τ2

,
σ2
v

T +
σ2
v

τ2

),

and βv,1 = 0 with probability 1, where Av1T is just av.

Sampling γv

We apply Metropolis-Hastings algorithm to sample γv. A random walk proposal,

γ∗
v | γv ∼ N2

(
Ωvγv, Ω′

vΣγv
Ωv

)
,

is used, where γ∗
v and γv are proposed parameter and current state, respectively, and Σγv

is a tuning

parameter. We use the current indicator of phase status, Ωv, to secure it proposes γ∗
v =

γ∗v,0 ̸= 0

γ∗v,1 = 0


when the phase is inactive. Let pγv

(·) be the proposal density, then the acceptance ratio is

rγv
=
π(γ∗

v | yv,βv, λv, ωv, σ2
v , τ

2, ξ2)pγv
(γv | γ∗

v)

π(γv | yv,βv, λv, ωv, σ2
v , τ

2, ξ2)pγv
(γ∗
v | γv)

=
p(yv | βv, λv,γ∗

v, ωv, σ
2
v)p(γ

∗
v | ωv, ξ2)

p(yv | βv, λv,γv, ωv, σ2
v)p(γv | ωv, ξ2)

,

where

p(yv | βv, λv,γv, ωv, σ2
v) ∝ exp

{
− 1

2σ2
v

(yv −AvXΛvβv)
′
(yv −AvXΛvβv)

}
∝ exp

{
1

σ2
v

(AvXΛvβv)
′
yv

}
,

p(γv | ωv, ξ2) ∝ exp

{
− 1

2ξ2
γ′
vΩvγv

}
.

66



Simplify the ratio, when λv = 0,

rγv
= exp

{
1

σ2
v

βv,0
(
av |γv=γ∗

v
−av |γv=γv

)′
yv −

1

2ξ2

(
γ∗,2v,0 − γ2v,0

)}
.

When λv = 1,

rγv
= exp

{
1

σ2
v

[(
βv,012T + βv,1x

∗
(2)

)
⊙
(
av |γv=γ∗

v
−av |γv=γv

)]′
yv −

1

2ξ2

(
γ∗′

v γ
∗
v − γ′

vγv

)}
.

We generate a dummy variable dγv
∼ U(0, 1), and if dγv

< rγv
, we update γv by γ∗

v, otherwise

remain γv.

Full conditional distribution of σ2
v

Assigning a Jeffreys prior, p(σ2
v) ∝ 1/σ2

v , we have:

π(σ2
v | yv, ·) = IG

(
2T

2
,

1

2
(yv −AvXΛvβv)

′
(yv −AvXΛvβv)

)
.

Again, to save computational time, AvXΛvβv can be calculated as βv,0av when λv = 0, or(
βv,012T + βv,1x

∗
(2)

)
⊙ av when λv = 1.

Full conditional distributions of τ2 and ξ2

The full conditional distribution of τ2 should be related to all voxels’ β0’s and magnitude-

active voxels’ β1’s. Assigning a Jeffreys prior, p(τ2) ∝ 1/τ2, we have:

π(τ2 | yv, ·) = IG

(
1

2

V∑
v=1

1′
2Λv12,

1

2

V∑
v=1

β′
vΛvβv

)
.

Equivalently,

π(τ2 | yv, ·) = IG

(
1

2

(
V +

V∑
v=1

λv

)
,

1

2

V∑
v=1

[
β2
v,0 + (λvβv,1)

2
])

.
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Similarly, the full conditional distribution of ξ2 should be related to all voxels’ γ0’s and phase-active

voxels’ γ1’s, that is,

π(ξ2 | yv, ·) = IG

(
1

2

V∑
v=1

1′
2Ωv12,

1

2

V∑
v=1

γ′
vΩvγv

)
.

Equivalently,

π(ξ2 | yv, ·) = IG

(
1

2

(
V +

V∑
v=1

ωv

)
,

1

2

V∑
v=1

[
γ2v,0 + (ωvγv,1)

2
])

.

Full conditional distributions of ηv, δ, and κ

They are the same as in Appendix A.2.
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