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Abstract 

In fMRI, capturing cognitive temporal dynamics is dependent on how quickly volume brain images are 
acquired. The sampling time for an array of spatial frequencies to reconstruct an image is the limiting factor 
in the fMRI process. Multi-coil SENSE image reconstruction is a parallel imaging technique that has greatly 
reduced image scan time. In SENSE image reconstruction, coil sensitivities are estimated once from a priori 
calibration images and used as fixed “known” coil sensitivities for image reconstruction of every 
subsequent image. This technique utilizes least squares estimation via the normal equation to evaluate voxel 
values in the reconstructed image. This method can cause difficulty in estimating voxel values if our design 
matrix is not positive definite. Here, we propose a Bayesian approach where prior distributions for the 
unaliased images, coil sensitivities, and uncertainty are assessed from the a priori calibration image 
information. Images and coil sensitivities are marginally estimated a posteriori via Iterated Conditional 
Modes algorithm and Markov chain Monte Carlo using Gibbs sampling. In addition, variability estimates 
and hypothesis testing is possible. This Bayesian SENSE (BSENSE) model utilizes prior image information 
to reconstruct images from the posterior distribution and is applied to simulated and experimental fMRI 
data. This BSENSE model sufficiently reconstructed a single slice image and a series of images without 
any artifacts from the simulated data and was replicated with magnitude-only task activation. 

1. Introduction 

1.1 Background 

Magnetic Resonance Imaging (MRI) is a type of medical imaging device that creates internal anatomic 
body images using strong magnetic fields. Functional Magnetic Resonance Imaging (fMRI) was developed 
in the early 1990’s as a technique to noninvasively observe the human brain in action (Bandettini et al, 
1993). This procedure analyzes brain activity by detecting changes in the blood oxygenation using the 
blood-oxygen-level dependent (BOLD) contrast (Ogawa et al., 1990). When a neuron fires, the blood 
oxygenation changes in the proximity of the neuron and is thus a correlate for neuronal firing. In MRI, the 
machine does not directly measure voxel values and images. Measurements from the machine are arrays of 
complex-valued spatial frequencies called k-space (Kumar et al., 1975). Measuring full arrays of data for 
all the slices that shape the volume image typically takes about one to two seconds. These k-space values 
are then reconstructed into images using an inverse Fourier transform (IFT). The acquisition of k-spaces 
can take a considerable amount of time in the MRI process. A great deal of work has been dedicated to 
reducing the scan time of the MRI process by accelerating the number of images acquired per unit of time 
from its initial postulation. Hype et al., Pruessmann et al., and Griswold et al. all explore parallel techniques 
to reduce the scan time in MRI. 
1.2 Previous Approaches 

Historically, a single channel coil receiver has been utilized in fMRI to measure full-sampled k-space 
data arrays. Along with parallel utilization of multiple receiver coils, parallel imaging techniques began 
subsampling lines in-plane by skipping lines of k-space for an image, causing the reconstructed coil images 
to be aliased. GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) is a parallel imaging 
technique, introduced by Griswold et al., that operates on the subsampled k-space prior to the IFT. In 1999, 
Pruessmann et al. introduced SENSitivity Encoding (SENSE), another parallel imaging technique, which 
operates on the aliased images after the IFT. Both are major parallel imaging techniques developed to 
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unalias in-plane aliased images. The purpose of this research is to introduce a formal Bayesian approach to 
SENSE image reconstruction. The SENSE method uses simple linear regression with a fixed design matrix 
and unobserved parameters, which would be the unaliased voxel values, to model the data from the aliased 
reconstructed images. The unaliased voxels are estimated using the normal equations for the least squares 
solution. This approach for parameter estimation can be difficult because the design matrix, generally, is 
ill-conditioned which means it is not always positive definite. This becomes the motivation for a Bayesian 
approach, which will allow for a more general method for parameter estimation. 
1.3 Overview 

The second section of this paper will discuss the methods of this research. It will start with a general 
background in SENSE building up from a single-coil full-sampled k-space to a multi-coil sub-sampled k-
space and discuss the complex-valued nature of the problem. This will lead into our approach and the 
mathematics behind the two Bayesian models. Section 3 will derive the assessment of the hyperparameters 
in our models, illustrate the simulated fMRI data for a single slice non-task image, and show the results for 
both models. Section 4 will look at the simulated results from a series of non-task images. In section 5, we 
will introduce task activation and cover simulated single slice results for both models. We will finish up in 
section 6 with an overview of the paper and a discussion of future work.  

2. Methods 

2.1 SENSE 

To motivate our proposed approach, in this section we first consider single-coil full k-space inverse 
Fourier transform image reconstruction. Then the multi-coil full-sampled k-space IFT image reconstruction 
with SENSE image combination, and finally multi-coil sub-sampled k-space with SENSE image 
combination. 
2.1.1 Single-Coil Full-Sampled k-Space Image Reconstruction 

A single coil channel is shown in Figure 2.1 (left) with the k-space data being measured in a zig-zag 
fashion from left to right and bottom to top with turn around points at the end of each row 
(right side of Figure 2.1) omitted, thus creating a two-dimensional grid of spatial frequencies. Each 

  
Figure 2.1: Single channel coil (left) and k-space zig-zag coverage (right). 

point in the k-space contains spatial frequency and phase information about every pixel in the final 
reconstructed image meaning that the k-space is not one-to-one with the final image. 

Since the k-space is complex-valued, as depicted in Figure 2.2 (column 2), there is a real part (first row) 
and an imaginary part (second row). An inverse Fourier transform matrix is depicted in Figure 2.2 (column 
1) to illustrate the pre-multiplication of the k-space with a real part (first row) and an imaginary part (second 
row). The real part of the IFT matrix is a graphical depiction of the cosine waves at different frequencies,  
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Figure 2.2: Inverse Fourier transform image reconstruction of a complex-valued k-space 
array to a complex-valued image (first and second row). Inverse Fourier transform image 
reconstruction of a complex-valued k-space array to a magnitude and phase image (third 
and fourth row). 

and the imaginary part of the IFT matrix is a graphical depiction of the sine waves at different frequencies. 
Then the transpose of an IFT, depicted in Figure 2.2 (column 3), is used to post-multiply the k-space with 
a real part (first row) and an imaginary part (second row). The third (real parts) and fourth (imaginary parts) 
rows in Figure 2.2 display the same process expressed above with IFT in column 1, the k-space in column 
2, and the transpose of the IFT in column 3. This results in a reconstructed image (column 4) with a real 
part (first row) and an imaginary part (second row). Since the magnitude (row 3, column 4) and the phase 
(row 4, column 4) of the reconstructed images are generally observed for fMRI analysis, they are also 
shown in Figure 2.2. This is simply a conversion to polar coordinates from Cartesian coordinates in the 
complex plane. Since our voxel values are complex, it forms a vector on a Cartesian grid with the real part 
indicating the length in the x-direction and the imaginary part indicating the length in the y-direction. 
Converting to polar coordinates would give us the magnitude (the length) and the phase (the angle) of the 
voxel vector. For this research, the concentration will be on Cartesian k-space sampling, with the conversion 
to polar coordinates used for depiction purposes. A series of these reconstructed images is produced while 
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the subject is performing a task and either the magnitude alone can be utilized for activation (Bandettini et 
al, 1993) or both the magnitude and phase (Rowe and Logan, 2004, and Rowe, 2005). In magnitude-only 
activation, we discard phase information which means we only analyze the change in length of the voxel 
vector. For magnitude and phase activation, we analyze the change in length and angle of the voxel vector. 
For this paper, we will focus on magnitude-only task activation. 
2.1.2 Multi-Coil Full-Sampled k-Space Image Reconstruction 

Instead of one coil receiver being used to acquire data to produce image slices, multiple coil arrays can 

be employed. An example of this is illustrated in Figure 2.3 (left) with 4Cn =  coil receivers. Increasing 
the number of sensitivity coils can provide better quality images and accelerates the acquisition of the 
images. Each of the four coils can measure a full-sampled k-space array as shown in Figure 2.3 (right) 
similar to how the k-space is sampled for a single coil.  

  

  Figure 2.3: Four channel coil (left) and k-space zig-zag coverage (right). 
Each local receiver coil possesses a depth sensitivity profile that is related to its size measuring a 

different sensitivity weighted version of the true slice. This means that each coil can only “see” parts of the 
object with a particular depth that gets weaker as we move farther from the coil. This is referred to the depth 
sensitivity profile which depends on the size of the coil and its location. In Figure 2.4 (middle center) is a 
true slice image with a particular voxel v indicated with a red circle. The depth sensitivity profile for coil 1 
is given in Figure 2.4 (top) with unobserved voxel value v from the true slice and its unobserved coil 
sensitivity 1S  which is the weight that determines how strongly v shows in coil 1. Both 1S and v are scalars. 
Coil 1 measures a k-space array that, after inverse Fourier transformation, is the true image point-wise 
multiplied by the sensitivity profile for coil 1, 1 1a S v=  as in Figure 2.4 (top right) where 1a  is the scalar 
weighted voxel value (observed coil measurement). This is the same process for the other three coils with 
coil 2, 2 2a S v= , in the bottom right of Figure 2.4, coil 3, 3 3a S v= , in the bottom left of Figure 2.4, and 

coil 4, 4 4a S v= , in the top left of Figure 2.4. 

The 4Cn =  coil measurements create a system of equations which can be expressed as Eq. 2.1 where 

1 2 3 4[ , , , ]'a a a a a=  is a 1Cn   vector of the observed coil measurements, 1 2 3 4[ , , , ]'S S S S S=  is a 1Cn 

vector of the unobserved coil sensitivities, and v  is the scalar unobserved true slice voxel value. 
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   

              [2.1] 

If we are able to obtain coil sensitivities estimate S , we can use the normal equation to obtain a least 
squares estimate of the true slice voxel v from Eq. 2.2. This process is repeated for each voxel in the image. 

 
Figure 2.4: True slice image along with coil sensitivity profiles and sensitivity weighted true 
images. 
 

1( ' ) 'v S S S a−=                [2.2] 
 

2.1.3 Multi-Coil Sub-Sampled k-Space Image Reconstruction 

As mentioned before, the goal is to accelerate the number of images acquired per unit of time. An intuitive 
solution to obtaining this goal is to travel faster through the k-space. However, according to Pruessmann et 
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al., physiological, and technical limitations of doing such have already been reached. Another idea is to 
measure less data and without losing the ability to form a full image. This can be accomplished by skipping 
lines in the k-space and not measuring the corresponding data values which under-samples, or sub-samples, 
the k-space. Skipping lines in the k-space introduces what is called an acceleration factor, or reduction 
factor. The acceleration factor indicates which lines of data in the k-space are measured and how many lines 
are skipped in k-space data acquisition. As shown in Figure 2.5 (right), with an acceleration factor of 3An =
, every third line horizontally in the k-space is measured by skipping every two lines in the k-space. This 
acceleration factor will cause the reconstructed coil images to appear as if the full image was cut into three 
equal horizontal strips that are summed together. This happens because the Fourier transform cannot 
uniquely map the insufficiently sampled signals. 

  
  Figure 2.5: Four channel coil (left) and k-space zig-zag coverage (right). 

Each local receiver coil, again, possesses a depth sensitivity profile that is related to its size measuring 
a different sensitivity weighted version of the true slice. In Figure 2.6 (middle center) is a true slice image 
with 3An = voxels 1v , 2v , 3v  in corresponding locations relative to each strip.  

Coil 1 measures a rectangular k-space array that after inverse Fourier transform reconstruction produces 
an aliased rectangular image that is the sum of three horizontal strips of the full true image as in Figure 2.6 
(top right). In Figure 2.6 (top right) the true aliased image is the point-wise multiplication of the given voxel 
by the sensitivity profile for coil 1 summed for the three strips, 1 11 1 12 2 13 3a S v S v S v= + +  where 11S , 12S , 

and 13S  are the scalar weights that determines how strongly 1v , 2v , 3v , respectively, show in coil 1 and 1a  
is the scalar weighted voxel value (observed coil measurement). Shown in Figure 2.6, this is the same 
process for the other three coils with coil 2 (bottom right) 2 21 1 22 2 23 3a S v S v S v= + + , coil 3 (bottom left) 

3 31 1 32 2 33 3a S v S v S v= + + , and coil 4 (top left) 4 41 1 42 2 43 3a S v S v S v= + + . Similar to Eq. 2.1, the 4Cn =  
coil measurements create a system of equations which can be expressed as Eq. 2.3. 
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            [2.3] 

 

 
1337



 
Figure 2.6: True slice image along with coil sensitivity profiles and sensitivity 
weighted true aliased images. 

Where 1 2 3 4[ , , , ]'a a a a a=  is a 1Cn   vector of the observed coil measurements, 

11 21 31 41 12 22 32 42 13 23 33 43[[ , , , ]',[ , , , ]',[ , , , ]']S S S S S S S S S S S S S=  is a C An n  matrix of the unobserved coil 

sensitivities, and 1 2 3[ , , ] 'v v v v=   is a 1An   vector of the unobserved true slice voxel values. If we are able 

to obtain an estimate of the coil sensitivities S , we can obtain a least squares estimate of the An  true slice 
voxel values v  from Eq. 2.2. This process is repeated for each voxel in the aliased image. 
2.1.4 Complex-Valued SENSE Image Reconstruction 

We now consider a complex-valued version of the scenarios described in the previous subsections, as 
our goal is to analyze both the magnitude and phase information produced by the MRI scanner. Continuing 
the use of 4Cn =  receiver coils shown in Figures 2.3 and 2.5 (left), the depth sensitivity profiles for each 
coil is complex-valued and not real-valued. So, each coil measures complex-valued weighted sensitivities 
of the true image slice depending on the location and size of the coil. Figure 2.7 shows the complex-valued 
image slices with 4Cn =  coils (top, bottom, left, right) and their respective depth sensitivity to the true 
image slice (the four corners of the figure) like the illustration of Figure 2.4. A true image slice is displayed 
in Figure 2.7 (middle center) with a particular voxel R Iv v iv= + , where i  is the pure imaginary unit, 
indicated by red circles. The depth sensitivity profile for coil 1 is given in Figure 2.7 (top) with sensitivity 

1 1 1R IS S iS= +  for voxel R Iv v iv= + . Coil 1 measures a k-space array that, after inverse Fourier 
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transformation, is the true image point-wise multiplied by the sensitivity profile for coil 1. That is, 

1 1 1 1( )( )R I R I R Ia ia S iS v iv+ = + +  or 1 1a S v=  shown in Figure 2.7 (top right) where 1a , 1S , and v  are 
complex scalars. Shown in Figure 2.7, the process is repeated for coil 2 (bottom right), coil 3 (bottom left), 
and coil 4 (top left) with the respective equations in Eq. 2.4. 

( )( )
( )( )
( )( )
( )( )

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

R I R I R I

R I R I R I

R I R I R I

R I R I R I

a ia S iS v iv

a ia S iS v iv

a ia S iS v iv

a ia S iS v iv

+ = + +

+ = + +

+ = + +

+ = + +

            [2.4] 

The 𝑛𝑐 = 4 coil measurements create a system of equations which can be expressed as Eq. 5, which 
becomes the complex-valued version of Eq. 2.1. In Eq. 2.5, the a’s are observed, and the S’s and v’s are 
unobserved. 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

+ +   
   + +
   = +
   + +
   
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R I R I

R I R I
R I

R I R I

R I R I

a ia S iS
a ia S iS

v iv
a ia S iS
a ia S iS

                                                                                        [2.5] 

An equivalent representation of Eq. 2.5 is 
1 1 1
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Figure 2.7: True slice complex-valued image along with complex-valued coil sensitivity profiles 
and complex-valued sensitivity weighted true images. 
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Eq. 2.5 can be more compactly written as a Sv= where a  is 2 1Cn  , S  is 2 2Cn  , and v  is 2 1 . If 

we are able to obtain an estimate of the coil sensitivities S , we can obtain a least squares estimate of the 

An  true slice voxel values v  from Eq. 2.2. This process is repeated for each voxel in the image. 
Since our objective is to accelerate the number of slices acquired per unit of time, we want to skip lines 

of the k-space for each image as shown in Figure 2.5 (right). Again, skipping lines in the k-space induces 
an acceleration factor. As mentioned in the previous subsection, the acceleration factor will cause the 
reconstructed coil images to appear as if the full image was cut into three equal horizontal strips that are 
summed together. This will apply to both the real and imaginary parts of the complex-valued true slice 
images as shown in Figure 2.8 (middle center). In Figure 2.8 (top right) the aliased image is the point-wise 
multiplication of the given voxel by the sensitivity profile for coil 1 summed for the three strips. The linear 
equations for the real component and the imaginary component are expressed in Figure 2.8 (top right). This 
process is repeated for coil 2 (bottom right), coil 3 (bottom left), and coil 4 (top left), displayed in Figure 
2.8, with the respective real and imaginary equations. 

 
Figure 2.8: True slice image along with coil sensitivity profiles and sensitivity weighted true aliased 
images. 

The 4Cn = coil measurements create a system of equations which can be expressed in matrix form as 
shown in Eq. 2.7, where the a’s are observed coil measurements, the S’s are unobserved coil sensitivities, 
and the v’s are unobserved true slice voxel values. 
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This equation is a latent variable model similar to factor analysis but complex-valued and can be more 
compactly written as a Sv= where a  is 2 1Cn  , S  is 2 2C An n , and v  is 2 1An  . We can obtain a least 

squares estimate of the An  true slice voxel values 𝑣 from Eq. 2.2 if we are able to estimate the coil 

sensitivities S . This process is repeated for each voxel in the aliased image. It is important to note that 

( ' )S S  is not always positive definite which can cause estimating the reconstructed voxel values to be 
difficult. 
2.2 Bayesian Approach to SENSE (BSENSE) 

For the Bayesian approach, two different models of the aliased coil measurements will be discussed. 
The first model will not include coil covariance between each of the coils or voxel covariance between the 
aliased voxels. The second model will incorporate coil covariance and aliased voxel covariance. For model 
one, the assumption is that there is no correlation between each of the sensitivity coils or between the voxels 
that were overlapping before the unaliasing of the reconstructed image. Model two will allow for potential 
correlation between the coils and correlation between the aliased voxels. Both models observe the aliased 
voxels with error. That is a Sv = +  where a  is 2 1Cn  , S  is 2 2C An n , v  is 2 1An  , and   is 2 1Cn 

. The difference between the models is the assumption of the measurement error. For the first model, the 
error is 2

2~ (0, )
CnN I  , and for the second model, the error is 2~ (0, )N I  . The   is the 

covariance matrix for the Cn  coils. The covariance matrix for the aliased voxels   in model 2 is analyzed 

in the prior distributions of the sensitivity coils S  and the unobserved voxel values v . Two different 
representations of the coil sensitivities will be used. In the first S is 2 2C An n  as presented in Eq. 2.7 is 

necessary for the proper representation of complex-valued multiplication while in the second S  is 
2C An n  as shown in Eq. 2.12 so as to only place a prior distribution on each element once. The second 

representation ensures the proper skew symmetry of the a posteriori estimated sensitivities. 
2.2.1 Model One: Data Likelihood, Prior and Posterior Distributions  

The likelihood distribution for the measurements become 
2

22 2
2

1( | , , ) ( ) exp ( ) '( )
2

nc

P a S v a Sv a Sv 


−  
 − − − 

 
          [2.8] 

where a is the observed aliased coil image measurements, S  is the unobserved coil reception sensitivities,
v  is the unobserved true image slice voxel values, and 2 is the unobserved image noise variance. 

From the likelihood distribution, we can quantify available prior information about the unobserved 
parameters S , v , and 2  with assessed hyperparameters of prior distributions. The coil sensitivities S  
represented as S  and the voxel values v  are specified to have normal distributions and the noise variance 

2  is specified to have an inverse gamma distribution i.e., 
2

22 2
0 0 02( | , , ) ( ) exp [( ) '( )]

2
n nc A S

S
nP n tr 


−  
 − − − 

 
S S S S S S         [2.9] 
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 
       [2.10] 
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   


− +  
 − 

 
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with hyperparameters Sn , 0S , vn , 0v , α, and β to be assessed from the initial calibrated images. In Eq. 

2.9, S  is 2C An n as expressed in Eq. 2.12 

13 1311 12 11 12

23 2321 22 21 22

31 32 31 3233 33

41 42 41 4243 43

R IR R I I

R IR R I I

R R I IR I

R R I IR I

 
 
 =
 
 
 

S SS S S S

S SS S S S
S

S S S SS S

S S S SS S

        [2.12] 

By combining the likelihood distribution and the prior distributions, the posterior distribution of the coil 
sensitivities S  (or S ), the true slice voxel values v , and the noise variance 2  is 

 
2 2 2 2 2

0 0( , , | ) ( | , , ) ( | , , ) ( | , , ) ( | , )S vP v a P a S v P n P v n v P      S S S     [2.13] 
 

with the distributions specified from Equations 2.10, 2.11, 2.12, and 2.13. 
2.2.2 Model One: Parameter Estimation 

Using the posterior distribution in Eq. 2.13 with the priors described in Equations 2.9, 2.10, and 2.11 
along with the likelihood distribution in Eq. 2.8, two techniques are used to estimate the unobserved 
parameters S , v , and 2 : Maximum A Posteriori (MAP) estimation using the Iterated Conditional Modes 
(ICM) optimization algorithm (Lindley and Smith, 1972) and a Markov Chain Monte Carlo (MCMC) Gibbs 
sampler (Geman and Geman, 1984). Starting with initial estimates of each parameter, ICM iterates over the 
parameters calculating its conditional mode, and converges to a local maximum of the joint posterior 
density. The modes for the parameters for the MAP estimates using the ICM algorithm are 

1
0 2

ˆ ( ' )( ' )
AS S nS av n S vv n I −= + +           [2.14] 

1
2 0ˆ ( ' ) ( ' )

Av n vv S S n I S a n v−= + +          [2.15] 

2 0 0 0 0( ) '( ) ( ) '( ) [( )( )]ˆ
2(2 2 2 1)

v S
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a Sv a Sv n v v v v n tr S S S S
n n n n






− − + − − + + − −
=

+ + + +
     [2.16] 

It can be shown that the full conditional distributions of each parameter S , v , and 2  for the MCMC 
Gibbs sampler are given by 

 
2 1 2 1

2 0 2ˆ| , , ~ ( ( ' ) ( ' ), ( ' ) )
A Av n v v nv S a N v S S n I S a n v S S n I − −= + + +     [2.17] 

2 1 1
0 2 2

ˆ| , , ~ ( ( ' ' )( ' ) , , ( ' ) )
A c AS S n n S nv a MN C n CC n I I CC n I − −= + + +S S a S     [2.18] 

2
* *| , , ~ ( , )v S a IG              [2.19] 

where C is 2 2An   voxel values as expressed in Eq. 2.20, * C A C An n n n = + + ,

* 0 0 0 00.5[( ) '( ) ( ) '( ) (( - )( - ) ') 2 ]v Sa Sv a Sv n v v v v n tr = − − + − − + +S S S S , and a  is 2Cn 

observed coil measurements having the real part in the first column and the imaginary part in the second 
column as such [ , ]R Ia a . 
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            [2.20] 

The Gibbs sampler begins with initial values for S  and v . 
 
2.2.3 Model Two: Data Likelihood, Prior and Posterior Distributions 

The data likelihood for the second model becomes 
2

12
2

1( | , , ) exp ( ) '( ) ( )
2

P a S v a Sv I a Sv− − 
   − −  − 

 
      [2.21] 

where a  is the observed aliased coil image measurements, S  is the unobserved coil reception sensitivities, 
v  is the unobserved true slice image voxel values, and   is the unobserved coil covariance. With this 
model, we specify  that the coil covariance is the same for real part and the imaginary part with no 
correlation between the real and imaginary parts. In SENSE image reconstruction (Pruessmann et al., 1999), 
when   is estimated from complex-valued data, the covariance matrix is reformatted such that the real 
part and imaginary part have the same covariance structure. For cross-dependency, we will work under the 
assumption that there is no correlation between the real and imaginary parts.  

Along with induced coil covariance in the data likelihood distribution, coil covariance must also be 
incorporated in the prior distribution of the coil sensitivities S . Pruessmann et al. clarifies that unfolding 
can cause artifacts in the final reconstructed image which means there is potential covariance between the 
aliased voxels from the unaliasing process. In Figure 2.8 (middle center) shows three voxels (red, blue, and 
green circles) that are in a particular column and the same row of each of the strips. When the strips are 
folded together, those three voxels will be in the same row and column in the aliased images. Once the 
image is reconstructed and unfolded, there could be an induced correlation between those three voxels from 
the unaliasing process. This voxel covariance becomes an unobserved parameter that needs to be estimated. 
The prior distributions incorporating both coil covariance and voxel covariance are 

( ) ( )( )
2
2

0 0 2 0
1( | , ) exp '
2

P v v v v I v v−  
   − −  − 

 
       [2.22] 

( )( )( )
2

1 12 2
0 0 2 0

1( | , , ) exp '
2

cA nn

P tr I− − − −       −  −  −   
S S S S S S     [2.23] 

( )1 1
12

1
1( | , ) exp
2

An

P tr



+ +

− − 
    −   

 
        [2.24] 

( )2 1
12

2
1( | , ) exp
2

cn

P tr



+ +

− − 
    −   

 
        [2.25] 

where v  is 2 1An  , S  is 𝑛𝑐×2𝑛𝐴,   is A An n  , and   is C Cn n  and hyperparameters 0S , 0v , 1 , 

and 2  to be assessed from initial calibration images. 
By combining the likelihood distribution and the prior distributions, the posterior distribution of the 

coil sensitivities S , the true slice voxel values v , the voxel covariance  , and the coil covariance   is 
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0 0 1 2( , , , | ) ( | , , ) ( | , ) ( | , , ) ( | , ) ( | , )P v a P a S v P v v P P P           S S S    [2.26] 
with the distributions specified from Equations 2.21, 2.22, 2.23, 2.24, and 2.25. 
2.2.4 Model Two: Parameter Estimation 

Using the posterior distribution in Eq. 2.26 with the priors described in Equations 2.22, 2.23, 2.24, and 
2.25, and the likelihood distribution in Eq. 2.21, a Gibbs sampler is used to estimate the unobserved 
parameters S , v ,  ,  . It can be shown that the full conditional distributions of each parameter S , v , 
 ,  are given in Equations 2.27, 2.28, 2.29, and 2.30. 

1 1 1 1 1
0 2 2 2 2 0

1 1 1
2 2

ˆ| , , , , ~ ( ( '( ) ) ( '( ) ( ) ),

( '( ) ( ) )

v a S v N v S I S I S I a I v

S I S I

− − − − −

− − −

  =  +   + 

 + 
   [2.27] 

1
0 2

ˆ| , , , , ~ ( , ( ' ))h a v S N h CC I −   +          [2.28] 

| , , , ~ ( , )a v S IW                [2.29] 

| , , , ~ ( , )a v S IW               [2.30] 

where   and   follow inverse Wishart distributions, ( )h vec= S , ( )h vec= S   where 
1 1 1

0 2 2( ' ' ( ))( ' )C I CC I− − −= +  + S a S , 1
0 0 0 2 0( )( ) ' ( ) '( )( )v v v v S S I S S−

 = − − + −  − + , 

1 2An  = + + , 2 2C An n  = + + + , 1
0 2 0( )( ) ' ( )( )( ) 'B B I −

 = − − + −  − +a S a S S S S S , 

X is 2 C An n where the real part of S  is stacked on top of the imaginary part, and B  is 2 2An  voxel 
values as expressed in Eq. 2.31 
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B
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 
 
 
 

=  
 
 
 
  

            [2.31] 

The Gibbs sampler begins with initial values for S , v , and  .  
3. Simulated Single Slice Image Results 

3.1 Hyperparameter Assessment 

Prior to an fMRI experiment, a short non-task based set of 30caln =  full k-space volume images for 

the Cn  coils can be obtained similar to Figure 2.7. These “calibration” images can be utilized to assess the 

hyperparameters of the prior distributions for the parameters. These caln  calibration images can be averaged 

as in Figure 3.1. The root sum of squares in each voxel is computed from these 4Cn =  complex-valued 

coil images for an initial magnitude 0Mv  of the prior mean as in Eq. 3.1. 
1/ 22 2 2 2 2 2 2 2

0 1 1 2 2 3 3 4 4 = + + + + + + + M R I R I R I R Iv a a a a a a a a           [3.1] 
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Due to the nonuniform coil coverage, an adjustment must be made to the center of the image. The initial 
prior mean magnitude in Figure 3.2 (left) is pointwise multiplied (Hadamard product, ) by a Gaussian 
hill, as expressed in Eq. 3.2 and shown in Figure 3.2 (middle), to account for this nonuniformity as in Figure 
3.2 (right) for a revised 0Mv . 

2 21( , ) 1.1 .4 exp ( / 2 1) ( / 2 1)
2 xy xy

xy

h x y x n y n
n

  
 = +  − − − + − −  

  

        [3.2] 

In Eq. 3.2, xyn equals number of rows or the number of columns in the image. 

 
Figure 3.2: Point-wise adjustment for the magnitude of the prior voxel mean image. 

The 𝑛𝑐 complex-valued averaged calibration images in Figure 3.1 are pointwise divided by the 
magnitude of the prior mean in Figure 3.2 (right) in order to arrive at the prior mean for the real-imaginary 
coil sensitivities in Figure 3.3 (top section) with magnitude-phase in Figure 3.3 (bottom section). The 
hyperparameters Sn  and vn  were set to be the number of calibration images  

 
Figure 3.1: Average of m real and imaginary calibration images for the NC coils. 
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Figure 3.3: Prior mean for coil sensitivities. 

30caln = . The average residual variance over the voxels of the calibration images was evaluated to be 
2
0 1.005 = . The α hyperparameter was set to be ( 1)caln = −  and β to be ( 1)caln = − for simplicity 

reasons. Bruce (13) evaluated an estimate for coil covariance   which was used as an initial estimate for 
this research. 
3.2 Posterior Unaliased Image Results for Model One 

A single image was generated for 4Cn = coils by adding 2(0, )N   noise to the noiseless coil images 
in Figure 2.8. The derived aliased noisy coil images are shown in Figure 3.4 and used to demonstrate the 
use of BSENSE. Figure 3.5 displays the true magnitude, phase, real part, and imaginary part of the image. 
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Figure 3.4: Simulated observed noisy coil images for one time 
point in an fMRI experiment. 

Using the observed aliased coil images in Figure 3.4, the model that does not incorporate coil 
covariance or voxel covariance, and the associated hyperparameters, the MAP BSENSE unaliased images 
were estimated using ICM and displayed in Figure 3.6. 

For the MCMC Gibbs sampling technique, the total number of iterations used was 10,000L = with a 

2500burn = . The initial values for S  and v  were used to generate a 2  value, initializing the Gibbs 
sampler. This technique, again, used the observed aliased coil images in Figure 3.4, the first model, and the 
associated hyperparameters to estimate the voxel values for the image reconstruction. The estimated voxel  

 
Figure 3.6: MAP BSENSE unaliased images magnitude (left), phase (left middle), real part (right 
middle), and imaginary part (right) 

 
Figure 3.5: The true images magnitude (left), phase (left middle), real part (right middle), and imaginary 
part (right) 
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values v  of the last 7500M =  iterations in the Gibbs sampler were averaged and unaliased to form the 
images shown in Figure 3.7. The reconstructed images appear to be very similar to the true image slice. 

 We can see that the MAP estimates using the ICM algorithm and the MCMC Gibbs sampler 
for BSENSE image reconstruction produces similar outputs with each other, providing images with no 
aliasing artifacts. Along with taking the means of the voxels, the Gibbs sampling algorithm also allows us 
to look at the variances of the voxels. Calculating the variance of the voxels follows the same process as 
calculating the mean of the voxel values. The variance of each voxel is calculated using the last 7500M =
iterations of the Gibbs sampler with the variance images displayed in Figure 3.8. 

 
Figure 3.8: MCMC Gibbs sampling BSENSE unaliased variance images with magnitude on the left, 
phase in the middle left, real in in the middle right, and imaginary on the right. 

The magnitude (left), real (middle right), and imaginary (right) variance images are scaled from 0 to 
0.05 and the phase (middle left) variance image is scaled from 0 to 1. The lighter the color in the images in 
Figure 3.8, the higher the variance. The variance of the magnitude in Figure 3.8 shows that it is dependent 
on whether the voxel is inside the brain. It also indicates low voxel variance which narrows the statistical 
deviation of the estimated voxel value from the Gibbs sampling technique. The low phase variance inside 
the brain indicates little change between the angles of the voxels in the Gibbs sampler.  

The process of the BSENSE image reconstruction could naturally induce a correlation within the voxels 
that are aliased together and the MCMC Gibbs sampler allows for correlation analysis. Figure 3.9 exhibits 
an example of the three voxels that were unaliased and the correlation associated with those voxels. The 
correlation between the voxels is computed by using Eq 3.3 

cov( , )
( , ) i j

i j
i j

v v
corr v v

 
=              [3.3] 

where cov( , )i jv v  is the covariance between voxel i  and voxel j , i  is the standard deviation for voxel 

i , j  is the standard deviation for voxel j , and i j . Like mean and variance, the last 

 
Figure 3.7: MCMC Gibbs sampling BSENSE unaliased mean images with no induced coil and aliased 
voxel correlations with magnitude (left), phase (left middle), real part (right middle), and imaginary part 
(right) 
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Figure 3.9: Correlation between three overlapping voxels 

7500M =  iterations of the Gibbs sampler are used to calculate correlation. The correlation between the 
voxels in Figure 3.9 appears to be low (close to zero). In Figure 3.10, we can see the correlation matrix of 
every voxel with the other voxels and the further shows the low correlation between the voxels. The largest 
absolute correlation between two voxels off the diagonal was 

 
Figure 3.10: Correlation matrix of all voxels 

calculated to be 0.0883 indicating no correlation between the aliased voxels which will reduce any risk of 
non-biological artifacts from our images. Even though we have results that indicate no correlation between 
the aliased voxels, we still need to incorporate the second model so it can capture any potential correlation 
that the first model ignores. 
3.3  Posterior Unaliased Image Results for Model Two 

A single slice was generated for 4Cn = coils by adding 1
2(0, )N I −  noise that incorporates coil 

covariance to the noiseless coil images in Figure 2.8. The derived aliased noisy coil images are shown in 
Figure 3.11 and used to demonstrate the use of BSENSE. 

Again, Figure 3.5 displays the images of the true image’s magnitude, phase, real part, and imaginary 
part. For this model that accounts for possible correlation between each coil and between the aliased voxels, 
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Figure 3.11: Simulated observed noisy coil images with 
incorporated coil covariance for one time point in an fMRI 
experiment. 

Gibbs sampling will be utilized. The total number of iterations used was 10,000L = with a 
2500burn = . This technique used the observed aliased coil images in Figure 3.11, the second Bayesian 

model, and the respective hyperparameters to estimate the voxel values for the final reconstructed image. 
The estimated voxel values v of the last 7500M = iterations in the Gibbs sampler were averaged. The 
reconstructed images, shown in Figure 3.12, appear to have no aliasing artifacts and look similar to the true 
image slice. 

Calculating the variance of the voxels follows the same process as calculating the mean of the voxel 
values. The variance of each voxel is calculated using the last 7500M = iterations in the Gibbs sampler 
and illustration of the variance images are shown in Figure 3.13. 

Just like in Figure 3.8, the magnitude (left), real (middle right), and imaginary (right) variance images 
are scaled from 0 to 0.05 and the phase (middle left) variance image is scaled from 0 to 1 with the lighter 
colors indicating higher variance. The magnitude variance image in Figure 3.13 (left), the variance of the 
voxel is location dependent in the aliased image, like model one results. The voxels inside the brain appear 
to have a slightly higher variance than those outside the brain. 

 
Figure 3.12: MCMC Gibbs sampling BSENSE unaliased mean images including induced coil and 
aliased voxel correlations with magnitude (left), phase (left middle), real part (right middle), and 
imaginary part (right) 
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Figure 3.13: MCMC Gibbs sampling BSENSE unaliased variance images with magnitude on the left, 
phase in the middle left, real in in the middle right, and imaginary on the right. 

In Figure 3.14, we can see the 9216×9216 correlation matrix of between every voxel of the final 
reconstructed image The largest absolute correlation between two voxels off the diagonal was calculated to 
be 0.0933 in the correlation matrix on the left in Figure 3.14. Even with incorporating aliased voxel 
covariance and coil covariance into our model, the results still showed no correlation from unaliasing the 
voxels. This outcome reduces the risk of having non-biological correlation in the fMRI results which is 
otherwise seen in SENSE image reconstruction (Bruce, 2014). 

 
Figure 3.14: Correlation matrix of all voxels 

4. Series of Simulated Slice Images Results 

4.1 Series of Posterior Unaliased Images Using Model One 

In MRI, there will not simply be one single image that will need to be reconstructed. There will be a 
volume of images that can contain hundreds of slices so BSENSE will need to reconstruct a series of slices. 
For the simulated series of images, 4IMn =  images were generated for 4Cn = coils by adding 2(0, )N   

noise, where 2 1 = , to the noiseless coil images in Figure 2.8. The derived aliased noisy coil images are 
shown in Figure 4.1 and used to demonstrate the use of BSENSE for a series of images. 
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For the series of images, the MCMC Gibbs sampling technique will be utilized. The total number of 
iterations used was 1000L =  with a 200burn = . The voxel values for the reconstructed images were 
estimated using the first model, its associated hyperparameters, and the observed aliased coil images in 
Figure 4.1. The last 800M =  voxel values in the Gibbs sampler were averaged together and unaliased to 
form the magnitude images shown in Figure 4.2. 

 
Figure 4.2: MCMC Gibbs sampling BSENSE series of 𝑛𝐼𝑀𝐺 = 4 unaliased magnitude mean images that 
does not include the induced coil and aliased voxel covariances. 

This shows a successful reconstruction of a series of 4IMn = images. The number of images in the 
series can be changed, and this process can be repeated with a larger number of images which can be used 
to create a volume of images. Figure 4.3 displays the magnitude variance images for 
for the 4IMn = images in the series. Calculating the variances of the voxels follows the same process 

discussed in the previous section. The variance of each voxel is calculated using the last 800M = iterations 

 
Figure 4.1: Simulated observed noisy magnitude coil images without incorporated coil covariance for a 
series of four images 

 
Figure 4.3: MCMC Gibbs sampling BSENSE series of 𝑛𝐼𝑀𝐺 = 4  unaliased magnitude variance images. 

 
1352



in the Gibbs sampler. These magnitude variance images show low voxel variance, similar to the results 
from the single slice image. 
4.2 Series of Posterior Unaliased Images Using Model Two 

The process from the previous subsection is repeated but instead we will use the second model. 
For the simulated series of images, 4IMn = images were generated for 4Cn = coils by adding 

1
2(0, )N I −  noise that incorporates coil covariance to the noiseless coil images in Figure 2.8. The 

derived aliased noisy coil images are shown in Figure 4.4 and used to demonstrate the use of BSENSE for 
a series of images. 

For the series of images, the MCMC Gibbs sampling technique will be utilized. The total number of 
iterations used was 1000L =  with a 200burn = . The observed aliased coil images in Figure 4.4 are 
coupled with the second model and its corresponding hyperparameters to estimate the final voxel values. 
The estimated voxel values v of the last 800M =  iterations in the Gibbs sampler for each image in the 
series were averaged together. The voxels are then unaliased and form the magnitude images shown in 
Figure 4.5.  

 
Figure 4.5: MCMC Gibbs sampling BSENSE series of 𝑛𝐼𝑀𝐺 = 4 unaliased magnitude mean images that 
includes the induced coil and aliased voxel correlations. 

This shows a successful reconstruction of a series of 4IMn =  images where potentially induced coil 
covariance and voxel covariance is incorporated. Again, this process can be repeated with a larger number 
of images which can be used to create a time series of images. Figure 4.6 shows the magnitude variance 
images for the 4IMn =  images in the series. 

 

Figure 4.4: Simulated observed noisy magnitude coil images with incorporated coil covariance for a 
series of four images 
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The magnitude variance images in Figure 4.6 show that the variance of the voxel is dependent upon the 
location of the voxel in the aliased images for all 4IMn = magnitude variance images. These results are 
similar to that of the single slice image in subsection 3.4. 

5. Simulated Slice Images with Task Activation 

5.1 Task Activation 

The objective of fMRI is to have the patient perform a task, like tapping their fingers, and try to capture 
in which part of the brain increased neuronal activation occurs. The non-task reconstructed images 
essentially create a baseline value for each voxel giving us an intercept only simple linear regression 0Y =
, where Y is the estimated voxel value. By adding in task activation to a certain number of images in the 
series of images, we then have a simple linear regression 0 1Y X = +  for our estimated voxel values 

where 0  is the baseline voxel value from the non-task reconstructed images also known as the signal-to-

noise ratio (SNR), 1  is the estimated increase from 0  which would be the contrast-to-noise ratio (CNR), 
and X is a vector of zeros and ones where the zeros correspond the images in the series without task 
activation and ones corresponding to the images with task activation. We can write this regression as 
Y X =  where X is our 2IMn  design matrix with ones in the first column and zeros and ones in the 

second column and   is a 2 1  vector containing 0 1[ , ] '  . 
With a typical increase in CNR being between zero and one, the task is not usually visual on the final 

reconstructed image. Instead, a hypothesis test is carried out with 1 0 =  as the null hypothesis and 1 0   

as the alternative hypothesis. Eq 5.1 shows the simple two-tailed t-test with 0.05 =  and sample size n  
equal to the number of images in the series. 

( )1

1

1

ˆ
ˆ

t
SE






=                [5.1] 

This will pinpoint the voxels that experience task activation. Figure 5.1 shows a small square of magnitude-
only task equal to 0.5 being added to the true noiseless image. 

 
Figure 4.6: MCMC Gibbs sampling BSENSE series of 4IMn =   unaliased magnitude variance images. 
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Figure 5.1: Adding magnitude-only task activation (middle) to the true noiseless image (left) to create 
the true task activation image (right) 

5.2 Posterior Unaliased Image Results for Model One  

Figure 5.2 displays the true magnitude, phase, real part, and imaginary part of the task activated 
image. A single task image was generated for 4Cn = coils by adding 2(0, )N  noise to the 

noiseless coil images in Figure 5.3. Since the amount of task added was 0.5 magnitude-only task, it is not 
visual in the simulated image. The derived aliased noisy coil images are used to demonstrate the use of 
BSENSE. 

 
Figure 5.3: Simulated observed noisy coil images with task 
activation for one time point in an fMRI experiment. 

 
Figure 5.2: The true task activated images with magnitude (left), phase (left middle), real part (right 
middle), and imaginary part (right) 
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 The MCMC Gibbs sampling technique was utilized using a total of iterations 10,000L = with a 
2500burn =  to create the reconstructed final images. Note that the images in Figure 5.4 do not show the 

task as the CNR is small compared to the SNR and would need statistical analysis for any significantly 
greater voxel values. 

5.3 Posterior Unaliased Image Results for Model Two 

This process was repeated using the second model by generating a single task image for 4Cn =  

coils by adding 1
2(0, )N I −   noise to the noiseless coil images in Figure 5.5. The MCMC Gibbs 

sampling technique was utilized using a total of  10,000L =  iterations with a 2500burn =  to 

 
Figure 5.5: Simulated observed noisy coil images with task 
activation for one time point in an fMRI experiment. 

create the reconstructed final images from the MCMC Gibbs sampler with 10,000 iterations and a burn of 
2500 iterations are displayed in Figure 5.6. Again, note that the images in Figure 5.6 do not visibly show 
the task. 

 
Figure 5.4: MCMC Gibbs sampling BSENSE unaliased mean images with no induced coil and aliased 
voxel correlations with magnitude (left), phase (left middle), real part (right middle), and imaginary part 
(right) 
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6. Discussion 

6.1  Conclusion 

Usage of parallel imaging techniques such as SENSE (Pruessmann et al., 1999) and GRAPPA 
(Griswold et al., 2002) have accomplished subsampling of the k-space reducing scan times for MR imaging. 
The inverse Fourier transformation of the subsampled k-space causes the images to be aliased so for SENSE 
image reconstruction, a least squares estimate is used to unalias the transformed image. This can be difficult 
to calculate if the design matrix is not full rank which, in general, is not so this paper introduces a Bayesian 
approach to estimate the unaliased voxel values. This method proposed two different models: one that does 
not account for potential coil covariance or aliased voxel covariance and one that incorporates both 
unobserved covariances.  

Using calibrated images to assess for the hyperparameters, this approach successfully reconstructed a 
single slice simulated brain image using both models and a series of simulated slices without any aliasing 
artifacts. It also revealed no correlation from the unaliasing of the voxels which is an improved result from 
Sensitivity Encoding (Pruessmann et al., 1999). 
6.2 Future Work 

The next step for this research would be to run a MCMC Gibbs sampler series of images with some 
non-task images and the rest be images with simulated task activation. Then use the simple two-tailed t-
test to detect the task activation in the voxels. After successful detection of task activation, BSENSE 
image reconstruction can also be used to examine different number of coils, whether it is 2, 4, 8, 16, or 32 
coils, and altering the acceleration factors. These procedures can also be repeated for vertical aliasing as 
opposed to the horizontal aliased used in this research. Other potential work can involve aliasing three 
slices for a linearly summed image instead of three strips for each image. The goal of this research is to 
introduce and apply BSENSE image reconstruction to reduce the scan time of the fMRI process with 
comparisons to the traditional SENSE method along the way.  

 
Figure 5.6: MCMC Gibbs sampling BSENSE unaliased mean images with no induced coil and aliased 
voxel correlations with magnitude (left), phase (left middle), real part (right middle), and imaginary part 
(right) 
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