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Abstract 

In fMRI, capturing brain activation during a physical task is dependent on how quickly volume 

k-space arrays are obtained. Acquiring full k-space arrays, which are reconstructed into images using 

the inverse Fourier transform (IFT), that make up volume images can take a considerable amount 

of scan time. Under-sampling k-space reduces the scan time, but results in aliased, or “folded,” 

images. GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) is a parallel imaging 

technique that yields full images from subsampled arrays of k-space. GRAPPA uses localized 

weights, which are estimated pre-scan and fixed over time, to fill in the missing spatial frequencies 

of the subsampled k-space. Here, we propose a Bayesian approach to GRAPPA (BGRAPPA) where 

prior distributions for the unacquired spatial frequencies, localized weights, and k-space 

measurement uncertainty are assessed from the a priori calibration k-space arrays. The prior 

information is utilized to estimate the missing spatial frequency values from the posterior and 

reconstruct into full field-of-view images. Our BGRAPPA technique successfully reconstructed a 

simulated, single slice image with no aliasing artifacts and stronger power of task detection. 
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1. Introduction 

 

1.1 Background 

Magnetic resonance imaging (MRI) is a type of medical imaging that creates images using 

magnetic fields. Functional (fMRI) was developed in the early 1990’s as a technique to 

noninvasively observe the human brain in action without exogenous contrast agents (Bandettini et 

al., 1993). This procedure examines brain activity by detecting changes in the blood oxygenation 

using the blood-oxygen-level dependent (BOLD) contrast (Ogawa et al., 1990). When a neuron 

fires, the BOLD contrast increases in the proximity of the neuron and is thus a correlate for neuronal 

firing. Measurements are arrays of complex-valued spatial frequencies called k-space (Kumar, 

Welti, and Ernst, 1975). These k-space arrays are then reconstructed into images using an inverse 

Fourier transform (IFT). The real and imaginary part of an IFT matrix is pre-multiplied with the real 

and imaginary part of the k-space array respectively. Then the transpose of the IFT is used to post 

multiply k-space with the respective real and imaginary parts to reconstruct the real and imaginary 

components of the brain image (Rowe, 2016). In fMRI, the magnitude and phase of the complex-

valued reconstructed images are generally utilized for analysis (Rowe and Logan, 2004; Rowe, 

2005). In fMRI, measuring full arrays of data for all the slices that form the volume image typically 

takes about one to two seconds, limiting the temporal resolution of the obtained images and 

potentially diminishing brain activity detection. With hundreds of volume images commonly used 

for a full fMRI time series, this acquisition time of full volume k-space arrays causes the overall 

scan time of the experiment to be considerable. A great deal of work has been dedicated to reducing 

the acquisition time of the in the MRI process by accelerating the number of images obtained per 

unit of time. Hyde et al. (1986), Pruessmann et al. (1999), and Griswold et al. (2002) all explore 

parallel imaging techniques to reduce the scan time in MRI. 

 

1.2 Previous Approach 
 Historically, a single channel coil receiver has been utilized in fMRI to measure full-sampled 

k-space data arrays. Reducing acquisition time is the primary goal of parallel imaging. More 



recently, the technology development focus has been to reduce acquisition time by measuring less 

data without losing the ability to form a full image. This can be accomplished by skipping lines in 

the k-space array, i.e. subsampling. To accomplish this, multiple receiver coils are utilized in parallel 

to obtain spatial frequency arrays which are reconstructed into coil-specific brain images. 

 

Skipping lines in k-space introduces what is called an acceleration factor. The acceleration 

factor indicates which lines of k-space data are measured. For example, with an acceleration factor 

of nA = 2, every other line horizontally in k-space is measured. Figure 1 shows the sequential pattern 

for a fully sampled k-space array (top left) compared to a subsampled k-space array with an 

acceleration factor of nA = 2 (top right). This acceleration factor will cause the reconstructed coil 

images to appear as if the image was folded over itself, because the Fourier transform cannot 

uniquely map the down sampled signals. We can see an example of this in the bottom left of Figure 

1 where the IFT of the subsampled k-space causes the brain image to be aliased. 

 

 
Figure 1: Full k-space array (top left), subsampled k-space array with nA = 2 

(top right), the acquired subsampled k-space array (bottom right), and 

aliased brain image (bottom left) after IFT of the subsampled k-space array. 

 

To obtain a full field of view (FOV) image, the unacquired spatial frequencies need to be 

estimated to have full coil k-space arrays. The full k-space arrays for each coil are averaged to yield 

a single, full spatial frequency array. Then, the averaged, full k-space array is inverse Fourier 

transformed into a full brain image. A common method that estimates the unacquired coil spatial 

frequencies is GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) and was 

introduced by Griswold et al. (2002). GRAPPA operates in the spatial frequency domain before the 

IFT utilizing localized weights to interpolate the missing values in each coil k-space array. GRAPPA 

has its deficiencies, such as low image quality, a low signal-to-noise ratio (SNR), and diminished 

task detection power with higher acceleration factors. We propose a Bayesian approach to GRAPPA 

that will incorporate prior information, yielding increased SNR and image quality, with improved 

task detection power. 

 

2. GRAPPA Technique 

 

2.1 Reconstruction Process 
As mentioned in Subsection 1.2, to measure less k-space data and still produce a full brain 

image, nC > 1 receiver coils must be utilized. The process for GRAPPA is exhibited in Figure 2 with 



an example of using nC = 4 coils. The machine acquires subsampled spatial frequency arrays for 

each of the four coils shown in the top left of Figure 2. The top middle of Figure 2 displays the 

subsampled k-space arrays as fully arrays with the black dots indicating the acquired spatial 

frequencies and the white dots indicating the unacquired spatial frequencies. The unacquired spatial 

frequencies are estimated using GRAPPA image reconstruction, displayed as the green dots in the 

top right of Figure 2. This yields full coil k-space arrays as shown in the bottom right of Figure 2. 

To get a single full spatial frequency array (bottom middle), the full coil spatial frequency arrays 

are averaged together. The full spatial frequency is then reconstructed into a single, full field-of-

view (FOV) brain image. 

 

 
Figure 2: Subsampled k-space coil arrays (top left) that are spread to show a full k-space array 

where the black dots are the acquired spatial frequencies, and the white dots are the unacquired 

spatial frequencies (top middle). The missing spatial frequencies are then estimated (green dots in 

the top right) yielding full coil k-space arrays (bottom right). The full coil k-space arrays are then 

averaged together to produce a full spatial frequency array (bottom middle) which is then 

transformed into a full brain image (bottom left) using the IFT. 

 

2.2 Model 
In GRAPPA, the complex-valued localized weights are estimated using pre-scan coil 

calibration spatial frequency arrays. These coil calibration k-space arrays are fully sampled coil 

spatial frequencies arrays that are collected prior to the actual fMRI experiment. Kernels of varying 

sizes can be used to estimate the weights, creating a system of linear equations. Figure 3 illustrates 

how a 2×1 kernel is utilized to estimate the weights from the full coil calibration spatial frequencies 

with a four-channel coil array. In Figure 3, all the complex-valued data points are acquired, but are 

treated differently depending on the location of the data point. The black data points, f
l
, are utilized 

as the “acquired” complex-valued spatial frequency values, the red points, f
calib

, are the complex-

valued calibration spatial frequency points, and the white points are ignored for the calculation of 

those weights. The white dots represent the spatial frequencies that would be unacquired during the 

fMRI experiment. 



 
Figure 3: Subsampled k-space coil arrays (top left) that are spread to show a full k-

space array where the black dots are the acquired spatial frequencies, and the white 

dots are the unacquired spatial frequencies (top middle). The missing spatial 

frequencies are then estimated (green dots in the top right) yielding full coil k-space 

arrays (bottom right). The full coil k-space arrays are then averaged together to 

produce a full spatial frequency array (bottom middle) which is then transformed into 

a full brain image (bottom left) using the IFT 

  

 The calibration points f
calib

 and the “acquired” spatial frequencies f
l
 along with the unacquired 

complex-valued weights, wc, create a system of linear equations as displayed in Figure 3 (bottom). 

From the linear equations, we can estimate the weights wc using Eq. 2.1, 

 wc
(ν)

 = f
calib

  (ν)  f
l

  (ν)H
(f

l

  (ν)
f
l

  (ν)H
)

-1

, ν = 1, …, K           [2.1] 

where wc ∈ ℂ nC×p is the complex-valued localized weights, f
calib

 ∈ ℂ nC×1 is the complex-valued 

calibration spatial frequencies, f
l
 ∈ ℂ p×1 is the “acquire” spatial frequencies, p = nCkrowskcols, krows 

is the number of rows in the kernel, kcols is the number of columns in the kernel H is the Hermitian 

or conjugate transpose, and K is the total number of unacquired spatial frequencies in the 

subsampled k-space array. The process is repeated for each spatial frequency point that would be 

unacquired during the actual fMRI experiment (the white dots in Figure 3), yielding different 

localized weights for each of the unacquired spatial frequencies. 

 

 Once the weights for each of the unacquired coil spatial frequencies are estimated from the 

calibration k-space arrays, those weights are then utilized to interpolate the unacquired spatial 

frequencies in the actual fMRI experiment. The GRAPPA model with the estimated weights 

becomes 

 f
ec

  (ν)
 = wc

  (v)
f
kc

  (v)
 + η

c
  (v),  ν = 1, …, K           [2.2] 

where f
ec

 ∈ ℂ nC×1 is the complex-valued interpolated spatial frequencies, f
kc

 ∈ ℂ p×1 is the complex-

valued acquired spatial frequencies, and η
c
 ∈ ℂ nC×1  is the additive complex-valued noise where 



η
c
 ~ N(0, τ2(1 + i)). The interpolated coil k-space values, f

ec
, are inserted in the respective locations 

of each coil yielding full coil k-space arrays, as shown in Figure 2 (top right). 

 

 With GRAPPA image reconstruction, however, the resulting reconstructed brain images can 

have diminished SNR which is culminated from either a decreased signal intensity, increased 

temporal noise variance, or a combination of the two. With an increase in the temporal noise 

variance, this can lead to reduced power in task detection as well. These deficiencies motivate our 

Bayesian approach, which will allow for a more automated method for image reconstruction without 

having to potentially store and use large matrices. Unlike GRAPPA, our Bayesian approach will 

utilize all valuable available prior information and provide full distributions for the unacquired 

spatial frequencies, localized weights, and the residual k-space variance. 

 

3. Bayesian Approach to GRAPPA 
 

 For our proposed Bayesian approach, we use a linear model like GRAPPA as expressed Eq. 2.2 

except the acquired spatial frequencies will be the f
ec

 variable instead of the f
kc

 variable. Then the 

weights, wc, and the unacquired spatial frequencies, f
kc

, along with the residual k-space variance, τ2, 

are treated as unknowns with prior distributions placed on them. We also use an isomorphic real-

valued representation of the linear GRAPPA model in Eq. 2.2 and is given by 
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f
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f
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where f
eR

 ∈ ℝ nC×1 and f
eI

 ∈ ℝ nC×1 are the real and imaginary components, respectively, of f
ec

, wR ∈ 

ℝ nC×1 and wI ∈ ℝ nC×1 are the real and imaginary components of wc, fkR
 ∈ ℝ p×1 and f

kI
 ∈ ℝ p×1 are 

the real and imaginary components, respectively, of f
kc

, η
R
 ∈ ℝ nC×1 and η

I
 ∈ ℝ nC×1 are the real and 

imaginary components, respectively, of η
c
. This equation is a latent factor model with complex 

values and can be more compactly written as f
e
 = wf

k
+η, where f

e
 ∈ ℝ 2nC×1, w ∈ ℝ 2nC×2p, f

k
 ∈ 

ℝ 2p×1, and η ∈ ℝ 2nC×1 are the real-valued isomorphic representations of f
ec

, wc, f
kc

, and η
c
 

respectively. 

 

 In this method, two different representations of the localized weights will be used. The first 

representation is the proper skew-symmetric design matrix w ∈ ℝ 2nC×2p as shown in Eq. 3.1. The 

second representation is W = [wR,  wI] which is used in the prior distribution and for parameter 

estimation of the localized weights. This is to ensure wR and wI are uniquely estimated for w and do 

not need to be duplicated. 

 

3.1 Data Likelihood, Prior, and Posterior Distributions 
 Like GRAPPA, we assume that the residual spatial frequency error is normally distributed in 

the real and imaginary components. So, the data likelihood for the acquired spatial frequencies for 

the nC coils is 

 P(f
e
 | w, f

k
, τ2) ∝ (τ2)−

2nC
2  exp[-

1
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We quantify available prior information about the unacquire spatial frequencies f
k
, the localized 

weights w, and the residual k-space variance τ2 with assessed hyperparameters. The unacquired 

spatial frequencies f
k
 are specified to have a normal prior distribution, as expressed in Eq. 3.3, since 

the real and imaginary components of fMRI data are assumed to be normally distributed (Lindquist, 

2008). The localized weights W are also specified to have a normal prior distribution (Eq. 3.4) and 

the k-space noise variance τ2 is specified to have an inverse gamma prior distribution (Eq. 3.5). 

 P(f
k
 | nk, fk0

, τ2) ∝ (τ2)−
2p

2  exp[-
nk

2τ2
(f

k
 - f

k0
)′(f

k
 - f

k0
)],          [3.3] 

 P(W | nw, W0, τ2) ∝ (τ2)−
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2  exp[-
nw

2τ2
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 P(τ2 | αk, δ) ∝ (τ2)−(αk+1) exp[-
δ

τ2
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where tr is the trace of the (W - W0)′(W - W0) matrix and the hyperparameters nk, fk0
, nw, W0, αk, 

and δ are assessed from the pre-scan calibration spatial frequencies. The joint posterior distribution 

of the unacquire spatial frequencies f
k
, the localized weights w, and the residual k-space variance τ2 

is 

 P(w, f
k
, τ2 | f

e
) ∝ P(f

e
 | w, f

k
, τ2) P(f

k
 | nk, fk0

, τ2) P(W | nw, W0, τ2) P(τ2 | αk, δ)         [3.6] 

with the distributions specified from Equations 3.2, 3.3, 3.4, and 3.5. 

 

3.2 Hyperparameter Assessment 
 The hyperparameters can be appropriately assessed in an automated way using the full pre-scan 

coil calibration spatial frequencies. For the BGRAPPA hyperparameter assessment, the same full 

calibration spatial frequencies and f
calib

= wf
l
 model are used like in GRAPPA reconstruction, but 

each spatial frequency point is treated differently than GRAPPA. As shown in Figure 4, the 

calibration spatial frequencies f
calib

 for BGRAPPA are in the location of the data points where the 

acquired spatial frequencies are in the actual fMRI experiment. For GRAPPA, these data points are 

assigned to the f
l
 variable in the f

calib
= wf

l
 model shown at the bottom of Figure 4. Using Eq. 2.1, 

this will result in the prior for the weights in BGRAPPA, W0, to be different than the estimated 

weights utilized in GRAPPA image reconstruction. The f
l
 points used for estimating the prior mean 

for the weights are assigned to be the prior mean of the unacquired spatial frequencies, f
k0

. 

 

 The hyperparameters nk and nw, which are the prior scalars of the prior means, are assessed to 

be the of calibration spatial frequencies ncal. The average residual k-space variance over the coil 

spatial frequency arrays is calculated to obtain a prior mean for the residual k-space variance τ0
2. The 

hyperparameters αk (shape parameter of the inverse gamma) and δ (scale parameter of the inverse 

gamma) are assessed to be αk = ncal – 1 and δ = (ncal – 1) τ0
2. This prior information is incorporated 

to estimate the unacquired spatial frequencies in the subsampled k-space arrays. 

 

 
Figure 4: Full calibration k-space arrays that indicate which data points are used as f

calib
 

points and the f
l
 points for GRAPPA (left) and BGRAPPA (right). 

 

3.3 Posterior Estimation 
 Using the posterior distribution in Eq. 3.6, the Maximum A Posteriori (MAP) estimate for the 

unacquire spatial frequencies f
k
, the localized weights w, and the residual k-space variance τ2 is 

estimated via the Iterated Conditional Modes (ICM) optimization algorithm (Lindley and Smith, 

1972; O’Hagen, 1994). Beginning with the prior means for each parameter as initial estimates, the 



ICM algorithm iterates over the parameters, calculating its posterior conditional mode until 

convergence at the joint posterior mode. The posterior conditional modes are 
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and Fk ∈ ℝ 2p×2 is a skew symmetric matrix representation of the unacquired spatial frequencies f
k
 

as expressed by 
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4. Simulation Study 

 

4.1 Non-task Spatial Frequency Data 

 A noiseless non-task image was used to create two series of 510 simulated full coil images for 

one slice to mimic real-world MRI experimental data. A noiseless task image was also used along 

with the noiseless non-task image was used to create a series of 510 simulated full coil images for 

one slice mimicking real-world fMRI data. The simulated task activation was designed to mimic 

tapping of the subject’s right fingers leading to activity in the left motor cortex which becomes our 

region of interest (ROI) for analyzing task detection in this experiment. Knowing this, artificial 

signal increase was added to the voxels in the ROI. With these three data sets, two separate 

experiments were run to test and compare BGRAPPA and GRAPPA. 

 

 For the first experiment, the last 𝑛𝑐𝑎𝑙 = 30 time points of the first non-task time series served as 

the calibration information utilized for hyperparameter assessment, and the second time series was 

used for simulating a subsampled non-task experiment. For the second experiment, the last 𝑛𝑐𝑎𝑙 = 30 

time points of the second non-task time series served as the calibration information utilized for 

hyperparameter assessment, and the task series was used for simulating a real-world fMRI 

experiment. The complex-valued non-task and task images were multiplied by a designed sensitivity 

map with nC = 8 coils. In real-world MRI experiments, the first few images of the time series have 

increased signal as the magnetization reaches a steady state. The first three images in the simulated 

series of images are appropriately scaled, based on the experimental data, replicating the increased 

signal. The series of images for both experiments were then Fourier transformed into full coil k-

space arrays. The time series of coil k-space arrays were simulated by adding separate N(0, 

0.0036nynx) noise, where ny and nx are the number of rows and columns, respectively, in the full k-

space array, to the real and imaginary parts of full coil k-space arrays, corresponding to the noise in 

real-world fMRI experimental data. To mimic the fMRI experiment, the first 20 time points of the 

second time series in both experiments were discarded leaving 490 time points of spatial frequency 

arrays for the single slice. The remaining 490 time points in the time series were subsampled by 

censoring lines in k-space according to an acceleration factor of nA = 3. 

 

4.2 Reconstruction Results 
 To analyze the reconstruction performance of BGRAPPA vs. GRAPPA, we first reconstructed 

subsampled coil spatial frequencies at one time point, giving us a single unaliased image for both 

methods. For this, we used the first time point of the 490 simulated non-task time series with an 

acceleration factor of nA = 3. Figure 5 shows the results of BGRAPPA (middle column) and 

GRAPPA (right column) for both magnitude (top row) and phase (bottom row) reconstructed 

images.  



 
Figure 5: Magnitude (top row) and phase (bottom row) of the BGRAPPA (middle 

column) and GRAPPA (last column) reconstructed images compared to the true 

simulated images (left column). 

  

 Compared to the magnitude of the true simulated (left column), the BGRAPPA image 

reconstructed had decreased noise inside and outside the brain which indicates a more accurate 

reconstruction. Figure 6 shows Mean Squared Error (MSE) for the BGRAPPA and GRAPPA 

magnitude images compared to the true magnitude image. For both inside the brain (“In” in Figure 

6) and outside the brain (“Out” in Figure 6), BGRAPPA has a noticeably smaller MSE compared to 

GRAPPA, further supporting a more accurate reconstructed image. The phase images for both 

methods closely resemble the true phase image shown in the bottom left of Figure 5. 

 

 
Figure 6: MSE for both inside and outside the brain 

for the BGRAPPA reconstructed magnitude image 

(red bars) and the GRAPPA reconstructed 

magnitude image (blue bars) when compared to the 

true simulated magnitude image. 

 

 Next, we analyzed the reconstruction of the entire non-task simulated time series from the first 

experiment with 490 time points and evaluated the temporal variance and the SNR for BGRAPPA 

and GRAPPA. In the left column of the Figure 7, we can see that the BGRAPPA (top row) had a 



markedly lower temporal variance compared to GRAPPA (bottom row). This led to noticeably 

higher SNR (middle column of Figure 7) in the BGRAPPA reconstructed time series (top row) over 

the GRAPPA reconstructed time series (bottom row). 

 

 As mentioned in the introduction, the primary goal of fMRI is to analyze brain activity. The 

second simulated experiment was set up to test both BGRAPPA and GRAPPA in their power to 

detect task activation. The right column of Figure 7 displays the results of task detection for 

BGRAPPA and GRAPPA, with the ROI outlined in green, using 5% false discovery rate (FDR) 

threshold procedure (Benjamini and Hochberg, 1995). When evaluating the task detection results in 

Figure 7, we can see that BGRAPPA captures majority of the active voxels in our ROI where 

GRAPPA only captures one voxel indicating BGRAPPA having a stronger power of task detection. 

 

 
Figure 7: Temporal variance (left column), SNR (middle column) and task detection (right 

column) results for both BGRAPPA (top row) and GRAPPA (bottom row). 

 

5. Discussion 

 

5.1 Overview 
 In this research, we formulated a Bayesian approach to GRAPPA parallel fMRI image 

reconstruction. Our proposed BGRAPPA method treats the unacquired spatial frequencies, the 

localized weights, and the k-space noise variance as unknowns and places prior distributions on 

these parameters. Our Bayesian approach also incorporates more valuable prior information in 

estimating the unacquired spatial frequencies. The simulated results indicated a more accurate 

reconstructed image, a decreased temporal variance, and higher SNR with BGRAPPA. The task 

detection results also showed remarkably stronger power of task detection with BGRAPPA over 

GRAPPA. 

 

 5.2 Future Work 
 Future work with testing our BGRAPPA method would include utilization of different number 

of calibration spatial frequencies and applying different acceleration factors to the subsampled fMRI 

time series. More work with the simulated data will also include analysis of correlation between 

voxels and the voxels they were previously aliased with. After exhaustive testing using the simulated 

data sets, BGRAPPA will be applied to experimental fMRI data and compared to GRAPPA along 

the way.  



References 

1.  Bandettini P, Jesmanowicz A, Wong E, Hyde J. Processing strategies for time-course data sets 

in functional MRI of the human brain. Mag. Res. Med 30:161–173, 1993. 

2.  Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. J. R. Stat. Soc. B, 57, 289 – 300, 1995. 

3. Griswold MA, Jamob PM, Heidemann RM, Nikkka M, Jellus V, Wang J, Kiefer B, Haase A. 

Generalized autocalibrating partially parallel acquisition (GRAPPA). Mag. Res. Med, 

47:1202–1210, 2002. 

4.  Hyde JS, Jesmanowicz A, Froncisz W, Kneeland JB, Grist TM, Campagna NF. Parallel image 

acquisition from noninteracting local coils.  J. Mag. Res, 70:512–517, 1986. 

5.  Lindley DV, Smith AFM. Bayes estimates for the linear model. J. R Stat. Soc. B, 34 (1):1–18, 

1972. 

6.  Lindquist, MA. The statistical analysis of fMRI data. Statistical Science 34, 1-18, 2008. 

7.  Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance 

image of rodent brain at high magnetic fields. Mag. Res. Med 14(1):68–78, 1990. 

8.  O’Hagan, A. Kendall’s Advanced Theory of Statistics. vol. 2B. Wiley, New York, 1994. 

9. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity Encoding for 

Fast MRI. Mag. Res. Med, 42:952–962, 1999. 

10. Rowe DB. Image Reconstruction in Functional MRI. In Handbook of Statistical Methods for 

Brain Signals and Images, Editors Ombao H, Lindquist M, Thompson W, Aston J. Chapman 

& Hall/CRC Press. p. 205-232, 2016.  

11. Rowe DB. Modeling both the magnitude and phase of complex-valued fMRI data. Neuroimage, 

25(4):1310–1324, 2005. 

12. Rowe DB, Logan BR. A complex way to compute fMRI activation. Neuroimage, 23:1078–1092, 

2004. 

 

 


