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ABSTRACT
FORMAL BAYESIAN APPROACHES TO THE SENSE AND

GRAPPA PARALLEL FMRI RECONSTRUCTION
TECHNIQUES ALONG WITH THEIR

COMBINATION

Chase Joseph Sakitis, M.S.

Marquette University, 2024

In fMRI, capturing cognitive temporal dynamics is dependent on how quickly volume
brain images are acquired. The sampling time for an array of spatial frequencies to re-
construct an image is the limiting factor in the fMRI process. Parallel imaging techniques
Sensitivity Encoding (SENSE), which operates in the image space domain, and GeneRal-
ized Autocalibrating Partial Parallel Acquisition (GRAPPA), which operates in the spatial
frequency domain, have been utilized to greatly reduced image acquisition time. In SENSE
image reconstruction, coil sensitivities are estimated once from a priori calibration images
and used as fixed “known” coil sensitivities for image reconstruction of every subsequent
image. This technique utilizes complex-valued least squares estimation via the normal equa-
tions to estimate voxel values for the reconstructed image. This method can encounter
difficulty in estimating voxel values when the SENSE design matrix is not well conditioned.
In GRAPPA, localized weights are utilized to interpolate the missing lines of the subsampled
spatial frequency (k-space) coil arrays. These weights are assessed from a priori calibration
spatial frequency arrays and are applied to every point the fMRI time series. This disserta-
tion introduces Bayesian approaches to both SENSE and GRAPPA where prior distributions
for the unobserved parameters are assessed from the a priori calibration information. For
SENSE, the unobserved parameters are the unaliased voxel, coil sensitivities, and image noise
variance, and for GRAPPA, the unobserved parameters are the missing spatial frequencies,
localized weights, and the k-space noise variance. These parameters are jointly estimated
a posteriori via the Iterated Conditional Modes algorithm and Markov chain Monte Carlo
using Gibbs sampling. In addition, variability estimates and hypothesis testing is possible.
This dissertation also explores fusing the GRAPPA and SENSE reconstruction technique
along with applying a Bayesian approach to this fused technique. The Bayesian reconstruc-
tion techniques utilize prior image information to reconstruct images from the posterior
distributions. The traditional image reconstruction techniques and the Bayesian techniques
are extensively evaluated using a simulation study and experimental fMRI data.
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CHAPTER 1: Introduction

1.1 Background

Magnetic Resonance Imaging (MRI) is a type of medical imaging that creates internal

anatomic body images using strong magnetic fields. Functional Magnetic Resonance Imaging

(fMRI) was developed in the early 1990’s as a technique to noninvasively observe the human

brain in action without exogenous contrast agents (Bandettini et al., 1993). This procedure

examines brain activity by detecting changes in the blood oxygenation using the blood-

oxygen-level dependent (BOLD) contrast (Ogawa et al., 1990). When a neuron fires, the

blood oxygenation changes in the proximity of the neuron and is thus a correlate for neuronal

firing. In MRI, the machine does not directly measure the images. Measurements from the

machine are arrays of complex-valued spatial frequencies called k-space (Kumar et al., 1975).

These k-space arrays are then reconstructed into images using an inverse Fourier transform

(IFT) producing brain images. The reconstructed brain images are made up of complex-

valued voxels which contain the signal intensity (magnitude) and a measure of local magnetic

field (phase) for each pixel in the image.

Since the k-space array is complex-valued, as depicted in Figure 1.1 (column 2), there

is a real part (first row) and an imaginary part (second row). An inverse Fourier transform

matrix is depicted in Figure 1.1 (column 1) to illustrate the pre-multiplication of the k-space

array with a real part (first row) and an imaginary part (second row). The real part of

the IFT matrix is a graphical depiction of the cosine waves at different frequencies, and

the imaginary part of the IFT matrix is a graphical depiction of the sine waves at different

frequencies. Then the transpose of an IFT, depicted in Figure 1.1 (column 3), is used to

post-multiply k-space with a real part (first row) and an imaginary part (second row). This
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results in a reconstructed image (column 4) with a real part (first row) and an imaginary

part (second row). Since the magnitude (first row, column 5) and the phase (second row,

column 5) of the reconstructed images are observed for fMRI analysis (Rowe and Logan,

2004; Rowe, 2005), they are also shown in Figure 1.1. Despite the phase images generally

being discarded using only the magnitude images for fMRI analysis, the phase images are

utilized for this research. Producing magnitude and phase images is simply a conversion to

polar coordinates from Cartesian coordinates in the complex plane. Since the voxel values

are complex-valued, it forms a vector on a complex plane with the real part indicating

the length in the x-direction and the imaginary part indicating the length in the y-direction.

Converting to polar coordinates would give us the magnitude (the length) and the phase (the

angle) of the voxel vector. For this research, the concentration will be on Cartesian k-space

sampling, with the conversion to polar coordinates used for image depiction purposes.

Figure 1.1: Inverse Fourier transform image reconstruction of a complex-valued k-space array to
a complex-valued image (first and second row). Inverse Fourier transform image reconstruction of
a complex-valued k-space array to a magnitude and phase image (third and fourth row).

In fMRI, obtaining hundreds of volume images is necessary to statistically detect activa-

tion in the brain. This series of observations are of the same underlying volume image taken

over time with each image being measured individually through time. Measuring full arrays
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of data for all slices required to form volume images takes a considerable amount of time

due to the size of a dataset from a single experiment. For example, the experimental data

used for this dissertation contain nine slices of 96×96 images with 510 time points yielding

41,472,000 complex-valued voxel values. Acquiring fully sampled k-space arrays limits the

temporal resolution of the reconstructed images which can diminish the power of capturing

brain activity.

Measuring full arrays of data for all the slices that form the volume image typically

takes about one to two seconds, limiting the temporal resolution of the acquired images. The

acquisition of k-space arrays to make up a volume image can take a considerable amount

of time. A great deal of work has been dedicated to reducing the scan time of the fMRI

process by accelerating the number of images acquired per unit of time. Hyde et al. (1986),

Pruessmann et al. (1999), and Griswold et al. (2002) all explore parallel imaging techniques

to reduce the scan time in MRI.

1.2 Previous Approaches

Historically, a single channel coil receiver has been utilized in fMRI to measure fully

sampled k-space data arrays. The drawbacks of acquiring fully sampled k-space arrays

directed fMRI research to increase the number of images acquired per unit of time. More

recently, the focus of research has been to acquire more images per unit of time by measuring

less data without losing the ability to form a full image. To accomplish this, multiple receiver

coils are utilized in parallel to each measure spatial frequencies. With multiple receiver coils,

we can skip lines in the acquisition of the k-space arrays which yields subsampled spatial

frequency arrays for each coil. This subsampling reduces the acquisition time of the k-space

arrays, but causes the images, after using the IFT, to be aliased, or appear “folded over,”

rendering them unusable. This requires the multiple aliased coil images to be unaliased and

3



combined into a single, full field-of-view (FOV) brain image.

There are two common parallel imaging techniques that accomplish this: SENSitivity

Encoding (SENSE) (Pruessmann et al., 1999) and GeneRalized Autocalibrating Partial Par-

allel Acquisition (GRAPPA) (Griswold et al., 2002). SENSE operates in image space after

the IFT utilizing estimated coil sensitivities (coil weightings) to unalias and combine the

aliased coil measurements into a single FOV image. GRAPPA operates on the subsampled

k-space prior to the IFT by estimating localized weights that are used to interpolate the

unacquired spatial frequencies for each coil.

The SENSE method uses complex-valued linear regression with a fixed design matrix and

a least squares solution to estimate the unknown parameters, which would be the voxel values

of the single, full brain image. This approach for parameter estimation can be difficult be-

cause the complex-valued design matrix, generally, is ill-conditioned. This can cause aliasing

artifacts, low image quality, and signal-to-noise ratio (SNR) degradation in the final recon-

structed image, which has led to variations of the traditional technique (King and Angelos,

2001; Liang et al., 2001; Lin et al., 2004; Liu et al., 2009). These variations have deficiencies

that hardly mitigate the limitations of the traditional maximum likelihood SENSE proce-

dure. In Chapter 2, we develop a Bayesian approach to SENSE that will incorporate more

prior information and does not use a single a priori fixed complex-valued sensitivity matrix,

yielding increased SNR, no aliasing artifacts, and increased image quality with improved

task detection results.

For the GRAPPA method, once the unacquired spatial frequencies are interpolated, the

full k-space arrays (acquired plus estimated) for each coil are averaged to yield a single, full

spatial frequency array. Then the averaged, full k-space array is inverse Fourier transformed

into a full brain image. GRAPPA has its deficiencies, such as low image quality, a low SNR,
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and diminished task detection power with higher acceleration factors. Also, since GRAPPA

averages the full coil k-space arrays, this technique does not incorporate the sensitivities of

the coils which results in a markedly lower overall signal intensity for each voxel. Bayesian

methodologies have been utilized in k-space to improve spatial resolution and image quality

(Kornak et al., 2010), but here we aim to reconstruct subsampled k-space data to produce

full brain images. In Chapter 3, we develop a Bayesian approach to GRAPPA that will

incorporate prior information, yielding increased SNR and image quality, with improved

task detection power.
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CHAPTER 2: Bayesian SENSE (BSENSE)

2.1 SENSE Technique

To motivate the proposed Bayesian approach, in this section we first consider single-

coil full k-space inverse Fourier transform image reconstruction. Then the multi-coil fully

sampled k-space IFT image reconstruction with SENSE image combination, and finally

multi-coil subsampled k-space with SENSE image combination.

2.1.1 Single Coil, No Acceleration Factor

As mentioned in Section 1.2, fMRI historically utilized a single channel receiver coil

as illustrated in Figure 2.1. With a single channel coil, the height of the receiver is taller

than the size of the subject’s head, shown in the three-dimensional depiction in Figure 2.1a.

Both parts a and b of Figure 2.1 show the single coil receiver wraps completely around the

subject’s head starting from posterior to anterior and connects back at the posterior. The

gray square with the red depicts the FOV of a single slice in both parts of Figure 2.1.

Figure 2.1: (a) Illustration of a three-dimensional single coil channel along with (b) the top-down
view of the coil receiver.
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From the single channel coil, the k-space arrays are acquired along a trajectory as

shown in Figure 2.2 (top left) where the machine starts in the bottom left corner and moves

across the row (in the x-direction) measuring complex-valued spatial frequencies along the

Cartesian grid. At the end of each row, you move up one line (in the y-direction) and the

process is repeated in the opposite direction. As the trajectory changes to move up one

line in the y-direction, the machine continues to acquire the spatial frequency points outside

the Cartesian grid called turnaround points. The acquisition of the complex-valued spatial

frequencies continue until all the rows of the k-space array are obtained for each slice in the

volume spatial frequency array. Then the turnaround points outside the square array are

omitted yielding fully sampled k-space depicted in Figure 2.2 (top right). These complex-

Figure 2.2: Fully sampled k-space zig-zag coverage (top left) with the finalized full k-space array
after omitting the turn-around points (top right) and the reconstructed brain image using the IFT
(bottom).
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valued spatial frequency arrays are then reconstructed into full FOV real and imaginary then

magnitude and phase brain images using the IFT (bottom of Figure 2.2). The reconstructed

phase image is not illustratively shown.

2.1.2 Multi-Coil, No Acceleration Factor

To acquire more images per unit of time, nC > 1 receiver coils are utilized instead of a

single channel coil. An example of a four-channel coil arrangement is illustrated in Figure

2.3. The three-dimensional depiction of the multi-coil arrays in Figure 2.3a show the height

of the receiver coils being taller than the head of the subject. In Figure 2.3b, starting with

coil 1 at the anterior of the subject, the coils increment clockwise with coil 2 on the right

lateral, coil 3 on the posterior, and coil 4 on the left lateral of the subject’s head. Each of

the four coils can measure full sampled k-space arrays, as exhibited in Figure 2.2, in parallel

which does not increase the acquisition time compared to the single channel coil array.

Figure 2.3: (a) Illustration of a three-dimensional multi-coil channel with four receivers along with
(b) the top-down view of the multiple coils.

Each channel receiver coil possesses a depth sensitivity profile which depends on its size

and location. This means that each coil can only “see” parts of the object with a particular

depth sensitivity that decreases as we move farther from the coil. The same four-channel
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coil configuration in Figure 2.3b is displayed in Figure 2.4 (center image with four coils on

each side) showing how the coils would look around a single slice brain image. Figure 2.4

gives an illustrative example of image slices with nC = 4 coils (top, bottom, left, right) and

their respective depth sensitivity to the true image slice (the four corners of the figure). In

Figure 2.4, the magenta outline of the brain can be seen in each coil sensitivity image (top,

bottom, left, right) showing the placement of the true slice image in accordance with the

coil. Typically, the sensitivities outside the brain are masked out but are left in Figure 2.4

to visualize how the depth sensitivity decreases for voxels the are further from the respective

voxels. The images for Figure 2.4 are magnitude images used to visualize how the linear

model is designed. In Figure 2.4, the top right corner image displays the true image point-

wise multiplied by the depth sensitivity profile of coil 1 which is located at the front of the

brain. The resulting image shows that the signal intensity of the image decreases as you move

farther from the coil location towards the posterior of the brain (bottom of the top right

image). When examining a single complex-valued voxel in the weighted brain image for coil

1, the complex-valued voxel from the true image (center) is multiplied by the complex-valued

weighted sensitivity, S1c, to get a1c = S1cvc+ε1c with some additive measurement error. The

other three coils follow the same operation creating the system of equations ac = Scvc + εc

where ac ∈ CnC×1, Sc ∈ CnC×1, vc ∈ C1×1, and εc ∈ CnC×1 as expressed in Eq. 2.1.



a1c

a2c

a3c

a4c


=



S11c

S21c

S31c

S41c


[
vc

]
+



ε1c

ε2c

ε3c

ε4c


. (2.1)

With this system of equations, ac (the "aliased" voxel values in the corner images in

Figure 2.4) are the observed measurements, after applying the IFT, from the machine that
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Figure 2.4: True slice image (center) along with the coil sensitivity profiles (top, bottom, left,
right) and sensitivity weighted true images (the four corners). The coil sensitivity profiles are
typically masked outside the brain but left here to show how the sensitivity decreases with voxels
that are further from the coil.

need to be combined into a single, composite brain image. Since voxels are spatially discrete,

this process is repeated for the rest of the voxels in the coil measurements.

2.1.3 Multi-Coil with an Acceleration Factor

Increasing the number of receiver coils to be greater than 1 decrease the SNR of the final

reconstructed image but allows for subsampling of the k-space arrays. As previously noted,
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the primary goal of parallel MR imaging is to increase the number of images acquired per unit

of time which can be attained by measuring less data. This can be accomplished by skipping

lines in the k-space array, i.e. subsampling, as displayed in Figure 2.5 (left). Skipping

lines in k-space introduces what is called an acceleration factor, nA. The acceleration factor

indicates the fraction of lines of data in k-space that are measured and how much sampling

time is reduced for a volume image. For example, with an acceleration factor of nA = 2,

every other line horizontally in k-space is measured as exhibited on the left side of Figure

2.5. This would result in each slice of the volume k-space arrays to be 48×96 (top right of

Figure 2.5) instead of the full 96×96. If it took one second to obtain a full k-space, with

nA = 2, the subsampled volume image would take half a second, doubling the rate at which

we can observe brain dynamics. If an acceleration factor of nA = 3 is used, a third of the

points along the horizontal lines of k-space are measured yielding each slice of the volume

image to be 32×96 which means three subsampled volume images would be observed in the

time it would take to observe one fully sampled volume image.

However, skipping lines in k-space causes reconstructed coil-weighted brain images to

appear folded over itself, or aliased, because the IFT cannot uniquely map the downsampled

signals. We can see an example of this in Figure 2.5 (bottom right) where the IFT of the

subsampled k-space (top right), with nA = 2, causes the image to be aliased (bottom right).

The depiction in Figure 2.5 only shows the aliasing for one of the coils, and since multiple

coils are utilized in parallel imaging, a weighted aliased image transpires for each coil. It

only shows the magnitude images as associated phase images are not illustratively shown.

Figure 2.6 shows a similar depiction of the full coil-weighted magnitude brain images

to Figure 2.4 but introduces an acceleration factor of nA = 3. The sequential subsampling

pattern follows one similar to that shown in Figure 2.5 (left) but measuring every third

line of k-space instead of every other line, resulting in aliased coil-weighted brain images.
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Figure 2.5: Subsampled k-space zig-zag coverage with nA = 2 acceleration factor (left), the
finalized subsampled k-space array after omitting the turnaround points (top right) and the aliased
brain image after reconstruction using IFT (bottom right).

In Figure 2.6, the aliased image (top right) is the point-wise multiplication of the given

voxels (center) by the sensitivity profile for coil 1 (top middle) summed for the three strips,

a1c = S11cv1c + S12cv2c + S13cv3c. This process is repeated for a2c in coil 2 (bottom right),

a3c in coil 3 (bottom left), and a4c in coil 4 (top left). This depiction of four acquired,

complex-valued voxel values in the aliased images, ac ∈ CnC×1, along with the unacquired,

complex-valued coil sensitivities, Sc ∈ CnC×nA , the unacquired complex-valued unaliased

voxel values, vc ∈ CnA×1, and the complex-valued measurement error, εc ∈ CnC×1, create a

linear system of complex-valued equations, shown in Eq. 2.2.



a1c

a2c

a3c

a4c


=



S11c S12c S13c

S21c S22c S23c

S31c S32c S33c

S41c S42c S43c




v1c

v2c

v3c

+



ε1c

ε2c

ε3c

ε4c


. (2.2)

Since the unaliased voxel values, vc, are the parameter of interest, SENSE estimates the
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coil sensitivities, Sc, treats it as a known parameter, and models the process as a complex-

valued regression model.

Figure 2.6: True slice image (center) along with the coil sensitivity profiles (top, bottom, left,
right) and sensitivity weighted true aliased images (the four corners). The coil sensitivity profiles
are typically masked outside the brain but left here to show how the sensitivity decreases with voxels
that are further from the coil.

2.1.4 Model

Traditional SENSE performs image reconstruction via the relationship

ac
(ν) = Sc

(ν)vc
(ν) + εc

(ν), ν = 1, ..., K (2.3)
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where ac ∈ CnC×1 is the acquired complex-valued aliased coil measurements, Sc ∈ CnC×nA

is the matrix of unacquired complex-valued coil sensitivities, vc ∈ CnA×1 is the unacquired

complex-valued unaliased voxel values, εc ∈ CnC×1 is the additive complex-valued noise

where εc ∼ N(0, σ2(1 + i)), and K is the total number of voxels in the full image divided

by the acceleration factor nA yielding the total number of voxels in the aliased image. Prior

to an fMRI experiment, a short non-task based set of ncal full k-space volume arrays for the

nC coils can easily be obtained. These commonly measured full k-space volume arrays are

inverse Fourier transformed into full pre-scan coil calibration images similar to Figure 2.4.

From these pre-scan calibration images, an estimate of the complex-valued coil sensitivities

Ŝc can be obtained. The SENSE least squares estimator of vc from Eq. 2.4 is given by

v̂(ν)c = (Ŝc

(ν)†
Ŝc

(ν)
)−1Ŝc

(ν)†
ac

(ν), ν = 1, ..., K. (2.4)

where † is the Hermitian or conjugate transpose. The SENSE process is repeated for each

voxel in the aliased image to estimate the unaliased voxel values vc yielding a single full FOV

brain image. The design matrix Sc is generally ill-conditioned which causes SNR, a ratio that

measures that signal intensities in imaging to background noise, to degrade. This can also

cause aliasing artifacts in the final reconstructed image under SENSE (Pruessmann et al.,

1999).

In SENSE image reconstruction, the use of a regularizer such as ridge or lasso regression,

can be used to address issues with aliasing artifacts or SNR degradation. However, the regu-

larization has been shown to introduce bias, resulting in blurred images (King and Angelos,

2001; Liang et al., 2001; Lin et al., 2004). These deficiencies motivate our Bayesian approach,

which allows for a more general and automated method for image reconstruction. With the

use of all available prior information, our Bayesian approach provides full distributions for

the unaliased voxel values, coil sensitivities, and residual image variance.
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2.2 SENSE vs. SENSE-ITIVE

We now consider the true complex-valued version of the scenarios described in the previ-

ous subsection, as k-space data acquired by the MRI scanner is not real-valued. Traditional

SENSE performs reconstruction while the data values are still in complex-valued form shown

in Eq 2.5.

(aR + iaI) = (SR + iSI)(vR + ivI) + (εR + iεI). (2.5)

Bruce et al. (2012) shows that the complex-valued model in Eq. 2.5 can be expressed by a

real-valued isomorphic representation called the SENSE-ITIVE model conveyed by Eq. 2.6.

 aR

aI

=
 SR −SI

SI SR


 vR

vI

+
 εR

εI

 , (εR, εI)
′ ∼ N(0, σ2I2nC

). (2.6)

Eq. 2.6 characterizes the design matrix S as being skew-symmetric. The proposed

BSENSE model will use the real-valued isomorphism instead of the complex-valued rep-

resentation (Bruce et al., 2012). Continuing the illustrative use of nC = 4 receiver coils

displayed in Figures 2.3, 2.4, and 2.6, the depth sensitivity profiles for each coil now contain

a real part and an imaginary part. Each coil measures a complex-valued sensitivity weighted

true image slice that is dependent on the location and size of the coil plus complex-valued

noise. Figure 2.7, similar to Figure 2.6, shows the true noiseless complex-valued image slices

with nC = 4 coils (top, bottom, left, right) and their respective depth sensitivity to the

aliased true image slice (the four corners of the figure) with the real parts on the left and

the imaginary parts on the right. In Figure 2.7 (top right) the aliased image is the point-

wise multiplication of the given voxel by the sensitivity profile for coil 1 summed for the

three strips. The linear equations for the real component and the imaginary component are
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expressed in Figure 2.7 (top right). This process is repeated for coil 2 (bottom right), coil

3 (bottom left), and coil 4 (top left), displayed in Figure 2.7, with the respective real and

imaginary equations.

Figure 2.7: True real and imaginary slice image (center) along with real and imaginary coil
sensitivity profiles (top, bottom, left, right) and sensitivity weighted real and imaginary true aliased
images (the four corners).

The nC = 4 coil measurements create a system of equations which can be expressed

in matrix form as shown in Eq. 2.7, where the a’s are acquired aliased coil measurements,

the S’s are unacquired coil sensitivities, and the v’s are unacquired true slice voxel values.

Likewise in Eq. 2.6 this representation creates a skew symmetric design matrix for S. This

equation is a latent variable model but complex-valued and can be more compactly written

as a = Sv + ε where a ∈ R2nC×1, S ∈ R2nC×2nA , v ∈ R2nA×1 and ε ∈ R2nC×1 are the real-

valued isomorphic representations of ac, Sc, vc, and εc respectively. Our proposed model uses
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this real-valued representation.



a1R

a2R

a3R

a4R

a1I

a2I

a3I

a4I



=



S11R S12R S13R −S11I −S12I −S13I

S21R S22R S23R −S21I −S22I −S23I

S31R S32R S33R −S31I −S32I −S33I

S41R S42R S43R −S41I −S42I −S43I

S11I S12I S13I S11R S12R S13R

S21I S22I S23I S21R S22R S23R

S31I S32I S33I S31R S32R S33R

S41I S42I S43I S41R S42R S43R





v1R

v2R

v3R

v1I

v2I

v3I


+



ε1R

ε2R

ε3R

ε4R

ε1I

ε2I

ε3I

ε4I



. (2.7)

2.3 BSENSE Technique

For the proposed Bayesian approach, we use the same data generating mechanism as

SENSE-ITIVE (and SENSE). That is a = Sv + ε where ε ∈ R2nC×1 is the real-valued

representation of the measurement error with the real part εR stacked on top of the imaginary

part εI . In this work, two different representations of the coil sensitivities will be used.

The first representation is S ∈ R2nC×2nA as demonstrated in Eq. 2.7 is necessary for the

proper skew symmetric design matrix for complex-valued multiplication. The second is

H = [SR, SI ], used in the prior distribution and ultimately for parameter estimation of the

coil sensitivities, since SR and SI uniquely determine S and do not need to be duplicated.

2.3.1 Data Likelihood, Prior and Posterior Distributions

Similar to SENSE, we assume that the residual error is normal and independent and

identically distributed in the real and imaginary components. The likelihood for the aliased
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voxel measurements for the nC coils becomes

P (a|S, v, σ2)∝(σ2)−
2nC
2 exp

[
− 1

2σ2
(a− Sv)′(a− Sv)

]
. (2.8)

We can quantify available prior information about the unobserved parameters of the

voxel intensities v, the coil sensitivities S, and the residual variance σ2 in the likelihood with

assessed hyperparameters of prior distributions. The voxel values v are specified to have a

normal prior distribution, expressed in Eq. 2.9, since the real and imaginary components

of fMRI data are assumed to be normally distributed (Henkelman, 1985; Lindquist, 2008).

The coil sensitivities, represented as H, are also specified to have a normal prior distribution

(Eq. 2.10) and the noise variance σ2 is specified to have an inverse gamma distribution (Eq.

2.11).

P (v|nv, v0, σ
2)∝(σ2)−

2nA
2 exp

[
− nv

2σ2
(v − v0)

′(v − v0)
]
, (2.9)

P (H|nS, H0, σ
2)∝(σ2)−

2nCnA
2 exp

[
− nS

2σ2
tr(H−H0)

′(H−H0)
]
, (2.10)

P (σ2|α, β) ∝ (σ2)−(α+1) exp

[
− β

σ2

]
, (2.11)

where tr is the trace of the (H − H0)
′(H − H0) matrix. The hyperparameters nS, H0, nv,

v0, α, and β are automatically assessed from the pre-scan calibration images, but can also

be determined using a fully subjective approach. The joint posterior distribution of the true

slice voxel values v, the coil sensitivities S (as H), and the noise variance σ2 is

P (v,H, σ2|a) ∝ P (a|S, v, σ2)P (v|nv, v0, σ
2)P (H|nS, H0, σ

2)P (σ2|α, β), (2.12)

with the distributions specified from Equations 2.8, 2.9, 2.10, and 2.11.
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2.3.2 Hyperparameter Determination

The full pre-scan coil calibration images can be utilized to fully assess appropriate

hyperparameters for the prior distributions in an automated way. For example, the ncal coil

calibration images (top left of Figure 2.8) can be averaged together to give us full complex-

valued coil images. A magnitude v0M of the prior mean can be estimated for each voxel in

the unaliased image by computing the Euclidean norm shown in the top right of Figure 2.8.

Figure 2.8: The ncal calibration coil images (top left) are averaged through time and the Euclidean
norm is taken yielding a prior mean for the magnitude unaliased voxel values v0M (top right). The
average of the coil calibration images is then point-wise divided by v0M resulting in prior means for
the real and imaginary parts of the coil sensitivities H0R and H0I , respectively.

The nc averaged coil calibration images can then be point-wise divided by v0M to obtain

a prior mean for the real and imaginary coil sensitivities, as displayed in the bottom of Figure

19



2.8. The phase of the coil sensitivities is assessed by arctan(I/R)/2 where R and I are the

real and imaginary components of the coil sensitivities, respectively. This phase is utilized

to assess complex-valued prior means for the coil sensitivities, H0. These coil sensitivity

hyperparameters, H0, along with the full averaged calibration coil images are used to assess

complex-valued prior means for the voxel values, v0.

The hyperparameters nS and nv, which are the scalar weights of the prior means, are

assessed to be the number of calibration images ncal. The average residual variance over the

voxels of the calibration images is calculated to obtain a prior for the noise variance σ2
0. The

hyperparameters α (shape parameter of the inverse gamma) and β (scale parameter of the

inverse gamma) are assessed to be α = ncal − 1 and β = (ncal − 1)σ2
0. This prior information

is incorporated to reconstruct each voxel measurement in the aliased coil image into the

unaliased voxel values at every time point in the fMRI series.

2.3.3 Parameter Estimation

Using the posterior distribution in Eq. 2.12, two approaches are used to estimate

the unaliased voxel values v, coil sensitivities S, and residual variance σ2: Maximum a

posteriori (MAP) estimation using the Iterated Conditional Modes (ICM) optimization al-

gorithm (Lindley and Smith, 1972; O’Hagan, 1994) to find the joint posterior mode, and

marginal posterior mean (MPM) estimation via Markov chain Monte Carlo (MCMC) Gibbs

sampling (Geman and Geman, 1984; Gelfand and Smith, 1990). Beginning with the initial

estimates of the each parameter, ICM iterates over the parameters, calculating its posterior

conditional mode and converges to a maximum of the joint posterior density. Since each

of the posterior conditionals are unimodal, the ICM will produce the global maximum, the

MAP. The conditional modes are

v̂ = (S ′S + nvI2nA
)−1(S ′a+ nvv0), (2.13)
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Ĥ = (V ′V + nSI2nA
)−1(V Y ′ + nSH0), (2.14)

σ̂2 =
Θ

2(2nC + 2nA + α + 2nCnA + 1)
, (2.15)

where Θ = (a−Sv)′(a−Sv)+nv(v−v0)
′(v−v0)+αβ+nStr[(H−H0)(H−H0)

′], Y = [aR, aI ]

and V ∈ R2nA×2 is a skew symmetric matrix representation of the unaliased voxel values v

as expressed by

V =

 vR vI

−vI vR

 . (2.16)

The full conditional distributions are given by

v|S, σ2, a ∼ N{v̂, σ2(S ′S + nvI2nA
)−1}, (2.17)

H|v, σ2, a ∼ MN{Ĥ, σ2(V ′V + nSI2nA
)−1}, (2.18)

σ2|v, S, a ∼ IG{α∗, β∗}, (2.19)

where α∗ = nCnA+nC+nA+α and β∗ = [(a−Sv)′(a−Sv)+nv(v−v0)
′(v−v0)+nStr((H−

H0)(H−H0)
′)+2β]/2. What distinguishes the MAP estimate from a penalized MLE is more

available prior information is incorporated in the reconstruction of the aliased coil images.

This process is also completely objective providing a fully automated method without having

to calculate a subjective penalty. Our Bayesian approach, however, is flexible enough to

include subjective priors if desired. Because we are using available prior information from

the calibration images, we expect the subsequent estimators to have smaller variance and

higher SNR. To illustrate this, extensive realistic simulations are performed in Chapter 5 of

this dissertation.
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CHAPTER 3: Bayesian GRAPPA (BGRAPPA)

3.1 GRAPPA Technique

3.1.1 Reconstruction Process

Like SENSE, GRAPPA is a parallel image reconstruction technique that produces full

images from subsampled k-space data. However, SENSE image reconstruction operates in

Figure 3.1: Subsampled k-space coil arrays (top left) that are spread out to show a full k-space
array where the black dots are the acquired spatial frequencies, and the white dots are the unacquired
spatial frequencies (top middle). The missing spatial frequencies are then estimated (green dots
in the top right) yielding full coil k-space arrays (bottom right). The full coil k-space arrays
are averaged together to produce a full spatial frequency array (bottom middle) which is then
transformed into a full brain image (bottom left) using the IFT.
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the image domain while GRAPPA operates in the spatial frequency domain. The process

for GRAPPA is exhibited in Figure 3.1 with an illustrative example of using nC = 4 coils.

The machine acquires subsampled spatial frequency arrays for each of the four coils shown

in the top left of Figure 3.1. The top middle of Figure 3.1 displays the subsampled k-space

arrays as full arrays with the black dots indicating the acquired spatial frequencies and the

white dots indicating the unacquired spatial frequencies. The unacquired spatial frequencies

are estimated using GRAPPA image reconstruction, displayed as green dots in the top right

of Figure 3.1. This yields full coil k-space arrays as shown in the bottom right of Figure 3.1.

To get a single full spatial frequency array (bottom middle), the full coil spatial frequency

arrays are averaged together. The full spatial frequency is then IFT reconstructed into a

single, full FOV brain image (bottom left of Figure 3.1).

3.1.2 Model

For GRAPPA reconstruction, localized weights are assessed to interpolate the unac-

quired spatial frequencies. There are two different methods of assessing the weights used for

interpolation. The first method is from acquiring extra lines within the center portion of k-

space, known as auto-calibration signal (ACS) measurements, when subsampling the k-space

arrays. An autocalibration pulse sequence is more difficult and there is no information for

higher ky spatial frequencies (further from the center of the array). The second, preferred,

method is acquiring full FOV calibration k-space arrays pre-scan like the calibration images

obtained for SENSE without using the IFT to transform the spatial frequency arrays into the

image domain. For this research, we will continue with using pre-scan full FOV calibration

information for prior information. This allows you to reconstruct with SENSE, GRAPPA,

or both.

To calculate the localized weights used for interpolation, a kernel with krow rows and
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kcol columns is placed around the acquired spatial frequency points closest to the calibration

point. There are four kernel sizes that will be used for this research: 2×1, 4×1, 2×3, and 4×5.

A visual of these kernel sizes are displayed in Figure 3.2 with an illustrative use of nA = 2

acceleration factor. Using a larger kernel allows for more data points to be averaged together

which can result in an increase in the accuracy of the interpolated value. However, this can

cause higher correlations with more local voxels than a smaller kernel would encounter and

can be more computationally expensive. These thoughts are taken into consideration when

determining which kernel size to use.

Figure 3.2: Different kernel sizes used for estimating localized weights: 2×1, 4×1, 2×3, and 4×5.

Figure 3.3 illustrates how a 2×1 kernel is utilized to estimate the weights from the

full coil calibration spatial frequencies with a four-channel coil array. In Figure 3.3, all

the complex-valued data points are acquired, but are treated differently depending on the

location of the data point. The black data points, fl, are utilized as the “acquired” complex-

valued spatial frequency values, the red points, fcalib, are the complex-valued calibration

spatial frequency points, and the white points are ignored for the calculation of those weights

associated with the current fcalib points. The white dots represent the spatial frequencies

that would be unacquired during the fMRI experiment but are used as calibration points to

estimate the complex-valued weights for those spatial frequencies.

The calibration points fcalib and the “acquired” spatial frequencies fl along with the
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Figure 3.3: The k-space coil arrays in the top left are fully sampled where the black dots are treated
as the acquired spatial frequencies and the red dots are the calibration point utilized to calculate the
weights for those coil spatial frequencies. The yellow box shows a 2×1 kernel indicating which points
are utilized to estimate the weights. From this, we get an acquired black dot above and below each
red coil calibration point. The black points above the calibration points are then stacked by coil
(1 through 4) which is then placed above the stacked black dots below the calibration points. The
image in the top right demonstrates the stacking of the black dots through the purple line and the
orange line with the purple vector then being placed above the orange vector in the system of linear
equations (bottom). The weights, Wc, for those “unacquired spatial frequencies are then estimated
using least squares. Once the weights have been estimated, the red calibration points move to the
next white dots to estimate the set of weights for the next unacquired spatial frequencies.

complex-valued weights, Wc, create a system of linear equations as displayed in Figure 3.3
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(bottom). From the linear equations, we can estimate the weights Wc using Eq. 3.1.

Wc
(ω) = fcalib

(ω)fl
(ω)†(fl

(ω)fl
(ω)†)−1, ω = 1, ..., L, (3.1)

where Wc ∈ CnC×p is the complex-valued weights, fcalib ∈ CnC×1 is the complex-valued

calibration spatial frequencies, fl ∈ Cp×1 is the “acquired” complex-valued spatial frequencies,

p = nckrowskcols, † is the Hermitian or conjugate transpose, and L is the total number of

unacquired spatial frequencies in the subsampled k-space array. The process is repeated for

each spatial frequency point that would be unacquired during the actual fMRI experiment

(the white dots in Figure 3.3), yielding different weights for each unacquired spatial frequency.

Once the weights for each of the unacquired coil spatial frequencies are estimated from

the calibration k-space arrays, those weights are then utilized to interpolate the unacquired

spatial frequencies in the actual fMRI experiment. The GRAPPA model with the estimated

weights becomes

fec
(ω) = Wc

(ω)fkc
(ω) + ηc

(ω), ω = 1, ..., L, (3.2)

where fec ∈ CnC×1 is the complex-valued interpolated k-space values, fkc ∈ Cp×1 is the

complex-valued acquired k-space values, and ηc ∈ CnC×1 is the additive complex-valued

noise with ηc ∼ N(0, τ 2(1 + i)). The interpolated coil k-space values, fec, are inserted in the

respective locations of each coil yielding full coil k-space arrays, ffull, (top right of Figure

3.1). The full coil spatial frequency arrays ffull are averaged together and the IFT is applied

to the single, full FOV k-space array reconstructing to a full FOV brain image.

With GRAPPA image reconstruction, however, the resulting reconstructed brain images

can have diminished SNR which is a consequence of either a decreased signal intensity,

increased temporal noise variance, or a combination of the two. With an increase in the

deficiencies motivate our Bayesian approach, which will allow for a more automated method
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for image reconstruction without having to potentially store and use large matrices. Unlike

GRAPPA, our Bayesian approach will utilize all valuable available prior information from

the calibration spatial frequency arrays and provide full distributions for the unacquired

spatial frequencies, the weights, and the residual k-space variance.

3.2 GRAPPA Isomorphic Representation

Similar to the SENSE-ITIVE model of SENSE, we can write a as real-valued isomorphic

representation model of the complex-valued GRAPPA model. The traditional GRAPPA

model estimates the unacquired spatial frequencies while the data values are still in complex-

valued form shown in Eq 3.3.

(feR + ifeI) = (WR + iWI)(fkR + ifkI) + (ηR + iηI). (3.3)

This complex-valued model can be expressed by a real-valued isomorphic representation as

conveyed by Eq. 3.4.

 feR

feI

=
 WR −WI

WI WR


 fkR

fkI

+
 ηR

ηI

 , (ηR, ηI)
′ ∼ N(0, τ 2I2nC

). (3.4)

Eq. 3.4 characterizes the design matrix W as being skew-symmetric. The proposed BGRAPPA

model will use the real-valued isomorphism (Eq. 3.4) instead of the complex-valued repre-

sentation (Eq. 3.2).

3.3 BGRAPPA Technique

For our proposed Bayesian approach, we use the same linear model as GRAPPA as

expressed Eq. 3.2, except the acquired spatial frequencies will be the fec variable instead of
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the fkc variable. This creates a model where the design matrix and the coefficients can both

be treated as unknown parameters, allowing us to take a Bayesian approach to the linear

regression. Then the weights, Wc, and the unacquired spatial frequencies, fkc, along with

the residual k-space variance, τ 2, are treated as unknowns with prior distributions placed on

them. We also use an isomorphic real-valued representation of the linear GRAPPA model

in Eq. 3.4 where feR ∈ RnC×1 and feI ∈ RnC×1 are the real and imaginary components,

respectively, of fec, WR ∈ RnC×p and WI ∈ RnC×p are the real and imaginary components of

Wc, fkR ∈ Rp×1 and fkI ∈ Rp×1 are the real and imaginary components of fkc, and ηR ∈ RnC×1

and ηI ∈ RnC×1 are the real and imaginary components of ηc. This equation is a latent

variable model with complex values and can be more compactly written as fe = Wfk + η

where fe ∈ R2nC×1, W ∈ R2nC×2p, fk ∈ R2p×1, and η ∈ R2nC×1 are the real-valued isomorphic

representations of fec, Wc, fkc, and ηc, respectively.

In this method, two different representations of the weights will be used. The first

representation is the proper skew-symmetric design matrix W as shown in Eq. 3.4. The

second representation is D = [WR, WI ] which is used in the prior distribution and for

parameter estimation of the weights. This is to ensure WR and WI are uniquely estimated

for W and do not need to be duplicated.

3.3.1 Data Likelihood, Prior and Posterior Distributions

Similar to GRAPPA, we assume that the residual spatial frequency error is normally

distributed in the real and imaginary components, since the real and imaginary components

of fMRI data are assumed to be normally distributed (Henkelman, 1985; Lindquist, 2008).

The data likelihood for the acquired spatial frequencies for the nc coils is

P (fe|W, fk, τ
2) ∝ (τ 2)−

2nC
2 exp

[
− 1

2τ 2
(fe −Wfk)

′(fe −Wfk)

]
. (3.5)
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We can quantify available prior information about the unacquired spatial frequencies fk,

the weights W , and the residual k-space variance τ 2 with assessed hyperparameters of prior

distributions. The unacquired spatial frequencies fk are specified to have a normal prior

distribution, expressed in Eq. 3.6. The weights D are also specified to have a normal prior

distribution (Eq. 3.7) and the k-space noise variance τ 2 is specified to have an inverse gamma

prior distribution (Eq. 3.8),

P (fk|nk, fk0, τ
2) ∝ (τ 2)

−2p
2 exp

[
− nk

2τ 2
(fk − fk0)

′(fk − fk0)
]
, (3.6)

P (D|nw, D0, σ
2) ∝ (τ 2)

−2nCp

2 exp
[
− nw

2τ 2
tr(D −D0)(D −D0)

′
]
, (3.7)

P (τ 2|αk, δ) ∝ (τ 2)−(αk+1) exp

[
− δ

τ 2

]
, (3.8)

where tr is the trace of the (D−D0)(D−D0)
′ matrix and the hyperparameters nk, fk0, nw, D0,

αk, and δ are assessed from the pre-scan calibration spatial frequencies. The joint posterior

distribution of the unacquired spatial frequencies fk, the weights W , and the residual k-space

variance τ 2 is

P (fk, D, τ 2|fe) ∝ P (fe|W, fk, τ
2)P (fk|nk, fk0, τ

2)P (D|nw, D0, τ
2)P (τ 2|αk, δ), (3.9)

with the distributions specified from Equations 3.5, 3.6, 3.7, and 3.8.

3.3.2 Hyperparameter Determination

The hyperparameters can be appropriately assessed in an automated way using the

full pre-scan coil calibration spatial frequencies. For the BGRAPPA hyperparameter as-

sessment, the same full calibration spatial frequencies and fcalib = Wfl model are used

like in GRAPPA reconstruction, but each spatial frequency point is treated differently than

GRAPPA. As shown in Figure 3.4, the calibration spatial frequencies fcalib for BGRAPPA
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are in the location of the data points where the acquired spatial frequencies are in the actual

fMRI experiment. For GRAPPA, these data points are assigned to the fl variable in the

fcalib = Wcfl model shown at the bottom of Figure 3.4. Using Eq. 3.1, this will result in the

prior for the weights in BGRAPPA, D0, to be different than the estimated weights utilized

in GRAPPA image reconstruction. The fl points used for estimating the prior mean for the

weights are averaged to obtain the prior mean of the unacquired spatial frequencies, fk0.

The hyperparameters nk and nw, which are the prior scalars of the prior means, are as-

sessed to be the number of calibration time points ncal. The average residual k-space variance

over the coil spatial frequency arrays is calculated to obtain a prior mean for the residual

k-space variance τ 20 . The hyperparameters αk (shape parameter of the inverse gamma) and δ

(scale parameter of the inverse gamma) are assessed to be αk = ncal−1 and δ = (ncal−1)τ 20 .

Figure 3.4: Full calibration k-space arrays that indicate which data points are used as fcalib points
and the fl points for GRAPPA (left) and BGRAPPA (right).
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This prior information is incorporated to estimate the unacquired spatial frequencies in the

subsampled k-space arrays.

3.3.3 Parameter Estimation

Using the posterior distribution in Eq. 3.9 with priors described in Eqs. 3.6, 3.7, and

3.8 along with the likelihood distribution 3.5, the MAP estimate for the unacquired spatial

frequencies fk, the weights W , and the residual k-space variance τ 2 is estimated via the Iter-

ated Conditional Modes (ICM) optimization algorithm (Lindley and Smith, 1972; O’Hagan,

1994) and the MCMC Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990)

for the marginal posterior estimates. Beginning with the prior means for each parameter

as initial estimates, the ICM algorithm iterates over the parameters, calculating its poste-

rior conditional mode until convergence at the joint posterior mode. Similar to the ICM

algorithm used for BSENSE, the ICM will produce the global maximum, the MAP, instead

of the local maximum since each of the posterior conditionals are unimodal. The posterior

conditional modes are

f̂k = (W ′W + nkI2p)
−1(W ′fe + nkfk0), (3.10)

D̂ = (FeF
′
k + nwD0)(FkF

′
k + nwI2p)

−1, (3.11)

τ̂ 2 =
Φ

2(2nC + 2p+ 2nCp+ 1)
, (3.12)

where Φ = (fe−Wfk)
′(fe−Wfk)+nk(fk − fk0)

′(fk − fk0)+αkδ+nwtr[(D−D0)(D−D0)
′],

Fe = [feR, feI ] and Fk ∈ R2p×2 is a skew symmetric matrix representation of the unaliased

voxel values fk as expressed by

Fk =

 fkR fkI

−fkI fkR

 . (3.13)
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It can be shown that the full conditional distributions of each parameters fk, D, and τ 2

are given by

fk|W, τ 2, fe ∼ N{f̂k, τ 2(W ′W + nkI2p)
−1}, (3.14)

D|fk, τ 2, fe ∼ MN{D̂, τ 2(F ′
kFk + nwI2p)

−1}, (3.15)

τ 2|fk,W, fe ∼ IG{αk∗, δ∗}, (3.16)

where αk∗ = nCp + nC + p + αk and δ∗ = [(fe − Wfk)
′(fe − Wfk) + nk(fk − fk0)

′(fk −

fk0)+nW tr((D−D0)(D−D0)
′)+ 2δ]/2. The Gibbs sampler uses the posterior conditionals

to generate the entire distribution for each parameter at each time point yielding more

information that can be used for statistical analysis. However, the computation time is

longer compared to using an iterative maximum a posteriori (MAP) method. Since the

posterior conditional distribution for both the unacquired spatial frequencies fk0 and the

weights W are normally distributed, the mean and mode would theoretically be equal. If we

use the MCMC Gibbs sampler, we would only be interested in the mean of the distributions.

To save practical computational expense, for this dissertation, we only use the MAP estimate

via the ICM for estimating the unacquired spatial frequencies fk0 and the weights W .
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CHAPTER 4: Bayesian Fused GRAPPA/SENSE

In Chapter 2, we discussed SENSE image reconstruction and introduced a Bayesian approach

(BSENSE) and in Chapter 3, we discussed GRAPPA image reconstruction, introducing a

Bayesian approach to GRAPPA (BGRAPPA) as well. For this chapter, we look at a fused

GRAPPA/SENSE reconstruction process. Since GRAPPA operates in the spatial frequency

domain and SENSE operates in the image domain, we can combine these two techniques to

reconstruct subsampled coil k-space arrays into a full FOV brain image. We then apply a

Bayesian approach to this Fused GRAPPA/SENSE technique.

4.1 Fused GRAPPA/SENSE

4.1.1 Reconstruction Process

Multiple steps are required to properly fuse both GRAPPA and SENSE together. Fig-

ure 4.1 demonstrates the flowchart of how the subsampled spatial frequencies will be recon-

structed into a single full FOV brain image using this Fused GRAPPA/SENSE technique.

There are still the pre-scan calibration spatial frequency arrays in step 1 that are utilized

for estimating the weight, Wc, for GRAPPA and the coil sensitivities, S, for SENSE (step

2). Step 3 of the process is then to estimate all the unacquired spatial frequencies using

GRAPPA, at a single time point, yielding full coil k-space arrays. The full coil k-space ar-

rays are then inverse Fourier transformed in full coil-weighted images (step 4). Then SENSE

reconstruction is utilized to combine the full coil images into a single composite brain image

(steps 5 and 6). This process is repeated at each time point in the subsampled time series

of coil spatial frequency arrays.
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Figure 4.1: Flow chart for the BGRAPPA/BSENSE combination model for image reconstruction.

4.1.2 Model

The model for the Fused GRAPPA/SENSE technique begins with the GRAPPA model

outlined in Section 3.1.2. That is fec(ω) = Wc
(ω)fkc

(ω)+ηec
(ω) where ω = 1, ..., K, fec ∈ CnC×1

is the complex-valued interpolated k-space values, fkc ∈ Cp×1 is the complex-valued acquired

k-space values, and ηc ∈ CnC×1 is the additive complex-valued noise with ηc ∼ N(0, τ 2(1+i)).

The interpolated spatial frequencies, fec, are then placed in the respectively locations of the

missing k-space values resulting in full coil k-space arrays, ffull.

The full coil k-space arrays ffull are then inverse Fourier transformed into full coil

images. The SENSE model is then applied to the full coil image measurements with no

acceleration factor, nA = 1, as described in Section 2.1.2. That is ac
(ν) = Sc

(ν)vc
(ν) + εc

(ν),

where ν = 1, ...,M , ac ∈ CnC×1 is the complex-valued coil measurements, Sc ∈ CnC×1 is
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the matrix of complex-valued coil sensitivities, vc ∈ C is the complex-valued unaliased voxel

value, εc ∈ CnC×1 is the additive complex-valued noise where εc ∼ N(0, σ2(1 + i)), and M is

the total number of voxels in the full image.

4.2 Bayesian Fused GRAPPA/SENSE Technique

4.2.1 Data Likelihood, Prior and Posterior Distributions

For the Bayesian approach to Fused GRAPPA/SENSE, we treat the unacquired spatial

frequencies fk, the weights W , the residual k-space variance τ 2, the unaliased voxel values v,

the coil sensitivities H, and the residual image variance σ2 as unknown parameters that are

dependent on the acquired spatial frequencies fe. The priors for each of these parameters

(Eqs. 2.9, 2.10, 2.11, 3.6, 3.7, and 3.8) along with the likelihood equations (Eqs. 2.8 and

3.5) are combined to produce the joint posterior distribution as expressed in Eq. 4.1.

P (Vk, H,Σ, D, Fk∗, T |Fe∗) ∝ P (Vk, H,Σ|Ffull)P (Fk∗, D, T |Fe∗), (4.1)

where Vk = (v1, ..., vM) is the vector of unaliased voxel values, H = IM
⊗

(H1, ..., HM) is

the matrix of coil sensitivities, Σ = (σ2
1, ..., σ

2
M) is the vector of residual noise variances,

Fk∗ = (fk1, ..., fkL) is the vector of unacquired spatial frequencies, D = IL
⊗

(D1, ..., DL)

is the matrix of localized weights, T = (T1, ..., TL) is the vector of k-space noise variance,

Fe∗ = (fe1, ..., feJ)) is the vector of acquired spatial frequencies, Ffull is a vector of the

acquired spatial frequencies fe and the fk spatial frequencies after interpolation, M is the

total number of voxels in the full image, L is the number of unacquired spatial frequencies,

and J is the number of acquired spatial frequencies.

The P (Fk∗, D, T |Fe∗) is the posterior distribution of our BGRAPPA technique and the
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P (Vk, H,Σ|Ffull) is the posterior distribution of our BSENSE technique. With the BSENSE

posterior portion of being dependent on full coil k-space arrays Ffull, we must first estimate

the unacquired spatial frequency values using BGRAPPA. Then the interpolated spatial fre-

quencies are appended with the acquired spatial frequencies yielding full coil k-space arrays.

After applying the IFT to the full coil k-space arrays Ffull, our BSENSE technique is then

used to complete the image reconstruction process for the Bayesian Fused GRAPPA/SENSE.

4.2.2 Hyperparameter Determination

The hyperparameter determination for our BGRAPPA technique portion of the Bayesian

Fused GRAPPA/SENSE follows the assessment outlined in Section 3.3.2. For the BSENSE

portion of the Bayesian Fused technique, the hyperparameter determinations follows the as-

sessment outlined in Section 2.3.2. The information for both hyperparameter assessments

comes from the same ncal calibration time points. The full coil calibration k-space arrays

are used for the BGRAPPA part, and the full coil calibration images, after IFT, are used

for the BSENSE part.

4.2.3 Parameter Estimation

The parameter estimation for the BGRAPPA part of the Bayesian Fused technique

follows the estimation outlined in Section 3.3.3. This means that the unacquired spatial

frequencies fk, the localized weights W , and the k-space noise variance τ 2 have the same

posterior conditional modes and posterior conditional distributions as expressed in equations

3.10, 3.11, 3.12, 3.14, 3.15, and 3.16 respectively.

For the BSENSE part, the parameter estimation follows the estimation process outlined

in Section 2.3.3. However, since the coil measurements are full images after the IFT, the
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acceleration factor would be nA = 1. This makes the posterior conditional modes to be

v̂ = (S ′S + nvI2)
−1(S ′a+ nvv0), (4.2)

Ĥ = (V ′V + nSI2)
−1(V Y ′ + nSH0), (4.3)

σ̂2 =
Θ

2(4nC + α + 3)
, (4.4)

where Θ = (a−Sv)′(a−Sv)+nv(v−v0)
′(v−v0)+αβ+nStr[(H−H0)(H−H0)

′], Y = [aR, aI ]

and V ∈ R2×2 is a skew symmetric matrix representation of the unaliased voxel values v as

expressed in Eq. 2.16.

With an acceleration factor of one, the posterior conditional distributions become

v|S, σ2, a ∼ N{v̂, σ2(S ′S + nvI2)
−1}, (4.5)

H|v, σ2, a ∼ MN{Ĥ, σ2(V ′V + nSI2)
−1}, (4.6)

σ2|v, S, a ∼ IG{α∗, β∗}, (4.7)

where α∗ = 2nC + α + 1 and β∗ = [(a − Sv)′(a − Sv) + nv(v − v0)
′(v − v0) + nStr((H −

H0)(H −H0)
′) + 2β]/2.
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CHAPTER 5: Reconstruction Results

The software used for this research was MATLAB 2022b run on a 12th Gen Intel(R)

Core(TM) i7-1255U laptop computer with 16GB RAM, operating on Windows 11.

5.1 Simulation FMRI Study

5.1.1 Non-Task Data Generation

A noiseless non-task image was used to create two series of 510 simulated full FOV coil

images for one slice to mimic the experimental data shown in this Section 5.2.1. The last

ncal time points of the first time series of non-task images served as pre-scan calibration

information that was utilized for hyperparameter assessment, and the second time series was

used for a simulated non-task experiment. A complex-valued image was multiplied by a

designed sensitivity map with nC = 8 coils, similar to the four-channel coil shown in Figure

2.3 but with four additional coils in each corner as well. Figure 5.1 illustrates the real and

imaginary parts of the full simulated brain image (first and second column) being voxel-wise

multiplied by the real and imaginary components of the sensitivities for each of the nC = 8

coils (third and fourth column). This results in the real and imaginary components of the

complex-valued full coil weighted images (fifth and sixth column).

In real-world MRI experiments, the first few images in an fMRI time series have in-

creased signal as the magnetization reaches a stable state. To mimic this, the first three of

both non-task time series of nTR = 510 time points of the simulated non-task time series

were scaled with the signal slightly decreasing from the first to the third time point before

reaching a stable signal in the fourth time point. The scaling was determined by dividing the

first three images of the experimental data by the 21st image, separately. After dividing the
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Figure 5.1: Real and imaginary components of the true complex-valued simulated image (first
and second column) voxel-wise multiplied by the real and imaginary components of the complex-
valued coil sensitivities for each of the nC = 8 coils (third and fourth column) yielding the real and
imaginary components of the complex-valued coil-weighted images (fifth and sixth column).
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three images, the signal increase for each tissue type (cerebrospinal fluid (CSF), gray matter,

and white matter) was averaged together for each of the three divided images, calculating

the average signal increase for each matter type. For example, the average signal increase in

the first image for the CSF was 75%, 55% for the gray matter and 35% for the white matter

giving multiplication factors of 1.75, 1.55, and 1.35 for the matter types, respectively. This

process was repeated for the second (with multiplication factors of 1.55, 1.40, and 1.20 re-

spectively) and third (with multiplication factors of 1.40, 1.25, and 1.10 respectively) images

in the series with the multiplication factors decreasing from the first to the third image.

The series of images for both the non-task calibration images and the full, simulated

images were then Fourier transformed into noiseless full coil k-space arrays. The time series

of the coil k-space arrays were simulated by adding separate N(0, 0.0036nynx) noise, where

ny and nx are the number of rows and columns, respectively, in the full k-space array, to

the real and imaginary parts of the full coil k-space arrays, corresponding to the noise in

the real-world fMRI experimental data. To mimic the fMRI experiment, the first 20 time

points of the second time series were omitted leaving 490 time points of the spatial frequency

arrays for the single slice. However, the first 10 time points of an fMRI experiment can be

used to estimate a T1 map which efficiently segments the different tissue types. The next 10

time points can be utilized to estimate a static magnetic field map to adjust for geometric

distortions (Karaman et al., 2015). The remaining 490 time points in the time series were

subsampled by censoring lines in k-space according to a determined acceleration factor.

An example of the real and imaginary components of the subsampled k-space arrays for

nC = 8 coils and an acceleration factor of nA = 3 at one time point is exhibited in Figure

5.2a. The respective aliased coils images after the IFT are displayed in Figure 5.2b. For

SENSE and BSENSE, reconstruction will start from the aliased coil images as depicted in

Figure 5.2b since both techniques operate in image space while the other techniques start
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the reconstruction process in the k-space domain.

Figure 5.2: (a) The real and imaginary components of the simulated acquired noisy subsampled
coil spatial frequency arrays for the first time point in the non-task time series with an acceleration
factor of nA = 3 and (b) the respective aliased coil measurements after applying the IFT.

5.1.2 Non-Task Reconstruction Results

To analyze the reconstruction performance of the traditional image reconstruction tech-

niques and our proposed Bayesian approaches, we first reconstructed the subsampled coil

k-space arrays at one time point, giving us a single unaliased image for each method. For this,

we used the first time point of the 490 simulated non-task time series with an acceleration

factor of nA = 3.

The last ncal = 30 time points, corresponding to 30 seconds, from the first 510 non-task

full FOV calibration time series were utilized to assess the hyperparameters. For BGRAPPA,

the prior means from the calibration information for the unacquired spatial frequency arrays

fk0 and the localized weights D0 were used as initial values for fk and D. These initial values
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were used to generate a τ 2 value from the posterior conditional mode (Eq. 3.12) and the

posterior conditional distribution (Eq. 3.16), initializing the ICM optimization algorithm

and the Gibbs sampler. For BSENSE, the prior means from the calibration images, after

IFT, for the unaliased voxels v0 and the sensitivity coils H0 were used as initial values for v

and H. These initial values were used to generate a σ2 value from the posterior conditional

mode (Eq. 2.15) and the posterior conditional distribution (Eq. 4.7), initializing the ICM

algorithm and the Gibbs sampler, respectively. The hyperparameters for BGRAPPA and

BSENSE were the same hyperparameters utilized for BFused, but only the MAP estimate

was used for BFused.

Before analyzing the reconstruction results comparing the traditional reconstruction

Figure 5.3: BSENSE (top row) and BGRAPPA (bottom row) reconstructed non-task magnitude
images with an acceleration factor of nA = 3 using the ICM to calculate the MAP estimate (first
column) and the Gibbs sampler to estimate the MPM for both techniques (second column). The
voxel-by-voxel percent difference between the MAP estimate and MPM estimate for both techniques
is displayed in the images in the third column. Note, the minimum and maximum for the percent
difference scale, shown in the color bar on the left, is -1% and 1% respectively.
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techniques to our Bayesian approaches, we will first look at results comparing the MAP

estimate from the ICM algorithm and the MPM from the MCMC Gibbs sampler for both

BSENSE and BGRAPPA. For the ICM algorithm, only three iterations were needed for

estimating the parameters and for the Gibbs sampling, 10,000 total iterations were run with

a burn of 2,500 leaving 7,500 iterations for estimation. The computation time for the ICM

was about 0.10 seconds for BSENSE and 0.50 seconds for BGRAPPA per time point. The

computation time for the Gibbs sampler was about 90 seconds for BSENSE and 370 seconds

for BGRAPPA per time point. In Figure 5.3, the magnitude of the reconstructed images for

both techniques are displayed, top row for BSENSE and bottom row for BGRAPPA, with

the percent difference between the images in the third column. The anatomical structure for

both parameter estimation methods are similar when comparing the first column and second

column for both reconstruction techniques. This is further shown by the percent difference

images in the third column of Figure 5.3. With the scale for both images being -1% to 1%,

we can see that the difference inside the brain is very close to 0%, meaning the MAP and

MPM estimates produce very similar results. This is expected since both the unaliased voxel

values v from BSENSE and the unacquired spatial frequencies fk are normally distributed.

With the normal distribution, the mean and mode are equal i.e. the MAP estimate and

the MPM estimate would theoretically be the same. For the rest of this dissertation, we

will only use the MAP estimate via the ICM algorithm to reconstruct the subsampled coil

k-space arrays for the BSENSE, BGRAPPA, and BFused reconstruction techniques.

Figure 5.4 displays the true noiseless simulated magnitude image (first row, first column)

along with the reference magnitude image (second row, first column). This reference image

was determined by simply averaging the full, noisy coil k-space arrays in the time series

yielding a single spatial frequency array and then applying the IFT resulting in a full complex-

valued brain image. This provides us what image reconstruction would look like without
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applying an acceleration factor for BGRAPPA and GRAPPA. Averaging of the full k-space

arrays causes the signal across the image to decrease which explains the two different color

bars in Figure 5.4. This means that the reference images and the BGRAPPA and GRAPPA

reconstructed images will not accurately illustrate the true signal intensities but can still be

utilized for other fMRI analysis as shown throughout this chapter.

Figure 5.4: True non-task magnitude image (first row, first column), reference non-task magnitude
reconstructed image (second row, first column), the Bayesian reconstructed magnitude images (first
row, columns 2-4) and magnitude images from the traditional reconstruction techniques (second row,
columns 2-4). The top color bar shows the scale for the true magnitude, BSENSE, BFused, SENSE,
and Fused techniques while the bottom color bar shows the scale for the reference magnitude,
BGRAPPA, and GRAPPA techniques.

Figure 5.4 also shows the magnitude of the reconstructed images for the traditional

techniques (second row, column 2-4) and the respective Bayesian approaches (first row,

columns 2-4) for the first time point in the simulated non-task series. We can see that

the joint MAP estimate from BSENSE and BFused produce magnitude images that closely

resemble the true non-aliased image inside the brain in Figure 5.4 (first row, first column)
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with the SENSE and Fused techniques producing noisier magnitude images. Outside the

brain, the noise level is noticeably higher for SENSE and Fused reconstruction compared

to BSENSE and BFused magnitude reconstructed images. Visually the BGRAPPA image

is slightly more accurate and less noisy than the GRAPPA image when compared to the

reference image (second row, first column).

Figure 5.5 shows the true noiseless simulated phase image (first row, first column),

the reference phase image (second row, first column), the phase of the reconstructed im-

ages for the traditional techniques (second row, column 2-4) and the respective Bayesian

approaches (first row, columns 2-4) for the first time point in the simulated non-task series.

The joint MAP estimate from BSENSE and BFused produce phase images that closely re-

semble the true simulated phase image inside the brain. Figure 5.5 shows that the SENSE

Figure 5.5: True non-task phase image (first row, first column), reference non-task phase re-
constructed image (second row, first column), the Bayesian reconstructed phase images (first row,
columns 2-4) and phase images from the traditional reconstruction techniques (second row, columns
2-4). Due to the circular nature of phase angles, the color bar for the phase images have wrap-
around.
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and Fused techniques produce phase images with no anatomical structure, showing that

these techniques do not accurately maintain the complex-valued nature of MR images. The

BGRAPPA and GRAPPA phase images appear to be similar to the reference phase image

(second row, first column) in Figure 5.5. This reference phase image and the reconstructed

phase images from BGRAPPA and GRAPPA illustrate again how averaging the full coil

k-space arrays does not accurately represent the signal intensities and phase angles of the

true complex-valued images.

To quantify the differences between the true or reference images and the reconstructed

magnitude and phase images, we use the mean squared error, MSE = 1
K

∑K
j=1 (vj − vj)

2,

where K is the number of voxels inside the brain in the full reconstructed image, vj is the

reconstructed magnitude or phase value of the jth voxel inside the brain, and vj is the true

magnitude or phase value of the jth voxel. This measure will indicate the accuracy of a single

reconstructed image compared to the true simulated image or the reference image with lower

MSE indicating a more accurate reconstructed image. The reference images were used to

calculate the MSE for BGRAPPA and GRAPPA and the true simulated images were used

for the other reconstruction techniques.

Figure 5.6a displays the MSE for each techniques’ magnitude reconstructed image and

Figure 5.6b shows the MSE for each techniques’ phase reconstructed image. The BSENSE

and BFused techniques had a markedly smaller magnitude MSE values than SENSE and

the Fused techniques. BGRAPPA and GRAPPA had the smallest magnitude MSE values

compared to the other techniques, with BGRAPPA having a slightly smaller MSE than

GRAPPA, but is not the best measure for analyzing signal intensity. Evaluating the phase

MSE values in Figure 5.6b, BSENSE and BFused had much smaller values compared to

the other techniques. Like the magnitude MSE value comparison, the phase MSE value for

BGRAPPA is slightly smaller than GRAPPA’s phase MSE value.
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Figure 5.6: (a) MSE for inside the brain for the magnitude images of each of the reconstruction
techniques and (b) the MSE for inside the brain for the phase reconstructed images. The BSENSE,
BFused, SENSE, and Fused techniques were compared to the true simulated magnitude and phase
images and BGRAPPA and GRAPPA were compared to the reference magnitude and phase images.

To further analyze the different reconstruction techniques, we reconstructed the entire

series of nIMG = 490 simulated non-task time series with an acceleration factor of nA = 3.

Figure 5.7: Temporal variance of the reconstructed nIMG = 490 simulated non-task time series
using the traditional techniques (bottom row) and the respective Bayesian approaches (top row).
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Figure 5.7 displays the temporal variance of each reconstruction technique for non-task

time series. The top row shows the Bayesian reconstruction techniques while the bottom

row shows the traditional reconstruction techniques. Note how the scales for the top and

bottom row are different. The top row only goes up to 0.0001 while the bottom row goes

to 0.025 which is 249 times larger which shows that the Bayesian techniques have a much

smaller temporal variance. This indicates a more accurate reconstruction through time. Of

the three Bayesian approaches, the BFused technique had the smallest temporal variance

with BGRAPPA having the largest. For the traditional techniques, SENSE had the largest

temporal variance while GRAPPA had the smallest.

Figure 5.8: Signal-to-noise ratio of the reconstructed nIMG = 490 simulated non-task time series
using the traditional techniques (bottom row) and the respective Bayesian approaches (top row).
The top color bar shows the scale for the BSENSE and BFused techniques while the bottom color
bar shows the scale for the other techniques.

With the temporal variance, we can see how it directly affects the signal-to-noise ratio
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(SNR) where SNR = β0/σ, β0 is the magnitude signal in each voxel, and σ is the temporal

standard deviation in each voxel. The higher the SNR value, the less the noise affects the

reconstruction of the subsampled coil k-space arrays. The SNR results for each reconstruction

technique is displayed in Figure 5.8. The top row of the figure displays the SNR values

for the Bayesian techniques, and the bottom row shows the SNR values of the traditional

reconstruction techniques. In Figure 5.8, we have one scale that goes up to 5000 for the

SNR values from the BSENSE and BFused techniques while the other scale goes up to 150

for the SNR values from the other techniques. This indicates that the BSENSE and BFused

have considerably higher SNR values with BFused having the highest SNR values of the two.

With the techniques on the 150 scale, BGRAPPA has the highest SNR values showing that

the Bayesian approaches have improved SNR results over the traditional techniques.

Next, we evaluated how the number of calibration time points, ncal, affected the re-

constructed images. For the pre-scan calibration analysis, we fixed the acceleration factor

to be nA = 3 for the subsampled k-space coil arrays of the simulated non-task time se-

ries with nIMG = 490 time points. Then we set the number of calibration time points

to be ncal = 5, 10, 15, 20, 25, 30 for separate hyperparameter assessments. After assessing

the hyperparameters using each number of calibration time points, the simulated non-task

time series with the subsampled coil spatial frequency arrays were reconstructed using the

traditional and Bayesian reconstruction techniques.

The results for the magnitude reconstructed images using a various number of calibration

time points from each technique are displayed in Figure 5.9. We can see that increasing the

number of calibration time points decreases the noise level for the BSENSE and BFused

techniques and slightly for the Fused technique. It appears that GRAPPA, BGRAPPA, and

SENSE are unaffected by the number of calibration time points utilized for hyperparameter

assessment.
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Figure 5.9: Reconstructed magnitude images for different number of calibration time points using
the traditional and Bayesian image reconstruction techniques. The left color bar shows the scale
for the true magnitude, BSENSE, BFused, SENSE, and Fused techniques while the right color bar
shows the scale for the reference magnitude, BGRAPPA, and GRAPPA techniques.
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The MSE for inside the brain along with the entropy for each of the reconstruction

techniques using different number of calibration time points were calculated to quantify the

results shown in Figure 5.9. Entropy analyzes uncertainty and smoothness across a single

image with lower entropy meaning less uncertainty throughout the image. The equation

for entropy is given by E = −
∑N

j=1

[
vj

vmax
ln

(
vj

vmax

)]
, where ln is the natural log, N is the

number of voxels in the full reconstructed image, vj is the reconstructed magnitude value

of the jth voxel, and vmax is the voxel intensity if all the image intensities were in one

pixel (Atkinson et al., 1997) given by vmax =
√∑N

j=1 vj
2. Shown in Figure 5.10a, the MSE

for BSENSE and BFused are very similar and much smaller than the SENSE and Fused

techniques as they are compared to the true simulated magnitude image. Both BGRAPPA

and GRAPPA have smaller MSE values than the rest of the reconstruction techniques, with

BGRAPPA being the smallest, but are compared to the reference magnitude image. The

MSE plot also shows that the MSE slightly decreases for the BSENSE, BFused, and Fused

techniques while the others seem unaffected by the number of calibration images. For the

Figure 5.10: (a) MSE for inside the brain for each reconstruction technique compared to the true
simulated or reference magnitude image for each number of calibration time points. (b) Entropy
plot for each reconstruction technique using the various number of calibration time points. For both
plots, BSENSE is the orange line, BGRAPPA is the yellow line, BFused is the blue line, SENSE is
the green line, GRAPPA is the light blue line, and Fused is the purple line.
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Figure 5.11: Reconstructed phase images for different number of calibration time points using
the traditional and Bayesian image reconstruction techniques. Due to the circular nature of phase
angles, the color bar for the phase images have wrap-around.

52



entropy plot in Figure 5.10b, the BSENSE and BFused have the smallest entropy values

(except for ncal = 5) with BSENSE being slightly smaller. This plot also shows that the

Bayesian techniques all have smaller entropy values than the traditional techniques.

Like the magnitude images, we can also look at the phase of the reconstructed images for

each reconstruction technique shown in Figure 5.11. Like Figure 5.5, BSENSE and BFused

closely resemble the true simulated phase image, BGRAPPA and GRAPPA look similar to

the reference phase image, and the SENSE and Fused techniques have values close to zero

inside the brain for the phase. The results presented in Figure 5.11 show that increasing the

number of calibration time points has a negligible effect on the phase of the reconstructed

images.

Figure 5.12 displays the temporal variance for each reconstruction technique utilizing

various calibration time points for hyperparameter determination. In this figure, there are

two different scales for the color bars: one for the BSENSE and BFused techniques which

go to 0.0001 and the other for the other techniques that go to 0.0125 which is 124 times

larger. This difference in scales, like in Figure 5.7, shows that BSENSE and BFused have a

markedly smaller temporal variance compared to the other reconstruction techniques with

BFused having a much smaller temporal variance than BSENSE. For the other reconstruction

techniques, BGRAPPA appears to have a slightly smaller temporal variance compared to

GRAPPA with both being noticeably smaller than SENSE and the Fused techniques. This,

again, shows that the Bayesian reconstruction techniques have a smaller temporal variance

than the other techniques. From Figure 5.12, we can see that increasing the number of

calibration time points decreases the temporal variance for the BSENSE and BFused while

the effects appear to be imperceptible for the other reconstruction techniques.

Figure 5.13 displays the SNR images for each reconstruction technique using the different
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Figure 5.12: Temporal variance for different number of calibration time points using the traditional
and Bayesian image reconstruction techniques. The left color bar shows the scale for the BSENSE
and BFused techniques while the right color bar shows the scale for the other techniques.
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number of calibration time points for the hyperparameter assessment. In Figure 5.13, there

is one scale for the BSENSE and BFused techniques which go to 5000 and the other scale for

the other techniques that go to 150. This scale difference shows that BSENSE and BFused

have considerably higher SNR values compared to the other reconstruction techniques like in

Figure 5.8. Between the two Bayesian reconstruction techniques, BFused has the higher SNR

compared to BSENSE. For the other reconstruction techniques, BGRAPPA has distinctly

higher SNR values compared to the traditional techniques which, again, shows that the

Bayesian reconstruction techniques produce higher SNR values. From Figure 5.13, we can see

that increasing the number of calibration time points increases the SNR inside the brain for

the BSENSE and BFused. For the other techniques, the SNR values inside the brain appear

unchanged as the calibration time points increase while decreasing SNR values outside for

BGRAPPA, GRAPPA, and the Fused techniques.

For estimating priors of the Bayesian reconstruction techniques, we use up to 30 cali-

bration image time points which are utilized to assess the hyperparameters. This means the

same prior information is used at each time point when reconstructing the fMRI time series

which could potentially lead to correlation with previously aliased voxels or task leakage.

Task leakage is false detection of task in voxels that were previously aliased. To possibly

mitigate this, we can randomly sample, without replacement, the calibration time points

used at each time point in the fMRI time series. This means different hyperparameters are

applied at each time point to the reconstruction of the aliased time series. We can also

change the prior scalars nv and nS for the BSENSE and BFused techniques and the nl and

nw scalars for the BGRAPPA and BFused techniques in the parameter estimation equations

2.13, 2.14, 2.15, 3.10, 3.11, 3.12, 4.2, 4.3, and 4.4 to be less than the number the calibration

which decreases the weight of the prior information in the reconstructed images.

Figure 5.14a illustrates the average correlation between voxels and the voxels they were
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Figure 5.13: SNR for different number of calibration time points using the traditional and Bayesian
image reconstruction techniques. The left color bar shows the scale for the BSENSE and BFused
techniques while the right color bar shows the scale for the other techniques.
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previously aliased for each reconstruction technique using different numbers of calibration

time points for hyperparameter assessment. The magnitude of the reconstructed time se-

ries is used for the correlation estimation. Analyzing the plot shows that the traditional

reconstruction techniques have lower correlation estimates than the Bayesian techniques.

The GRAPPA and Fused techniques have the lowest correlations at or below 0.1 while the

Bayesian techniques mostly range between 0.4 and 0.5. The correlation for BGRAPPA,

GRAPPA, and SENSE decrease as the number of calibration time points increase. For

BFused and BSENSE, the correlation slightly increases as the calibration time points increase

while Fused remains relatively steady. This notably higher correlation with the Bayesian

image reconstruction techniques motivates the utilization of sampling the calibration infor-

mation at each time point in the series.

Figure 5.14: (a) Correlation between previously aliased voxels for each reconstruction technique.
(b) Correlation between previously aliased voxels for each Bayesian reconstruction technique using
sampling of the calibration time points without replacement. For plot a, BSENSE is the orange line
(same in plot b), BGRAPPA is the yellow line (same in plot b), BFused is the blue line (same in
plot b), SENSE is the green line, GRAPPA is the light blue line, and Fused is the purple line.

Figure 5.14b demonstrates the effects of sampling the calibration time points on voxel

correlation while decreasing the prior scalars to nv = 1, nS = 1, nl = 1 and nw = 1. Decreas-

ing the prior scalars to one applies equal weight between the prior information and current
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Figure 5.15: Reconstructed magnitude images for different samples of calibration time points from
hyperparameter assessment for the Bayesian image reconstruction techniques. The left color bar
shows the scale for the true magnitude, BSENSE and BFused techniques while the right color bar
shows the scale for BGRAPPA.
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information from the aliased time series in the reconstructed image. The plot in Figure

5.14b shows the average correlation between all voxels and the voxels they were previously

aliased with for sampling sizes of 5, 10, 15, 20, 25, and 27, out of 30 calibration time points,

comparing them to the non-sampling methods that has been demonstrated throughout the

dissertation. The results indicate that sampling the calibration time points remarkably de-

crease the correlation for BSENSE and BFused. For BGRAPPA, the correlation does slightly

decrease but increases as the sampling size increases ultimately being close to the correlation

without sampling.

With the correlation analysis of sampling the calibration time points, Figure 5.15 shows

the magnitude of the reconstructed images for each Bayesian reconstruction technique. The

results displayed in this figure show that sampling the calibration time points has little

effect on the magnitude reconstructed images inside the brain. It appears that BSENSE

does have a small aliasing effect from this sampling method with BGRAPPA and BFused no

experiencing this same effect. From Figure 5.15, as the sampling size increases, noise level

for BSENSE and BFused slightly decrease while BGRAPPA remains unchanged.

Along with analysis of the number of calibration time points, we evaluate how applying

different acceleration factors, nA, to the subsampled coil k-space arrays affect the results for

each reconstruction technique. Here, we fixed the number of calibration time points to be

ncal = 30 for hyperparameter assessment and set the acceleration factors of the non-task time

series to be nA = 2, 3, 4, 6, 8, 12. For SENSE, the acceleration factor cannot be larger than

the number of coils in the sensitivity map as it will cause the system of linear equations to be

underdetermined, which makes estimation difficult. So, in the acceleration factor analysis,

the SENSE technique is not used to reconstruct using an acceleration factor of nA = 12. Only

the results for nA = 2, 3, 4 are shown for some of the figures simply to see how increasing the

acceleration factor affects the reconstruction results. These subsampled coil k-space arrays
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Figure 5.16: Reconstructed magnitude images for different acceleration factors using the tradi-
tional and Bayesian image reconstruction techniques. The left color bar shows the scale for the true
magnitude, BSENSE, BFused, SENSE, and Fused techniques while the right color bar shows the
scale for the reference magnitude, BGRAPPA, and GRAPPA techniques.
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with separate acceleration factors were reconstructed into full images using the Bayesian and

traditional techniques, comparing the results for all methods.

The results, exhibited in Figure 5.16, show that the magnitude images from each of the

reconstruction techniques are negligibly affected by increasing the acceleration factor except

for SENSE. For BGRAPPA, the noise level outside the brain does decrease as the acceler-

ation factor increases while it only slightly decreases for GRAPPA. Again, the magnitude

reconstructed images from the traditional techniques have slightly more noise than the mag-

nitude reconstructed images from the Bayesian techniques. This is evident for examining

the noise level both inside and outside the brain.

Figure 5.17: (a) MSE for inside the brain for each reconstruction technique compared to the
true simulated or reference magnitude image for different acceleration factors. (b) Entropy plot for
each reconstruction technique applying different acceleration factors. For both plots, BSENSE is
the orange line, BGRAPPA is the yellow line, BFused is the blue line, SENSE is the green line,
GRAPPA is the light blue line, and Fused is the purple line.

Figure 5.17 shows the MSE and entropy for different acceleration factors from the magni-

tude images for each reconstruction technique. Shown in Figure 5.17a, the MSE for BSENSE

and BFused are very similar and much smaller than the SENSE and Fused techniques as

they are compared to the true simulated magnitude image. The line for SENSE in the MSE
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plot is above 0.01 at all acceleration factors with the MSE getting close to 800 at nA = 8.

Both BGRAPPA and GRAPPA have smaller MSE values than the rest of the reconstruction

techniques, with BGRAPPA being the smallest, but are compared to the reference magni-

tude image. The MSE plot also shows that the MSE slightly decreases for the GRAPPA and

Fused techniques while the Bayesian techniques seem unaffected by the acceleration factor.

For the entropy plot in Figure 5.17b, SENSE appears to have inconsistencies with the entropy

values due to the inaccuracy of the magnitude reconstructed images for each acceleration

factor. The entropy values for the other techniques seems relatively steady (except a slight

decrease with BGRAPPA) as the acceleration factor increases with the Bayesian methods

having lower values. Having lower MSE and entropy values for the Bayesian reconstruction

techniques show higher accuracy in reconstructing the subsampled data.

Figure 5.18: SENSE magnitude reconstructed images with nA = 6 (left) and nA = 8 (right).

Figure 5.18 displays the magnitude of the reconstructed images using SENSE for accel-

eration factors nA = 6 (left) and nA = 8 (right). From this figure, we can see why the MSE

plot (Figure 5.17a) is substantially higher for SENSE as there any too many aliasing artifacts

yielding no anatomically structure. This also explains why the SENSE line (green) in the

entropy plot (Figure 5.17b) is inconsistent as the acceleration factor increases to nA = 6 and
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Figure 5.19: Reconstructed phase images for different acceleration factors using the traditional
and Bayesian image reconstruction techniques. Due to the circular nature of phase angles, the color
bar for the phase images have wrap-around.
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nA = 8.

The reconstructed phase images for different acceleration factors for each reconstruc-

tion techniques is shown in Figure 5.19. Like the magnitude images displayed in Figure

5.16, increasing the acceleration appears to only have an effect on the phase of the SENSE

reconstructed images. Similar to the results shown in Figures 5.5 and 5.11, BSENSE and

BFused phase reconstructed images closely resemble the true simulated phase image (shown

in Figure 5.5) and the BGRAPPA and GRAPPA phase images appear to be similar to the

reference phase image (also shown in Figure 5.5) while the SENSE and Fused techniques

produce phase images with no information inside the brain.

Figure 5.20 displays the temporal variance for each reconstruction technique using dif-

ferent acceleration factors. In Figure 5.20, there are the same two scales for the color bars as

shown in Figure 5.12 where one is for the BSENSE and BFused techniques which go to 0.0001

and the other is for the other techniques that go to 0.0125. The results illustrated in this

figure show that BSENSE and BFused have notably smaller temporal variance compared to

the other reconstruction techniques with BFused having the smaller temporal variance. Also,

BGRAPPA appears to have a slightly smaller temporal variance compared to the traditional

techniques. This further emphasizes that the Bayesian reconstruction techniques reduce the

noise through time compared to the traditional techniques. From Figure 5.20, we can see

that increasing the acceleration factor decreases the temporal variance for the BGRAPPA,

BFused, and GRAPPA while slightly increasing for BSENSE. Figure 5.20 also shows that

the Fused technique slightly increases inside the brain and slightly decreases outside. For

SENSE, the temporal variance both inside and outside the brain considerably increases as

the acceleration factor increases.

To further analyze the usage of different acceleration factors, Figure 5.21 displays the
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Figure 5.20: Temporal variance for different acceleration factors using the traditional and Bayesian
image reconstruction techniques. The left color bar shows the scale for the BSENSE and BFused
techniques while the right color bar shows the scale for the other techniques.
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Figure 5.21: SNR for different acceleration factors using the traditional and Bayesian image
reconstruction techniques. The left color bar shows the scale for the BSENSE and BFused techniques
while the right color bar shows the scale for the other techniques.
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SNR images for each reconstruction technique. In Figure 5.21, the one scale for the color

bars is for the BSENSE and BFused techniques that go to 5000 while the other color bar

goes to 150 for the other techniques. This indicates a sizable increase in SNR with these

two Bayesian techniques, again, showing an inverse relationship with the temporal variance.

We can see that BFused has noticeably higher SNR values compared to BSENSE. Of the

reconstruction techniques on the other scale, BGRAPPA appears to have the highest SNR

values. As the acceleration factor increases, the SNR values increase for the BGRAPPA

and BFused techniques, decrease for BSENSE and SENSE, and are seemingly unchanged

for the GRAPPA and Fused techniques. Based on these results, the techniques that involve

estimating spatial frequencies either increase the SNR values or leave them unchanged, which

can be an advantage for using these reconstruction techniques.

5.1.3 Task Activation

In task-based fMRI, the non-task reconstructed images create a baseline value for each

voxel. This yield an intercept-only simple linear regression model y = β0 + ξ where y is the

magnitude of the reconstructed voxel value. By adding in task activation to select images in

the series of images, we have a simple linear regression model y = β0+β1x+ξ for the unaliased

voxel values. In this regression, β0 is the baseline voxel value for the non-task reconstructed

images determining the SNR, as demonstrated in the previous subsection. The β1 value is

the estimated task related signal increase from β0 determining the contrast-to-noise ratio

CNR = β1/σ. The vector x ∈ {0, 1}nIMG , where nIMG is the number of reconstructed

images in the series, is a vector such that the zeros correspond to the images in the series

without task activation and the ones correspond to the images with task activation. We can

write this regression as y = XB + ϵ, where X = [1, x] ∈ RnIMG×2 and B = [β0, β1]
′.

The task is not usually visible on the reconstructed images since the CNR is typically
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much lower than the SNR. Instead, a right-tailed t-test is carried out with β1 ≤ 0 as the

null hypothesis and β1 > 0 as the alternative. The reason for the one-sided hypothesis

test is because we only anticipate an increased signal from the task activation. To simulate

added task, a β1 = 0.045 magnitude-only signal increase is added to select voxels of the true

noiseless non-task image. This added task activation is located in the left motor cortex to

resemble the region of interest (ROI) of brain activity from the fMRI unilateral right-hand

finger tapping experiment used in Section 5.2 (Karaman et al., 2014).

Similar to magnitude-only task activation, we can also use phase images for task detec-

tion. A simulated phase task of π/120 was also added to the true simulated task image. A

simple linear regression model, ϕ = θ0+ θ1x+ ϵ, can be used for the phase activation as well.

In this regression, ϕ is the phase of the reconstructed voxel, θ0 is the baseline phase voxel

value from the non-task reconstructed images, and θ1 is the estimated increase from θ0. We

then use a one-tailed t-test, t = θ̂1/SE(θ̂1)t, to determine which voxels contain statistically

significant θ1 values indicating which voxels experience phase task activation (Rowe et al.,

2007).

5.1.4 FMRI Time Series Data Generation

A noiseless task image was used along with the noiseless non-task image to create a series

of nTR = 510 simulated full coil images for one slice mimicking real-world fMRI data. The

simulated task activation was designed to mimic tapping of the subject’s right fingers leading

to activity in the left motor cortex which becomes our ROI for analyzing task detection in

this experiment, as mentioned above. Knowing this, artificial signal increase was added to

the voxels in the ROI (as mentioned in Section 5.1.3) for task images.

The true images were multiplied by the same nC = 8 coil sensitivity maps for the

non-task simulated time series (as illustrated in Figure 5.1), and then the series of images

68



were Fourier transformed in full coil k-space arrays. This series was also generated by adding

separate N(0, 0.0036nynx) noise to the real and imaginary parts of the full coil k-space arrays

and were then inverse Fourier transformed back into cull coil images, yielding a CNR of 0.75.

To simulate our real-world fMRI experimental process, the first 20 time points in the series

were non-task. The scaling for the first few images in the fMRI simulated data is similar

to that outlined in Section 5.1.1 for each of the tissue types. The initial 20 non-task time

points are followed by 16 epochs alternating between 15 non-task and 15 task time points.

An epoch is a stimulation period with time points of the subject at rest (non-task) and the

subject performing an action or task. The series culminated with 10 non-task time points

producing the simulated fMRI series nTR = 510 images. To mimic the fMRI experiment in

Section 5.2, the first 20 time points were omitted leaving 490 time points in the series. This

series is transformed into the spatial frequency domain and then subsampled according to the

acceleration factor to simulate subsampling of a real fMRI experiment. For the BSENSE and

SENSE techniques, these subsampled coil k-space arrays were inverse Fourier transformed

into alias coil images for reconstruction. The last ncal full coil FOV time points in the second

non-task time series from Subsection 5.1.1 were utilized as full FOV coil calibration k-space

arrays and full FOV calibration images to assess the hyperparameters for all techniques.

5.1.5 FMRI Time Series Reconstruction Results

The hypothesis test described in Section 5.1.3 was utilized to determine voxels with

a statistically significant signal increase. The statistically significant magnitude voxels for

the simulated fMRI series of 490 time points, outlined in Section 5.1.4, for each recon-

struction technique is displayed in Figure 5.22. For this magnitude-only task analysis, an

acceleration factor of nA = 3 was applied for subsampling the k-space arrays with ncal = 30

calibration time points were utilized for hyperparameter determination. A 5% false discov-

ery rate (FDR) threshold procedure (Benjamini and Hochberg, 1995; Genovese et al., 2002;
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Logan and Rowe, 2004) was used for multiplicity correction. The ROI here consists of 28

voxels located in the left motor cortex and is outlined in green for each image in Figure

5.22. The results in Figure 5.22 show that, visually, the Bayesian reconstruction techniques

capture the expected task activation in the ROI. SENSE also detects task activation, but

GRAPPA and the Fused technique does not capture the task active voxels.

Figure 5.22: Magnitude image with active task voxels in the ROI (first column), statistically
significant voxels in the ROI using FDR for the Bayesian reconstructed magnitude images (first
row, columns 2-4), and significant voxels in the ROI using FDR for the reconstructed magnitude
images using traditional techniques (second row, columns 2-4).

Since a one-tailed t-test is used for hypothesis testing, we can inspect the t-statistics

closer. Figure 5.23a displays a bar graph of the number of correctly identified task voxels, out

of 28, for each reconstruction technique from the magnitude-only task detection in Figure

5.22. This graph shows that the Bayesian techniques all identified more task voxels in the

ROI compared to the traditional techniques with BSENSE and BFused capturing two more

than BGRAPPA. Figure 5.23b shows a bar graph of the mean t-statistic values in the ROI

(whether or not the voxels are considered active) for each reconstruction technique. The
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result shows that the Bayesian techniques have high mean t-statistic values compared to

the traditional techniques. BSENSE and BFused have virtually the same mean t-statistic

value while BGRAPPA is slightly smaller. The GRAPPA and Fused techniques appear to

have the worst results with capturing task activation as SENSE proves to be the best of the

three for task detection despite having the worst non-task reconstruction results, expressed

in Section 5.1.2.

Figure 5.23: (a) Bar graph for number of correctly identified magnitude-only task voxels and (b)
a bar graph of mean values for the t-statistics for each reconstruction technique.

Similar to the magnitude-only task analysis, a phase-only task analysis can be per-

formed on the reconstructed images. The hypothesis test for phase-only activation is de-

scribed in Section 5.1.3, determining voxels with a statistically significant signal increase.

Using a 5% false discovery rate (FDR) threshold procedure (Benjamini and Hochberg, 1995;

Genovese et al., 2002; Logan and Rowe, 2004), the image results for the phase-only task ac-

tivation analysis in Figure 5.24 with the ROI outlined in green. The results in Figure 5.24

appear similar to that of the magnitude-only task results shown in Figure 5.22. That is, the

Bayesian reconstruction techniques and SENSE all capture the task activation in the ROI.

For GRAPPA and Fused techniques, there are some statistically significant voxels in the

ROI, but not enough that would allow us to consider activation in that region.
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Figure 5.24: Phase image with active task voxels in the ROI (first column), statistically significant
voxels in the ROI using FDR for the Bayesian reconstructed phase images (first row, columns 2-4),
and significant voxels in the ROI using FDR for the reconstructed phase images using traditional
techniques (second row, columns 2-4).

Similar to the magnitude-only task analysis, we can inspect the t-statistics closer. Fig-

ure 5.25a displays a bar graph of the number of correctly identified task voxels, out of 28,

Figure 5.25: (a) Bar graph for number of correctly identified phase-only task voxels and (b) a bar
graph of mean values for the t-statistics for each reconstruction technique.
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and Figure 5.25b displays a bar graph of the mean t-statistic values in the ROI for each re-

construction technique from the phase-only task detection. Like the magnitude-only results

in Figure 5.23, the Bayesian reconstruction techniques provide better task detection perfor-

mance for the phase-only task analysis. In Figure 5.25a, the bar graph shows that BSENSE,

BGRAPPA, and BFused detect all 28 task voxels in the ROI as active. SENSE also detects

activity for the phase-only task detection, but GRAPPA and Fused do not even capture

half of the task voxels in the ROI. Figure 5.25b shows that the Bayesian techniques have

high mean t-statistic values compared to the traditional techniques with BGRAPPA being

slightly smaller than BSENSE and BFused. Of the three traditional techniques, SENSE has

the highest mean t-statistic value, but is still prominently smaller than the three Bayesian

methods.

Similar to in the simulated non-task analysis, we evaluated how utilizing different num-

ber of calibration time points affects the task detection results. For this analysis, the ac-

celeration factor was fixed at nA = 3 with the number of calibration time points set to

ncal = 5, 10, 15, 20, 25, 30. Figure 5.26 displays the magnitude-only task detection results for

different numbers of calibration time points using each reconstruction method. Similar to

Figure 5.22, BSENSE, BGRAPPA, BFused, and SENSE capture the activation in the ROI

outlined in green with the Bayesian techniques having stronger power in detecting the task.

Visually, it appears that increasing the number of calibration time points have no effect on

task detection. These results are further analyzed in Figure 5.27.

In Figure 5.27a shows a plot of the number of correctly identified task voxels in the ROI

using different numbers of calibration images for each reconstruction technique. In this plot,

the BFused blue line follows the BSENSE orange line. From this, we can see that BSENSE,

BGRAPPA, and BFused all capture more task voxels than the traditional techniques with

SENSE being the only one of the three capturing more than five voxels in the ROI. Figure
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Figure 5.26: Statistically significant voxels in the ROI using FDR for the Bayesian reconstructed
magnitude images (rows 1-3), and significant voxels in the ROI using FDR for the reconstructed
magnitude images using traditional techniques (rows 4-6) for different numbers of calibration time
points.
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5.27b displays a plot of the mean t-statistic values for each number of calibration time points

for all reconstruction techniques. This plot shows that the Bayesian techniques have higher

mean t-values with BSENSE being slightly higher than BFused and BGRAPPA having the

lowest of the three. Increasing the number of calibration time points used for hyperparameter

assessment has little to no effect for each of the reconstruction techniques (except SENSE)

as exhibited in both plots.

Figure 5.27: (a) Plot of correctly identified magnitude-only task voxels and (b) a plot of the mean
values for the t-statistics for each reconstruction technique using a different number of calibration
time points for hyperparmeter assessment.

Figure 5.28 shows the results for phase-only task activation for different numbers of

calibration time points. Similar to the results shown in Figure 5.24, BSENSE, BGRAPPA,

BFused, and SENSE all capture the activation in the ROI for each number of calibration

time points. GRAPPA and Fused both detect voxels in the ROI but not a convincing amount

to consider activation. Increasing the number of calibration time points for hyperparameter

assessment also appears to have a visually insignificant effect on the power of task detection

for all reconstruction techniques.

Additional phase-only task detection results are analyzed in Figure 5.29. Figure 5.29a

75



Figure 5.28: Statistically significant voxels in the ROI using FDR for the Bayesian reconstructed
phase images (rows 1-3), and significant voxels in the ROI using FDR for the reconstructed phase
images using traditional techniques (rows 4-6) for different numbers of calibration time points.
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shows a plot of the number of correctly identified phase-only task voxels in the ROI using

different numbers of calibration images for each reconstruction technique. In this plot, the

BFused blue line and the BSENSE orange line follow the BGRAPPA yellow line where each

of these captures all the task voxels in the ROI. Of the three traditional techniques, SENSE

captured more active voxels in the ROI. Figure 5.29b displays a plot of the mean t-values

for all reconstruction techniques using different numbers of calibration time points. This

plot shows that the Bayesian techniques have higher mean t-statistic values with BFused

and BSENSE being slightly higher than BGRAPPA. These plots show that increasing the

number of calibration time points has no effect for the Bayesian techniques and very small

effect on the reconstruction traditional techniques.

Figure 5.29: (a) Plot of correctly identified phase-only task voxels and (b) a plot of the mean
values for the t-statistics for each reconstruction technique using a different number of calibration
time points for hyperparameter assessment.

As mentioned in Section 5.1.2, using the same prior information at each time point in

the series of subsampled fMRI data could potentially lead to task leakage. This can be seen

in Figures 5.22, 5.26, 5.24, and 5.28 for each Bayesian technique having some task leakage

above and below the brain in the task activation images. Since we know where leakage would

be based on the acceleration factor, one could mask it out or flag it as suspicious. Here, the
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Figure 5.30: Statistically significant voxels in the ROI using FDR for the Bayesian reconstructed
magnitude images utilizing different samples of calibration time points for hyperparameter assess-
ment.
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same sampling of the calibration time points process outlined in Section 5.1.2 was followed

for task activation results. Figure 5.30 shows the magnitude-only task detection results

for BSENSE (first column), BGRAPPA (second column), and BFused (third column). For

BSENSE and BFused, sampling the calibration time points reduces the task leakage but also

loses the task detection power while having minimal effect on BGRAPPA.

Figure 5.31: (a) Plot of correctly identified magnitude-only task voxels and (b) a plot of the
mean values for the t-statistics for each Bayesian reconstruction technique using different samples
of calibration time points for hyperparameter assessment.

Further analysis of magnitude-only task detection from calibration time point sampling

is demonstrated in Figure 5.31. Figure 5.31a displays a plot of the number of voxels detected

as task in the ROI of each sampling size for BSENSE, BGRAPPA, and BFused. Like the cor-

relation analysis in Figure 5.14, BGRAPPA appears unaffected by sampling the calibration

time points while the power of task detection for BSENSE and BFused is weakened. The

plot in Figure 5.31b shows that the mean of the t-values for each sampling size noticeably

decreases for BSENSE and BFused compared to the non-sampling process but is relatively

unchanged for BGRAPPA. Both plots indicate a slight increase in task detection power as

the sampling size increases.
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Figure 5.32: Statistically significant voxels in the ROI using FDR for the Bayesian reconstructed
phase images utilizing different samples of calibration time points for hyperparameter assessment.
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Along with the magnitude-only task analysis of this sampling process, Figure 5.32 shows

the results for the phase-only task detection from sampling the calibration time points. Like

the magnitude-only results, BGRAPPA appears minimally affected by the sampling of the

calibration time points. For BFused, the task leakage and task-detection is slightly reduced,

but still captures activation in the ROI for larger sampling sizes. However, BSENSE appears

to remove the task leakage while still capturing task activation in the ROI.

Figure 5.33: (a) Plot of correctly identified phase-only task voxels and (b) a plot of the mean values
for the t-statistics for each Bayesian reconstruction technique using different samples of calibration
time points for hyperparameter assessment.

Figure 5.33a displays a plot of the number of voxels detected as phase-only task in the

ROI and Figure 5.33b shows a plot of the mean of the t-values for each sampling size for

BSENSE, BGRAPPA, and BFused. BGRAPPA and BSENSE both capture phase-only task

activation in the ROI, as shown in Figure 5.31b, but BGRAPPA did experience the task

leakage. At higher sample sizes (greater than or equal to 15), BFused captures more than

half of the active voxels in the ROI. In Figure 5.31b, BGRAPPA has the highest mean t-

values for sampling the calibration time points with BFused having the lowest t-values. The

number of voxels identified as task and the mean t-statistic values increase as the sampling

size increase for all three Bayesian techniques.
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Figure 5.34: Statistically significant voxels in the ROI using FDR for the Bayesian reconstructed
magnitude images (rows 1-3), and significant voxels in the ROI using FDR for the reconstructed
magnitude images using traditional techniques (rows 4-6) for different acceleration factors.
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Along with the various number of calibration time points, we evaluated how different

acceleration factors affect task detection for each of the reconstruction techniques. For this,

the number of calibration time points for hyperparameter assessment was fixed at ncal = 30

and the different acceleration factors were set to be nA = 2, 3, 4, 6, 8, 12. Again, since the

acceleration factor for SENSE cannot be greater than the number of coils, SENSE was not

used to reconstruct the subsampled data at nA = 12. The results for the magnitude-only task

activation is displayed in Figure 5.34. These results show that the Bayesian reconstruction

methods capture the active voxels in the ROI up to nA = 4. For SENSE, the magnitude-only

task detection is effective up to nA = 3, still less than the Bayesian techniques, but does not

detect activation at nA = 4. The GRAPPA and Fused techniques only detect task activation

at an acceleration factor of nA = 2.

Figure 5.35: (a) Plot of correctly identified magnitude-only task voxels and (b) a plot of the mean
values for the t-statistics for each reconstruction technique using different acceleration factors.

Figure 5.35 displays additional magnitude-only task analysis for different acceleration

factors. In Figure 5.35a, we can see that for all reconstruction techniques, the number of

correctly identified task voxels decrease as the acceleration factor increases. For all accel-

eration factors, the Bayesian techniques’ correctly identified task voxels are notably higher
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Figure 5.36: Statistically significant voxels in the ROI using FDR for the Bayesian reconstructed
phase images (rows 1-3), and significant voxels in the ROI using FDR for the reconstructed phase
images using traditional techniques (rows 4-6) for different acceleration factors.
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than the traditional techniques. As the acceleration factor gets to nA = 6, BSENSE and

BFused still capture 18 of the 28 voxels in the ROI, but experiences noticeable task leak-

age. In Figure 5.35b, the Bayesian techniques have higher t-values than the traditional for

each acceleration factor. Like Figure 5.35a, as the acceleration factor increases, the mean

t-statistic values decrease for each technique. Evaluating both plots, BFused and BSENSE

perform the best of all the techniques with both of them producing very similar results.

Task analysis of different acceleration factors is continued with investigating phase-only

activation for each reconstruction method. Figure 5.36 displays the phase-only task detection

images for acceleration factors up to nA = 4 for each reconstruction technique. The results

appear similar to that of the magnitude-only activation. The Bayesian techniques capture

activation in the ROI for all three acceleration factors displayed, SENSE losing task detection

power at nA = 4, and GRAPPA and Fused have little task detection power after nA = 2.

The task analysis for the phase-only task detection for different acceleration factors is

shown in Figure 5.37. In Figure 5.35a, like the magnitude-only task detection, the num-

ber of correctly identified task voxels decrease as the acceleration factor increases for all

reconstruction techniques. For all acceleration factors, the Bayesian techniques’ identified

task voxels are notably higher than the traditional techniques with BFused and BSENSE

identifying the same number of task voxels as each other. As the acceleration factor gets

to nA = 6, BSENSE and BFused, again, still capture 18 of the 28 voxels in the ROI, but

experiences notable task leakage. In Figure 5.37b, Like Figure 5.35b, as the acceleration

factor increases, the mean t-statistic values decrease for each technique. The Bayesian tech-

niques have higher t-values for the phase-only task dectection compared to traditional for

each acceleration factor. BFused and BSENSE perform the best of all the techniques with

both of them producing very similar results, as exhibited in both plots.
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Figure 5.37: (a) Plot of correctly identified phase-only task voxels and (b) a plot of the mean
values for the t-statistics for each reconstruction technique using different acceleration factors.

5.2 Experimental FMRI Study

5.2.1 Data Description

A 3.0 T General Electric Signa LX magnetic resonance imager was used to conduct an

fMRI experiment on a single subject. A right-handed finger-tapping task was performed

in a block design with an initial 20 s rest followed by 16 epochs with 15 s off (rest state)

and 15 s on (task performed). The experiment was concluded with 10 s of rest giving us

a series of nTR = 510 repetitions with each repetition being 1 s, a flip angle of 90° and

an acquisition bandwidth of 125 kHz. The data set consists of nine 2.5 mm thick axial

slices with nC = 8 receiver coils that have a 96×96 dimension for a 24 cm full FOV, with a

posterior to anterior phase encoding direction. This procedure was repeated with the subject

completely at resting state as well. This provides a non-task series of nTR = 510 repetitions

that can be utilized as pre-scan calibration information to assess the prior means and the

hyperparameters.
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For each volume image in the experimental series, a time dependent echo time, TEt,

consisted of three parts. The first part was fixed to have a value of TE = 42.7 ms at the

first 10 time points. In the second part, the next five TE values were an equally spaced

interval of values 42.7 ms, 45.5 ms, 47.7 ms, 50.2 ms, 52.7 ms and was repeated for another

5 time points. For the final part, the last 490 time points were fixed at 42.7 ms. To account

for T1 effects and varying echo times, the center row of k-space for each TR in each receiver

coil was acquired with three navigator echoes which is used to correct any potential Nyquist

“ghosting.” The additional rows of k-space were incorporated to estimate and adjust the error

in the center frequency and group delay offsets between the odd and even lines of k-space

(Nencka et al., 2008).

Typically, the magnetic fields in an fMRI experiment will induce a drift in the phase

over time which we correct before reconstruction to give us a stable phase through time.

This phase correction was performed on both pre-scan non-task time series and the fMRI

experiment time series. Once the phase was corrected, the last ncal = 30 full k-space arrays

and images (after IFT) of the non-task series of nTR = 510 time points performed on the

subject were used for hyperparameter assessment. The fMRI experimental series described

above was used for fMRI analysis. The first 20 time points were discarded leaving 490 time

points for the fMRI experiment due to the varying echo times and magnetization stabil-

ity. The first 10 images not used for fMRI activation can be used to estimate a T1 map

(Karaman et al., 2014) while the second 10 images could be used for static magnetic field

mapping (Hahn et al., 2012). Similar to the simulation study, the subsampled coil k-space

arrays came from artificially skipping lines in the full coil k-space arrays of the fMRI exper-

imental time series, mimicking the effect of actually subsampling the coil k-space arrays.
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5.2.2 Experimental Reconstruction Results

Similar to the process for the simulated data described in Section 5.1, each image in the

entire time series of aliased coil measurements were simultaneously unaliased and combined

using the traditional and Bayesian reconstruction techniques. Before artificially aliasing the

time series, a reference magnitude image (first row, first column in Figure 5.38) was produced

by taking the square norm between the nC = 8 full FOV coil images at the first time point.

This provides a magnitude image with which to compare to BSENSE, BFused, SENSE, and

Fused to. Another reference magnitude image (second row, first column in Figure 5.38) was

produced by first Fourier transforming the nC = 8 full coil images in full k-space arrays.

Figure 5.38: Reference non-task experimental magnitude image using the square norm of the coil
images (first row, first column), reference non-task experimental magnitude reconstructed image
from averaging the full coil k-space arrays (second row, first column), the Bayesian reconstructed
experimental magnitude images (first row, columns 2-4) and experimental magnitude images from
the traditional reconstruction techniques (second row, columns 2-4). The top color bar shows
the scale for the square norm reference magnitude image, BSENSE, BFused, SENSE, and Fused
techniques while the bottom color bar shows the scale for the averaged k-space arrays reference
magnitude, BGRAPPA, and GRAPPA techniques.
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Then the full coil k-space arrays were averaged together into a single, composite full k-space

array and inverse Fourier transformed back into image space yielding the magnitude image

in the second row, first column of Figure 5.38.

Figure 5.38 also displays the Bayesian reconstructed magnitude images (top row, columns

2-4) and the reconstructed magnitude images of the traditional reconstruction techniques

(bottom row, columns 2-4) of the first time point from the 490 images using an acceleration

factor of nA = 3. Just as the simulated results in Figure 5.4 demonstrated, we can see that

the joint MAP estimate from BSENSE and BFused produce magnitude images that closely

resemble the square norm reference image in Figure 5.38 (first row, first column) inside the

brain with the SENSE and Fused techniques reconstructing noisier magnitude images. The

noise level outside the brain is also noticeably higher for the SENSE and Fused techniques

compared to BSENSE and BFused. Visually the BGRAPPA magnitude image is slightly less

noisy than the GRAPPA magnitude image when compared to the averaged k-space reference

image (second row, first column).

Figure 5.39: Bar graph of MSE estimates for inside the brain for the magnitude images of each
of the reconstruction techniques for the experimental data.
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To calculate the MSE estimates for the magnitude images, the BSENSE, BFused,

SENSE, and Fused techniques were compared to the square norm reference image (first row,

first column of Figure 5.38) and the BGRAPPA and GRAPPA techniques were compared

to the averaged k-space reference image (second row, first column of Figure 5.38). Figure

5.39 displays a bar graph of the MSE for each techniques’ magnitude reconstructed image.

For the graph, the BSENSE and BFused techniques have markedly smaller MSE values than

SENSE and the Fused techniques while BGRAPPA and GRAPPA had the smallest MSE

values. BGRAPPA has a slightly smaller MSE compared to GRAPPA, but, again, is not

the best measure for analyzing signal intensity.

The phase of the reconstructed images for the traditional techniques (second row) and

Figure 5.40: The Bayesian reconstructed experimental phase images (first row) and experimental
phase images from the traditional reconstruction techniques (second row). Due to the circular
nature of phase angles, the color bar for the phase images have wrap-around.
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the respective Bayesian approaches (first row) for the first time point in the experimental

series is shown in Figure 5.40. The appearance of the BSENSE, BGRAPPA, BFused, and

GRAPPA phase reconstructed images are due to the imperfect shims of the magnetic field

gradients. An example of this can be seen in the experimental data of the Bruce et al. 2011

paper. In the simulated data used for this dissertation, perfect homogeneity throughout the

magnetic gradient field is assumed resulting in clear anatomical structure for the BSENSE,

BFused, BGRAPPA, and GRAPPA phase reconstructed images. The BSENSE and BFused

reconstructed phase images in Figure 5.40 more accurately represent the phase images and

can also be utilized estimate the change in the B-field inhomogeneity, ∆B. The phase from

the BGRAPPA and GRAPPA reconstructed images also estimates the imperfections of the

shims but do not accurately represent the signal intensities and phase angles of the true

Figure 5.41: Temporal variance of the reconstructed nIMG = 490 experimental time series using
the traditional techniques (bottom row) and the respective Bayesian approaches (top row).
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complex-valued images. The phase of the SENSE and Fused reconstructed images are zero

inside the brain, meaning these phase images are of no value.

From the reconstruction of the entire nIMG = 490 time series, Figure 5.41 displays the

temporal variance of each reconstruction technique. The top row of Figure 5.41 shows the

Bayesian reconstruction techniques, and the bottom row shows the traditional reconstruc-

tion techniques. Note that the scale for the top color bar only goes up to 0.00025 while the

bottom row goes to 0.05 which is 199 times larger. Comparing BGRAPPA and GRAPPA,

BGRAPPA has a smaller temporal variance. This shows that the Bayesian techniques have

smaller temporal variances compared to the traditional techniques which indicates more ac-

Figure 5.42: Signal-to-noise ratio of the reconstructed nIMG = 490 experimental time series using
the traditional techniques (bottom row) and the respective Bayesian approaches (top row). The
top color bar shows the scale for the BSENSE and BFused techniques while the bottom color bar
shows the scale for the other techniques.
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curate reconstruction through time. Of the three Bayesian approaches, the BFused technique

had the smallest temporal variance with BGRAPPA having the second smallest. For the

traditional techniques, SENSE had the largest temporal variance while GRAPPA had the

smallest.

Figure 5.42 displays the SNR images using the experimental data for each reconstruction

technique utilizing the different number of calibration time points. In Figure 5.42, there is

one scale for the BSENSE and BFused techniques which goes to 4000 while the other scale

goes to 100 for the other techniques. This scale difference shows that BSENSE and BFused

have considerably higher SNR values compared to the other reconstruction techniques like

in Figure 5.42. Between BFused and BSENSE, BFused produced the higher SNR values.

For the other reconstruction techniques, BGRAPPA had similar SNR values to the Fused

Figure 5.43: Magnitude experimental image with active task voxels in the ROI (first column),
statistically significant voxels in the ROI using FDR for the Bayesian reconstructed magnitude
experimental images (first row, columns 2-4), and significant voxels in the ROI using FDR for the
reconstructed experimental magnitude images using traditional techniques (second row, columns
2-4).
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technique with both being greater than SENSE and GRAPPA.

The hypothesis test described in Section 5.1.3 was, again, utilized to determine voxels

with a statistically significant signal increase for magnitude-only activation. The statisti-

cally significant voxels for the experimental fMRI series for each reconstruction technique

is displayed in Figure 5.43, using nA = 3. A 5% false discovery rate (FDR) threshold pro-

cedure (Benjamini and Hochberg, 1995; Genovese et al., 2002; Logan and Rowe, 2004) was

used for multiplicity correction. The ROI here consists of 28 voxels located in the left motor

cortex and is outlined in green for each image in Figure 5.43. The results in Figure 5.43

show that, visually, each reconstruction technique captures the expected task activation in

the ROI. However, the Bayesian techniques produced higher task detection, capturing more

task active voxels and having higher mean t-values, as shown in Figure 5.44.

Figure 5.44a displays a bar graph of the number of correctly identified task voxels for

each reconstruction technique from the magnitude-only task detection in Figure 5.43. This

graph shows that BSENSE and BFused identified more task voxels in the ROI compared

Figure 5.44: (a) Bar graph for number of correctly identified magnitude-only task voxels and (b) a
bar graph of mean values for the t-statistics for each reconstruction technique for the experimental
data.
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Figure 5.45: Reconstructed magnitude images for different numbers of calibration time points
using the traditional and Bayesian image reconstruction techniques for the experimental data. The
left color bar shows the scale for the BSENSE, BFused, SENSE, and Fused techniques while the
right color bar shows the scale for the BGRAPPA and GRAPPA techniques.
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to the other techniques with the Fused technique capturing the third most task voxels. In

this bar graph, we can see that BGRAPPA does correctly identify more task voxels than

GRAPPA and SENSE. Figure 5.44b displays a bar graph of the mean t-statistic values in

the ROI for each reconstruction technique. The results show that BSENSE and BFused

have highest mean t-statistic values with both of these techniques having virtually the same

mean t-statistic value. The Fused reconstruction does have a higher mean t-value than the

other techniques with BGRAPPA having a slightly lower mean t-statistic value than SENSE

despite identifying more task voxels in the ROI.

Similar to the simulation study, we evaluated how the number of calibration time points,

ncal, affected the reconstructed images. For the pre-scan calibration analysis, we fixed the

acceleration factor to be nA = 3 for the subsampled k-space coil arrays of the experimental

time series. Then we set the number of calibration time points to be ncal = 5, 10, 15, 20, 25, 30

for separate hyperparameter assessments. After assessing the hyperparameters using each

number of calibration time points, the experimental time series with the subsampled coil

spatial frequency arrays were reconstructed using the traditional and Bayesian reconstruction

techniques.

Figure 5.45 displays the results for the magnitude reconstructed images using the dif-

ferent numbers of calibration time points from each technique. From Figure 5.45, we can

see that increasing the number of calibration time points decreases the noise level for the

BSENSE and BFused techniques while the other techniques remain seemingly unaffected.

The Bayesian reconstruction techniques seem to produce slightly less noise images inside

the brain (and mostly outside the brain) compared to the traditional techniques. The MSE

for inside the brain along with the entropy for each of the reconstruction techniques using

various numbers of calibration time points were calculated to quantify the results shown in

Figure 5.45. Shown in Figure 5.46a, the MSE for BSENSE and BFused are smaller than the
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SENSE and Fused techniques as they are compared to the square norm reference magnitude

image. Both BGRAPPA and GRAPPA have smaller MSE values than the rest of the recon-

struction techniques, with BGRAPPA being slightly smaller, but, again, are compared to

the averaged k−-space reference magnitude image. For the entropy plot in Figure 5.46b, the

BSENSE and BFused have the smallest entropy values (except for ncal = 5) with BSENSE

being slightly smaller. This plot also shows that the Fused technique has smaller entropy

values compared to BGRAPPA, which has smaller entropy values compared to SENSE and

GRAPPA. The entropy values for the Bayesian reconstruction techniques appear to decrease

as the number of calibration time points increases.

Figure 5.46: (a) MSE for inside the brain for each reconstruction technique compared to the square
norm reference magnitude image or the averaged coil k-space arrays reference magnitude image for
each number of calibration time points. (b) Entropy plot for each reconstruction technique using the
various number of calibration time points. For both plots, BSENSE is the orange line, BGRAPPA
is the yellow line, BFused is the blue line, SENSE is the green line, GRAPPA is the light blue line,
and Fused is the purple line.

The appearance of the phase reconstructed images for different numbers of calibration

time points is similar to the those shown in Figure 5.40. That is, the BSENSE, BGRAPPA,

BFused, and GRAPPA reconstructed phase images show the imperfections of the shims and

the SENSE and Fused are close to zero inside the brain providing no information. These
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Figure 5.47: Reconstructed experimental phase images for different numbers of calibration time
points using the traditional and Bayesian image reconstruction techniques. Due to the circular
nature of phase angles, the color bar for the phase images have wrap-around.
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Figure 5.48: Temporal variance for different numbers of calibration time points using the tradi-
tional and Bayesian image reconstruction techniques for the experimental data. The left color bar
shows the scale for the BSENSE and BFused techniques while the right color bar shows the scale
for the other techniques.
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results are shown in Figure 5.47. From these results, we can see that increasing the number

of calibration time points used for hyperparameter assessment has little to no effect on the

reconstructed phase images.

Figure 5.48 displays the temporal variance for each reconstruction technique utilizing

various calibration time points for the experimental data. In this figure, there are two dif-

ferent scales for the color bars: one for the BSENSE, BGRAPPA, BFused, and GRAPPA

techniques which go to 0.00025 and the other for the SENSE and Fused techniques that

go to 0.05, similar to that shown in Figure 5.41. With BGRAPPA having smaller tempo-

ral variance for the experimental data compared to GRAPPA, the Bayesian reconstruction

techniques produce more accurate reconstructed images through time compared to the tra-

ditional techniques. Between BSENSE and BFused, BFused has a much smaller temporal

variance than BSENSE. Also, increasing the calibration time points decreases the temporal

variance for both BSENSE and BFused reconstruction techniques. For the traditional re-

construction techniques, SENSE appears to have a highest temporal variance continuing to

show that the SENSE technique under performs with the non-task analysis of these image

reconstruction techniques.

In Figure 5.49, we have have two scales for the color bars where BSENSE and BFused

follow the color bar that goes up to 4000 while the others follow the color bar that go

up to 100. This indicates that BSENSE and BFused produce substantially larger SNR

values compared to the other reconstruction techniques. In Figure 5.49, it appears that

the BGRAPPA and Fused techniques produce similar SNR values with SENSE having the

smallest SNR values. From Figure 5.49, we can see that increasing the number of calibration

time points increases the SNR inside the brain for the BSENSE and BFused. For the other

techniques, the SNR values inside the brain appear unchanged as the calibration time points

increase while decreasing SNR values outside the brain for BGRAPPA, GRAPPA, and the
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Figure 5.49: SNR for different number of calibration time points using the traditional and Bayesian
image reconstruction techniques for the experimental data. The left color bar shows the scale for the
BSENSE and BFused techniques while the right color bar shows the scale for the other techniques.
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Figure 5.50: Statistically significant voxels in the ROI using FDR for the Bayesian reconstructed
experimental magnitude images (rows 1-3), and significant voxels in the ROI using FDR for the
reconstructed experimental magnitude images using traditional techniques (rows 4-6) for different
numbers of calibration time points.
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Fused techniques.

We also evaluated how utilizing different number of calibration time points affects the

magnitude-only task detection results. Figure 5.50 displays the magnitude-only task detec-

tion results for different numbers of calibration time points using each reconstruction method.

Similar to Figure 5.43, each reconstruction technique captures activation in the ROI outlined

in green, but the BSENSE and BFused techniques appear to have the strongest power in

detecting the task. Visually, it appears that increasing the number of calibration time points

have no effect on task detection.

These results are further analyzed in Figure 5.51. In Figure 5.51a shows a plot of the

number of correctly identified task voxels in the ROI using different numbers of calibration

images for each reconstruction technique. From this, we can see that BSENSE and BFused

capture more task voxels than the other techniques. The plot also shows that the Fused

technique captures more task voxels than BGRAPPA. BGRAPPA still correctly identifies

more task voxels than SENSE and GRAPPA, but still performs slightly worse than the

Figure 5.51: (a) Plot of correctly identified magnitude-only task voxels and (b) a plot of the mean
values for the t-statistics for each reconstruction technique using different numbers of calibration
time points for hyperparameter assessment for the experimental data.
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Fused technique with the experimental task analysis. Of all the reconstruction techniques,

GRAPPA appears to detect the least amount of task voxels and have the lowest mean t-

statistic values as shown in 5.51b. In this plot, BSENSE and BFused have the highest

mean t-values with BSENSE being slightly higher at each point (except at ncal = 30).

Despite having more voxels identified as task, BGRAPPA has slightly smaller mean t-values

than SENSE. This could mean that there is less variation between the t-statistic values

in the ROI for BGRAPPA. Overall, increasing the number of calibration time points used

for hyperparameter assessment has minimal effect for each of the reconstruction techniques

(except SENSE) as exhibited in both plots.

Using the same prior information at each time point in the series of subsampled fMRI

data could potentially lead to correlation, as mentioned in Section 5.1.2. The same sampling

of the calibration time points process outlined in Section 5.1.2 was also followed for corre-

lation analysis using the experimental data. Figure 5.52a illustrates the average correlation

Figure 5.52: (a) Correlation between previously aliased voxels for each reconstruction technique
for the experimental data. (b) Correlation between previously aliased voxels for each Bayesian
reconstruction technique using sampling of the calibration time points without replacement for the
experimental data. For plot a, BSENSE is the orange line (same in plot b), BGRAPPA is the yellow
line (same in plot b), BFused is the blue line (same in plot b), SENSE is the green line, GRAPPA
is the light blue line, and Fused is the purple line.

104



Figure 5.53: Reconstructed experimental magnitude images for different samples of calibration
time points from hyperparameter assessment for the Bayesian image reconstruction techniques. The
left color bar shows the scale for the true magnitude, BSENSE and BFused techniques while the
right color bar shows the scale for BGRAPPA.
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between voxels and the voxels they were previously aliased for each reconstruction technique

using different numbers of calibration time points. The magnitude of the reconstructed ex-

perimental time series is used for the correlation estimation. Analyzing the plot shows that

the traditional reconstruction techniques have lower correlation estimates than the Bayesian

techniques. The correlation estimates for GRAPPA are close to the correlation estimates

for the Bayesian techniques but are still less than each of them. The correlation appears

relatively steady for each reconstruction technique as the number of calibration time points

increase.

Figure 5.52b demonstrates the effects of sampling the calibration time points on voxel

correlation while, again, decreasing the prior scalars to nv = 1, nS = 1, nl = 1 and nw = 1.

The plot in Figure 5.52b shows the average correlation between all voxels and the voxels

they were previously aliased with for sampling sizes of 5, 10, 15, 20, 25, and 27, out of 30

calibration time points, comparing them to the non-sampling methods. The results indicate

that sampling the calibration time points remarkably decreases the correlation for BSENSE

only. For BGRAPPA and BFused, the correlation does slightly decrease but increases as the

sampling size increases ultimately being close to the correlation without sampling.

Figure 5.53 shows the magnitude of the reconstructed images for each Bayesian recon-

struction technique using different sample sizes of the calibration time points. The results

displayed in this figure show that sampling the calibration time points has little effect on the

magnitude reconstructed images inside the brain. Figure 5.15 also shows that as the sampling

size increases, the noise level for BSENSE, BGRAPPA, and BFused remains unchanged.

Figure 5.54 shows the magnitude-only task detection results for BSENSE (first column),

BGRAPPA (second column), and BFused (third column). For BSENSE, sampling the cal-

ibration time points reduces the task leakage while minimally losing task detection power.
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Figure 5.54: Statistically significant voxels in the ROI using FDR for the Bayesian reconstructed
magnitude images utilizing different samples of calibration time points for hyperparameter assess-
ment for the experimental data.

107



For BGRAPPA and BFused, task leakage is hardly mitigated by sampling the calibration

time points.

This is more evident in Figure 5.55 which shows the identified task voxels in plot (a)

and the mean t-values in plot (b). In Figure 5.55a, we can see that sampling the calibration

time points minimally affects the number of identified task voxels. However, it does slightly

increase the mean of the t-values in Figure 5.55b, which would need a little more investigating.

For BSENSE, the number of correctly identified voxels is slightly less than BGRAPPA, but

the mean of the t-statistic values is similar to BGRAPPA.

Figure 5.55: (a) Plot of correctly identified magnitude-only task voxels and (b) a plot of the mean
values for the t-statistics for each Bayesian reconstruction technique using a different number of
calibration time points for hyperparameter assessment for the experimental data.

Along with analysis of the number of calibration time points, we evaluate how different

acceleration factors affect the results for each reconstruction technique for the experimental

data. Here, we fixed the number of calibration time points to be ncal = 30 for hyperpa-

rameter assessment and set the acceleration factors of the experimental time series to be

nA = 2, 3, 4, 6, 8, 12. In the acceleration factor analysis, the SENSE technique is not used

to reconstruct using and acceleration factor of nA = 12 due to the underdetermined system.
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Figure 5.56: Reconstructed magnitude images for different acceleration factors using the tradi-
tional and Bayesian image reconstruction techniques for the experimental data. The left color bar
shows the scale for the true magnitude, BSENSE, BFused, SENSE, and Fused techniques while the
right color bar shows the scale for the reference magnitude, BGRAPPA, and GRAPPA techniques.
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Only the results for nA = 2, 3, 4 are shown for some of the figures simply to see how increasing

the acceleration factor effects the reconstruction results. These subsampled experimental coil

k-space arrays with separate acceleration factors were reconstructed into full images using

each of the reconstruction techniques, comparing the results for all methods.

The results displayed in Figure 5.56 show that the magnitude images from each of the

reconstruction techniques, except for SENSE, are negligibly affected by increasing the accel-

eration factor. The noise level for inside and outside the brain for SENSE appears to increase

as the acceleration factor increases. Similar to the simulated results, the magnitude recon-

structed images from the traditional techniques have slightly more noise than the Bayesian

magnitude reconstructed images for inside the brain. For BGRAPPA, there appears to be

more noise outside the brain compared to the Fused reconstructed magnitude images.

The MSE for inside the brain along with the entropy for each of the reconstruction

Figure 5.57: (a) MSE for inside the brain for each reconstruction technique compared to the
square norm reference magnitude image or the averaged coil k-space arrays reference magnitude
image for different acceleration factors. (b) Entropy plot for each reconstruction technique applying
different acceleration factors. For both plots, BSENSE is the orange line, BGRAPPA is the yellow
line, BFused is the blue line, SENSE is the green line, GRAPPA is the light blue line, and Fused is
the purple line.
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techniques for different acceleration factors were calculated to quantify the results shown in

Figure 5.56. From Figure 5.57a, the MSE estimates for SENSE reconstruction techniques

are larger than 0.25 at acceleration factors larger than nA = 4, causing the change in the

y-axis the plot. The MSE plot evidently shows that the MSE for BSENSE and BFused

are smaller than the SENSE and Fused techniques as they are compared to the square

norm reference magnitude image. In Figure 5.57a, BGRAPPA and GRAPPA have smaller

MSE estimates than the other reconstruction techniques. The BGRAPPA and GRAPPA

techniques, however, are compared to the averaged k-space reference magnitude image which

is not a good indicating of accurate reconstructing the signal intensities. For the entropy plot

in Figure 5.46b, the BSENSE and BFused have the smallest entropy values with BSENSE

slightly decreasing as the acceleration factor increases. This plot also shows that the Fused

technique has smaller entropy values compared to BGRAPPA (except for nA = 8 and nA =

12), which has smaller entropy values compared to SENSE and GRAPPA. The entropy values

for BGRAPPA and GRAPPA decrease as the number of calibration time points increases.

Figure 5.58: SENSE magnitude reconstructed images with nA = 6 (left) and nA = 8 (right) for
the experimental data.

Figure 5.58 displays the magnitude of the reconstructed experimental images using

SENSE for acceleration factors nA = 6 (left) and nA = 8 (right). This figure shows that the
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Figure 5.59: Reconstructed phase images for different acceleration factors using the traditional
and Bayesian image reconstruction techniques for the experimental data. Due to the circular nature
of phase angles, the color bar for the phase images have wrap-around.
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Figure 5.60: Temporal variance for different acceleration factors using the traditional and Bayesian
image reconstruction techniques for the experimental data. The left color bar shows the scale for the
BSENSE and BFused techniques while the right color bar shows the scale for the other techniques.
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MSE plot (Figure 5.57a) is noticeably higher for SENSE as the magnitude images appear to

lose anatomical structure due to the higher noise level. This also explains why the SENSE

line (green) in the entropy plot (Figure 5.17b) drops substantially when the acceleration

factor increases nA = 8.

The appearance of the phase reconstructed images for different acceleration factors

is similar to the those shown in Figures 5.40 and 5.47 where the BSENSE, BGRAPPA,

BFused, and GRAPPA reconstructed phase images show the imperfections of the shims and

the SENSE and Fused are close to zero inside the brain. These reconstructed phase images

for different acceleration factors are shown in Figure 5.59. From Figure 5.59, we can see that

increasing the acceleration factor has little to no effect on the reconstructed phase images

except for SENSE where the noise level inside the brain increases. For SENSE, the noise

level overtakes the phase image and makes the entire completely noisy, leaving no trace of

even a brain outline.

Figure 5.60 displays the temporal variance for each technique reconstructing with dif-

ferent acceleration factors applied to the experimental data. Like Figures 5.41 and 5.48, this

figure has one scale for the color bars that BSENSE, BGRAPPA, BFused, and GRAPPA

techniques are on which go to 0.00025 and one scale for the SENSE and Fused techniques

that go to 0.05. Since BGRAPPA has smaller temporal variance compared to GRAPPA for

each acceleration factor, the Bayesian reconstruction techniques, again, produce more accu-

rate reconstructed images through time compared to the traditional techniques. Evaluating

Figure 5.60, we see that BFused has a much smaller temporal variance than BSENSE. Also,

increasing the acceleration factor decreases the temporal variance for BSENSE, BGRAPPA,

BFused, and GRAPPA reconstruction techniques while increasing the temporal variance for

the SENSE and Fused techniques.
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Figure 5.61: SNR for different acceleration factors using the traditional and Bayesian image
reconstruction techniques for the experimental data. The left color bar shows the scale for the
BSENSE and BFused techniques while the right color bar shows the scale for the other techniques.
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Figure 5.62: Statistically significant voxels in the ROI using FDR for the Bayesian reconstructed
magnitude images (rows 1-3), and significant voxels in the ROI using FDR for the reconstructed
magnitude images using traditional techniques (rows 4-6) for different acceleration factors for the
experimental data.
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Similar to Figures 5.42 and 5.49, Figure 5.61 has two scales for the color bars: one that

BSENSE and BFused follows that goes up to 4000 and one that the other techniques follow

the color bar that go up to 100. This, again, indicates that BSENSE and BFused produce

substantially larger SNR values compared to the other reconstruction techniques. In Figure

5.61, it appears that the BGRAPPA and Fused techniques produce similar SNR values for

different acceleration factors with SENSE having the smallest SNR values. Figure 5.61 shows

that increasing the acceleration factor increases the SNR inside the brain for the BSENSE,

BGRAPPA, BFused, and GRAPPA. For SENSE and Fused, the SNR values inside the brain

appear to slightly decrease as the acceleration factor increases.

To further evaluate the effects of different acceleration factors, analysis of magnitude-

only task detection for each reconstruction technique is analyzed in Figure 5.62. Analyzing

Figure 5.62, each reconstruction technique captures activation in the ROI, outlined in green,

but the BSENSE and BFused techniques appear to have stronger detection power than the

rest of the methods. Visually, it appears that increasing the acceleration factor noticeably

decreases task detection for GRAPPA and SENSE but only slightly decreases for the other

reconstruction techniques.

Figure 5.63a shows a plot of the number of task voxels identified as active in the ROI

for different acceleration factors for each reconstruction technique. From this, we can see

that BSENSE and BFused produce similar results as the number of task voxels are the same

(except for nA = 8 and nA = 12). Also, for each acceleration factor, BSENSE and BFused

detected the most task active voxels compared to the other techniques. The plot shows that

BGRAPPA captures the same amount or more task voxels than the Fused technique (except

for nA = 6) for each acceleration factor. Of all the reconstruction techniques, GRAPPA

detects the least amount of task voxels for nA = 2, 3, 4 while SENSE detects the least

amount of task voxels for nA = 6, 8 and Fused for nA = 12. In Figure 5.63b, BSENSE and
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BFused clearly have the highest mean t-values with BSENSE being slightly higher at each

point (except at nA = 12). Despite having more voxels identified as task, BGRAPPA has

slightly smaller mean t-values than SENSE for each acceleration factor except nA = 8. This,

again, could mean that there is less variation between the t-statistic values in the ROI for

BGRAPPA. Overall, increasing the acceleration factor decreases effectively capturing task

activation for each reconstruction technique in both plots.

Figure 5.63: (a) Plot of correctly identified magnitude-only task voxels and (b) a plot of the mean
values for the t-statistics for each reconstruction technique using different acceleration factors for
the experimental data.
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CHAPTER 6: Discussion

For MR imaging, Parallel imaging techniques such as SENSE (Pruessmann et al., 1999)

and GRAPPA (Griswold et al., 2002) have facilitated subsampling of k-space and reduced

image acquisition times. This allows practitioners to reduce acquisition time with each

slice, increase the number of images or slices, reconstruct higher resolution images, or a

combination of these in the same time as fully sampled k-space depending on the acceleration

factor. The acceleration factor in an fMRI experiment is determined by how important time

is in completing a scan. The number of coils used in an experiment is dependent on the

facility and the coil configurations that facility possesses.

Applying an acceleration factor in an fMRI experiment can significantly reduce the

acquisition time of spatial frequency arrays and volume images, but taking the IFT of the

subsampled k-space yields aliased coil images. SENSE parallel image reconstruction simulta-

neously unaliases and combines the aliased coil images, resulting a full FOV single, composite

brain image. This image reconstruction method can be difficult in the presence of an ill-

conditioned design matrix. GRAPPA is another parallel image reconstruction that estimates

the unacquired spatial frequencies that are skipped during the acquisition of the subsampled

k-space arrays yielding full FOV coil spatial frequency arrays. However, GRAPPA has its

drawbacks which include low image quality, low SNR, and weakened task detection power at

higher acceleration factors. Here, we include a model that fuses both GRAPPA and SENSE

since GRAPPA operates in the spatial frequency domain and SENSE operates in the image

domain. Despite this Fused model, there are still discrepancies with applying this Fused

model as valuable prior information that can incorporated into the image reconstruction

is discarded. Hence, we introduce a Bayesian approaches to GRAPPA, SENSE, and the

Fused method. Using more available information from the calibration spatial frequencies
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and images to assess the hyperparameters, our proposed Bayesian approaches successfully

reconstructed a series of simulated non-task images without any aliasing artifacts. These

Bayesian reconstructed images were also shown to have numerous improvements over the

reconstructed images of the traditional techniques when applied to both simulated and ex-

perimental fMRI data.

6.1 Summary of Reconstruction Results

The simulated non-task results show that overall, the Bayesian techniques outperform

the traditional techniques. The BFused and BSENSE techniques appear to reconstruct mag-

nitude images more accurately with having lower MSE values while closely resembling the

true simulated phase image. The Bayesian techniques also decrease the temporal variance

which increases the SNR values with BFused being the best of three Bayesian methods. De-

spite BGRAPPA being the weakest of the three Bayesian methods, it still produces better

results compared to the three traditional techniques. Having more calibration time points

for hyperparameter assessment improves the results for BFused and BSENSE while increas-

ing the acceleration factor has negligible effects on the non-task results for the Bayesian

techniques.

For the task analysis of the simulated fMRI data, BSENSE and BFused, by far, outper-

formed the other techniques while BGRAPPA still had better results than the traditional

techniques. These methods identified more task voxels in the ROI and had higher mean

t-statistic values for both magnitude-only and phase-only task activation models. For the

experimental fMRI analysis, BSENSE and BFused had lower MSE and entropy values for

the reconstructed magnitude images, had lower temporal variance, high SNR values, and

had the highest power of task detection.
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The Bayesian approaches did have a higher correlation with previously aliased voxels

and task leakage, so sampling of the calibration time points was deployed to possibly mitigate

these issues. It effectively reduced the correlation and task leakage for BSENSE (except for

the simulated magnitude-only task activation), but hardly had positive results for BGRAPPA

and BFused. This sampling study is somewhat limited with using ncal = 30 calibration time

points. Increasing the total number of calibration time points could potentially improve the

results for the Bayesian reconstruction techniques.

Considering all the results in this dissertation, from a practical standpoint, the BFused

image reconstruction would be the best technique to use for real-world applications. This

model utilizes both spatial frequency and image information to reconstruction the subsam-

pled fMRI data. It is set up to be objectively automated, but also allows flexibility for

subjective prior information to be implemented as well. This statement is backed by the

results shown throughout this dissertation.

6.2 Other Completed Work

The BSENSE model used for this dissertation assumed that is no covariance between

the nC coils. This is common practice in fMRI but is not necessarily a correct assumption

(Bruce et al., 2012). A model has been written out that incorporates coil covariance and

aliased voxel covariance. This model just needs further testing with the simulated and

experimental data. This has not but can also be applied to the BFused model as well.

This dissertation used the full posterior distribution for reconstructing images, meaning

available prior information was quantified on all three parameters for BSENSE (v, S, and

σ2), and inherently BFused, and utilized for parameter estimation. We also analytically

integrated out σ2 yielding a marginal posterior where v and S are the only two unknowns to
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be estimated. Integrating out σ2 produces a joint Student-t posterior for S and v from which

we obtained Gibbs sampling based marginal estimates consistent with the three-parameter

model.

From the Bayesian models, we evaluated the estimation of the coil sensitivities (S in

BSENSE and BFused), the noise variance of the aliased coil measurements (σ2 in BSENSE

and BFused). This extended work is exhibited in Appendix A. We also examine the different

coil sensitivity information that is utilized between SENSE and BSENSE, and innately Fused

and BFused.

6.3 Future Work

More work can be completed with what prior information is incorporated in the re-

construction. With more available calibration time points, the sampling of this calibration

information can include more sampling scenarios. For BGRAPPA and BFused, instead of

sampling entire coil spatial frequency arrays, we can sample frequencies individually. Suppose

we wanted to sample 15 of the 30 calibration time points for hyperparameter assessment. For

the sampling experiment completed in Sections 5.1.2, 5.1.5, and 5.2.2, we used the same 15

sampled calibration time points to assess the hyperparameters for every unacquired spatial

frequency in each array and then sample another 15 for the next point in the time series and

so on. For sampling the frequencies individually, we would sample 15 calibration time points

for a single unacquired spatial frequency in the array, assess the hyperparameters, and then

for the next point in the array, we would sample another 15. This process would be repeated

until the hyperparameters are assessed for all the unacquired spatial frequencies in the array

at a single point in the time series. This means that every unacquired spatial frequency in

the array at every point in the time series would have different assessed hyperparameters.

We can also obtain calibration time points that has some task information and incorporate
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those in the reconstruction at the points in the time series where the task performed.

The reason for sampling the calibration time points was to potentially reduce the task

leakage experienced by the Bayesian approaches in Sections 5.1.5 and 5.2.2. Another method

that can be used to reduce the task leakage voxels is to place a Lagrange optimization

constraint that is set to minimize the correlation between the previously aliased voxels.

In the Bayesian models, time is independent when reconstructing the subsampled k-

space arrays. For future work, we may also need to consider a time dimension in our models

to more accurately reconstruct images as the series is acquired.

For this dissertation, only the MAP estimate using the ICM algorithm was used to

reconstruct the time series for both the simulated and experimental data. Since we have

posterior conditionals for each of the parameters, this allows us to use other estimation

techniques such as the MCMC Gibbs sampling method. This method was not presented

due to the Gibbs sampler being more computationally expensive when running a long series

of images so it is not as practical to use compared to evaluating the MAP estimate. This

does not mean there is no value in running a Gibbs sampler, as it has the additional benefit

of quantifying uncertainty. For instance, it can be utilized on a shorter series of images,

providing us with more statistical information about any voxel, hypothesis testing between

two reconstructed images, or identifying which voxels are outside the brain for masking. We

could also hybridize the ICM and Gibbs sampler where we start with a few iterations of

the ICM algorithm followed by a short, no-burn Gibbs sampler. For the BFused technique,

the ICM algorithm was used for estimation in both k-space and image space. However, this

would allow some flexibility with using Gibbs sampler at either or both estimation points (k-

space and image space). Our Bayesian approaches allows for more options of how to run an

fMRI experiment based on the objective of the scan compared to the traditional techniques.
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APPENDIX A

Coil Sensitivity and Residual Noise

In this chapter of the appendix, we analyze the estimated coil sensitivities and the residual

noise from BSENSE reconstruction.

A.1 BSENSE Estimated Coil Sensitivities

Along with the unaliased voxel values, v, BSENSE estimated the coil sensitivities, S,

for each TR in the time series. Figure A.1a displays the true magnitude image (center)

and the true magnitude coil sensitivities starting with coil 1 on the top middle and going

clockwise to coil 8 in the top left. Figure A.1b has the same setup as the BSENSE magnitude

reconstructed image and coil sensitivities for the first TR of the 490 reconstructed non-task

time series (outlined in Section 5.1.2) using ncal = 30 and an acceleration factor of nA = 3.

Figure A.1: (a) True magnitude coil sensitivities surrounding the true magnitude image and (b)
BSENSE estimated magnitude coil sensitivities surrounding the reconstructed magnitude image.

124



The estimated BSENSE coil sensitivities appear to be similar to the the true coil sensitivities

inside where the brain would be.

The estimated coil sensitivities were also analyzed using different number of calibration

images (5, 10, 15, 20, 25, 30) and acceleration factors (2, 3, 4, 6, 8, 12). With fixing nA = 3,

Figure A.2a exhibits the MSE for the different number of calibration images for each coil

inside the brain. The MSE for each coil is very small and decreases as the number of

calibration images increase, similar to the MSE decreasing outside the brain in the BSENSE

magnitude reconstructed images. With fixing ncal = 30, Figure A.2b exhibits the MSE for

the different acceleration factors for each coil inside the brain. Again, the MSE for each coil

is very small with a slight increase as the acceleration factor increases. This illustrates that

our BSENSE approach accurately estimates the simulated coil sensitivities as well.

Figure A.2: (a) MSE for each of the nC = 8 coils using a different number of calibration images
and (b) MSE for each of the nC = 8 coils using different acceleration factors.

A.2 BSENSE Estimated Residual Noise

Our BSENSE technique also estimated the residual variance for the aliased coil mea-

surements. We evaluated the effects of the number of calibration images and acceleration
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factors on the residual variances. Figure A.3a shows the residual variances of the coil mea-

surements for each number of calibration images with nA = 3. The residual variance appears

to increase as the number of calibration images increase. This is due to the nv and nS scalar

coefficients for the estimation of σ2, outlined in Section 2.3.3, increasing with the number

of calibration images. Figure A.3b shows the residual variances of the coil measurements

for each acceleration factor with ncal = 30. The residual variance appears to decrease as

the acceleration factor increases because the denominator of the Iterated Conditional Modes

(ICM) estimate of σ2 (Eq. 2.15) is increasing. All residual variances appear to be uniform

across the aliased images in Figure A.3 which is expected as noise is anticipated to be uniform

across the image.

Figure A.3: (a) Residual variance of the aliased coil images for each number of calibration images
and (b) Residual variance of the aliased coil images for each acceleration factor.
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APPENDIX B

SENSE Coil Sensitivity Information

When estimating prior means for the coil sensitivities H0, the nc averaged coil calibration

images are first point-wise divided by v0M to obtain a prior mean for the real and imaginary

coil sensitivities (as mentioned in Section 2.3.2). The real and imaginary parts are then

utilized to estimate the phase by the equation arctan(I/R)/2. Dividing the arctan(I/R),

which is the equation for converting to polar coordinates, by two incorporates the information

from the imaginary component of the coil sensitivities into the reconstructed image while

not dividing by two does not.

For SENSE reconstruction, the information for the coil sensitivities uses the phase

equal to arctan(I/R) while BSENSE divides the phase by two. This is due to the poor

reconstruction results of the experimental data, shown in Figure B.1. The simulated and

experimental magnitude and phase reconstructed images at the first TR of the 490 non-

task time series using SENSE in Figure B.1 used ncal = 30 calibration time points with

a nA = 3 acceleration factor. From Figure, B.1, it appears that the magnitude of the

SENSE reconstructed simulated image (top left) is unchanged with the arctan(I/R)/2 phase

coil information. We can also see that using the arctan(I/R)/2 improves the phase of the

reconstructed simulated image (top right) but is still much more noisy compared to the phase

of the BSENSE reconstructed simulated image in Figure 5.5. However, the magnitude of

the SENSE reconstructed experimental image (bottom left of Figure B.1) is severely affected

by incorporating more imaginary information into the coil sensitivities. The reconstructed

image shows unaliasing artifacts strong enough to render the magnitude image unusable.

The phase of the SENSE reconstructed experimental image (bottom right) also appears a
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little improved, like the simulated phase image, but has much less quality compared to the

BSENSE reconstructed phase image in Figure 5.5.

Figure B.1: SENSE simulated magnitude (top left) and phase (top right) reconstructed images
and SENSE experimental magnitude (bottom left) and phase (bottom right) reconstructed images
with the same coil information used for BSENSE.

These results in Figure B.1 show that SENSE relies on larger numbers of coil sensitivities

(Pruessmann et al., 1999) or close to perfect homogeneity between the coils, which is not
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realistic. This further indicates that BSENSE can more precisely reconstruct aliased images

with decreased temporal variance, increased SNR, and improved task detection compared

to SENSE with less information. By using the phase coil information that is not divided

by two, we maximize the results for the magnitude of the SENSE reconstruction technique.

Even with the maximized results for SENSE, they are still inferior to the BSENSE results

as exhibited in Sections 5.1.2, 5.1.5, and 5.2.2.

129



BIBLIOGRAPHY

Atkinson, D., Hill, D. L. G., Stoyle, P. N. R., Summers, P. E., and Keevil, S. F. (1997).
Automatic correction of motion artifacts in Magentic Resonance images using an entropy
focus criterion. IEEE Transactions on Medical Imaging 16, 903–910.

Bandettini, P., Jesmanowicz, A., Wong, E., and Hyde, J. S. (1993). Processing strategies
for time-course data sets in functional MRI of the human brain. Magnetic Resonance in
Medicine 30, 161–173.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B
57, 289–300.

Bruce, I. P., Karaman, M. M., and Rowe, D. B. (2011). A statistical examination of SENSE
image reconstruction via an isomorphism representation. Magnetic Resonance Imaging
29, 1267–1287.

Bruce, I. P., Karaman, M. M., and Rowe, D. B. (2012). The SENSE-Isomorphism Theo-
retical Image Voxel Estimation (SENSE-ITIVE) model for reconstruction and observing
statistical properties of reconstruction operators. Magnetic Resonance Imaging 30, 1143–
1166.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating
marginal mensities. Journal of American Statistical Association 85, 398–409.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 6, 721–741.

Genovese, C. R., Lazar, N. A., and Nichols, T. E. (2002). Thresholding of statistical maps
in functional neuroimaging using the false discovery rate. Neuroimage 15, 870–878.

Griswold, M. A., Jamob, P. M., Heidemann, R. M., Nittka, M., Jellus, V., Wang, J.,
Kiefer, B., and Haase, A. (2002). Generalized autocalibrating artially parallel acquisi-
tion (GRAPPA). Neuroimage 15, 870–878.

Hahn, A. D., Nencka, A. S., and Rowe, D. B. (2012). Enhancing the utility of complex-valued
functional magnetic imaging detection of neurobiological processes through postacquisition
estimation and correction of dynamic B0 errors and motion. Human Brain Mapping 33,
288–306.

130



Henkelman, R. M. (1985). Measurement of signal intensities in the presence of noise in MR
images. Medical Physics 12, 232–233.

Hyde, J. S., Jesmanowicz, A., Froncisz, W., Kneeland, J. B., Grist, T. M., and Campagna,
N. F. (1986). Parallel image acquisition from noninteracting local coils. Journal of Mag-
netic Resonance Imaging 70, 512–517.

Karaman, M. M., Bruce, I. P., and Rowe, D. B. (2014). A statistical fMRI model for
differential T2∗ contrast incorporating T1 and T2∗ of gray matter. Magnetic Resonance
Imaging 32, 9–27.

Karaman, M. M., Bruce, I. P., and Rowe, D. B. (2015). Incorporating relaxivities to more
accurately reconstruct MR images. Magnetic Resonance Imaging 33, 374–384.

King, K. F. and Angelos, L. (2001). SENSE image quality improvement using matrix regu-
larization. Proceedings of the 9th Annual Meeting of ISMRM page 1771.

Kornak, J., Young, K., Schuff, N., Du, A., Maudsley, A. A., and Weiner, M. W. (2010).
K-Bayes reconstruction for perfusion MRI. I: concepts and application. Journal of Digital
Imaging 23, 277–286.

Kumar, A., Welti, D., and Ernst, R. R. (1975). NMR Fourier zeugmatography. Journal of
Magnetic Resonance 18, 69–83.

Liang, Z. P., Bammer, R., Ji, J., Pelc, N. J., and Glover, G. H. (2001). Making better
SENSE: wavelet denoising, Tikhonov regularization, and total least squares. Proceedings
of the 10th Annual Meeting of the ISMRM page 2388.

Lin, F. H., Kwong, K. K., Belliveau, J. W., and Wald, L. L. (2004). Parallel imaging
reconstruction using automatic regularization. Magnetic Resonance in Medicine 51, 559–
567.

Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model. Journal
of the Royal Statistical Society, Series B 34, 1–18.

Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statistical Science 23,
439–464.

Liu, B., King, K., Steckner, M., Xie, J., Sheng, J., and Ying, L. (2009). Regularized sensi-
tivity encoding (SENSE) reconstruction using Bregman iterations. Magnetic Resonance
in Medicine 61, 145–152.

131



Logan, B. R. and Rowe, D. B. (2004). An evaluation of thresholding techniques in fMRI
analysis. Neuroimage 22, 95–108.

Nencka, A. S., Hahn, A. D., and Rowe, D. B. (2008). The use of three navigator echos in
Cartesian EPI reconstruction reduces Nyquist ghosting. Proceedings of the 16th Annual
Meeting of the ISMRM 3032,.

Ogawa, S., Lee, T. M., Nayak, A. S., and Glynn, P. (1990). Oxygenation-sensitive contrast
in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance
in Medicine 14, 68–78.

O’Hagan, A. (1994). Kendall’s Advanced Theory of Statistics, vol. 2B. Wiley, New York.

Pruessmann, K. P., Weiger, M., Scheidegger, M. B., and Boesiger, P. (1999). SENSE:
sensitivity encoding for fast MRI. Magnetic Resonance in Medicine 42, 952–962.

Rowe, D. B. (2005). Modeling both the magnitude and phase of complex-valued fMRI data.
Neuroimage 25, 1310–1324.

Rowe, D. B. and Logan, B. R. (2004). A complex way to compute fMRI activation. Neu-
roimage 23, 1078–1092.

Rowe, D. B., Meller, C. P., and Hoffmann, R. G. (2007). Characterizing phase-only fMRI
data with an angular regression model. Journal of Neuroscience Methods 161, 331–341.

132


	ABSTRACT
	ACKNOWLEDGEMENT
	LIST OF FIGURES
	Introduction
	Bayesian SENSE (BSENSE)
	Bayesian GRAPPA (BGRAPPA)
	Bayesian Fused GRAPPA/SENSE
	Reconstruction Results
	Discussion
	Coil Sensitivity and Residual Noise
	SENSE Coil Sensitivity Information
	BIBLIOGRAPHY

