
Submitted to the Annals of Applied Statistics

A BAYESIAN APPROACH TO GRAPPA PARALLEL FMRI IMAGE
RECONSTRUCTION INCREASES SNR AND POWER OF TASK DETECTION

BY CHASE J. SAKITIS1,a AND DANIEL B. ROWE1,b

1Mathematical and Statistical Sciences, Marquette University, Milwaukee WI, USA, achase.sakitis@marquette.edu

1Mathematical and Statistical Sciences, Marquette University, Milwaukee WI, USA, bdaniel.rowe@marquette.edu

In fMRI, capturing brain activation during a task is dependent on how
quickly k-space arrays are obtained. Acquiring full k-space arrays, which
are reconstructed into images using the inverse Fourier transform (IFT),
that make up volume images can take a considerable amount of scan time.
Under-sampling k-space reduces the acquisition time, but results in aliased,
or “folded,” images. GeneRalized Autocalibrating Partial Parallel Acquisi-
tion (GRAPPA) is a parallel imaging technique that yields full images from
subsampled arrays of k-space. GRAPPA uses localized interpolation weights,
which are estimated pre-scan and fixed over time, to fill in the missing spa-
tial frequencies of the subsampled k-space. Here, we propose a Bayesian ap-
proach to GRAPPA (BGRAPPA) where prior distributions for the unacquired
spatial frequencies, localized interpolation weights, and k-space measure-
ment uncertainty are assessed from the a priori calibration k-space arrays.
The prior information is utilized to estimate the missing spatial frequency
values from the posterior distribution and reconstruct into full field-of-view
images. Our BGRAPPA technique successfully reconstructed both a simu-
lated and experimental single slice image with less artifacts, reduced noise
leading to an increased signal-to-noise ratio (SNR), and stronger power of
task detection.

1. Introduction.

1.1. Background. Functional Magnetic resonance imaging (fMRI) is a type of medical
imaging developed in the early 1990’s as a technique to noninvasively observe human brain
activity without exogenous contrast agents (Bandettini et al., 1993). This procedure exam-
ines the brain in action by detecting changes in the brain using the blood-oxygen-level de-
pendent (BOLD) contrast (Ogawa et al., 1990). The increase in the BOLD contrast in the
area of a neuron is a correlate for neuronal firing. Measurements from the machine are ar-
rays of complex-valued spatial frequencies called k-space (Kumar, Welti and Ernst, 1975).
These complex-valued k-space arrays are then reconstructed into images using a 2D inverse
Fourier transform (IFT) producing complex-valued brain images. The magnitude and phase
of the complex-valued reconstructed images can be utilized for activation analysis (Rowe and
Logan, 2004; Rowe, 2005), but generally only the magnitude is used (Bandettini et al., 1993).

In fMRI, measuring full arrays of data for all the slices that form each volume image
typically takes about one to two seconds, limiting the temporal resolution of the obtained
images and potentially diminishing brain activity detection. Shortening the time it takes to
acquire the data required for volume images would improve capturing brain activity. A great
deal of work has been dedicated to reducing the acquisition time of the MRI process by
accelerating the number of images obtained per unit of time. Hyde et al. (1986), Pruessmann
et al. (1999), and Griswold et al. (2002) explored parallel imaging techniques while Lindquist
et al. (2008) measured less three dimensional k-space and filtered to expand into the full
volume k-space. The purpose of each of these techniques was to reduce the acquisition time
in MRI.
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1.2. Previous Approach. Historically, a single channel coil receiver has been utilized
in fMRI to measure full-sampled k-space data arrays. Reducing time between successive
volume images is the primary goal of parallel imaging which can also reduce total scan time.
More recently, the technological development focus has been to reduce acquisition time by
measuring less data without losing the ability to form a full image. This can be achieved by
skipping the acquisition of lines in the k-space array, i.e. subsampling. To accomplish this,
multiple receiver coils are utilized in parallel to obtain spatial frequency arrays which are
reconstructed into coil-specific brain images.

Skipping lines in k-space introduces what is called an acceleration factor. The acceleration
factor indicates which lines of k-space data are measured. For example, with an acceleration
factor of nA = 2, every other line horizontally in k-space is measured. Figure 1 shows the
sequential pattern for a fully sampled k-space array (top left) compared to a subsampled k-
space array with an acceleration factor of nA = 2 (top right). This acceleration factor will
cause the reconstructed coil images to appear as if they are folded over, because the Fourier
transform cannot uniquely map the down sampled signals. We can see an example of this in
the bottom left of Figure 1 where the IFT of the subsampled k-space causes the brain image
to be aliased.

To obtain a full field-of-view (FOV) image, the unacquired spatial frequencies need to be
estimated to have full coil k-space arrays. The full k-space arrays (acquired plus estimation)
for each coil are averaged to yield a single, full spatial frequency array. Then, the averaged,
full k-space array is inverse Fourier transformed into a full brain image. A common method
that estimates the unacquired coil spatial frequencies is GeneRalized Autocalibrating Par-
tial Parallel Acquisition (GRAPPA) and was introduced by Griswold et al. (2002). GRAPPA
operates in the spatial frequency domain before the IFT, utilizing localized weights to interpo-
late the missing values in each coil k-space array. GRAPPA has its deficiencies, such as low
image quality, a low SNR, and diminished task detection power with higher acceleration fac-
tors. Bayesian methodologies have been utilized in k-space to improve spatial resolution and

FIG 1. Full k-space array (top left), sequence of the subsampled k-space array with nA = 2 (top right), the
acquired subsampled k-space array (bottom right), and aliased brain image after IFT of the subsampled k-space
array (bottom left).
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image quality (Kornak et al., 2010), but here we aim to use it for reconstructing subsampled
k-space data to produce full brain images. We propose a Bayesian approach to GRAPPA that
will incorporate prior information, yielding increased SNR and image quality, with improved
task detection power.

1.3. Overview. The second section of this paper will explain the model of GRAPPA
image reconstruction and formulate the complex-valued problem as a real-valued isomorphic
representation. This will lead into our proposed Bayesian approach presented in Section 3.
Section 4 will show results from comparing traditional GRAPPA and our new BGRAPPA
approach to simulated non-task and task fMRI data. Section 5 presents a similar comparison
with experimental task fMRI data. We will conclude in Section 6 with an overview of the
important results of the paper and a discussion of future work.

2. GRAPPA Technique.

2.1. Reconstruction Process. As mentioned in Subsection 1.2, to measure less k-space
data and still produce a full brain image, nC > 1 receiver coils must be utilized. The process
for GRAPPA is exhibited in Figure 2 with an illustrative example of using nC = 4 coils. The
machine acquires subsampled spatial frequency arrays for each of the four coils shown in
the top left of Figure 2. The top middle of Figure 2 displays the subsampled k-space arrays
as full arrays with the black dots indicating the acquired spatial frequencies and the white
dots indicating the unacquired spatial frequencies. The unacquired spatial frequencies are
estimated using GRAPPA image reconstruction, displayed as the green dots in the top right
of Figure 2. This yields full coil k-space arrays as shown in the bottom right of Figure 2. To
get a single full spatial frequency array (bottom middle), the full coil spatial frequency arrays

FIG 2. Subsampled k-space coil arrays (top left) that are spread out to show a full k-space array where the
black dots are the acquired spatial frequencies, and the white dots are the unacquired spatial frequencies (top
middle). The missing spatial frequencies are then estimated (green dots in the top right) yielding full coil k-space
arrays (bottom right). The full coil k-space arrays are averaged together to produce a full spatial frequency array
(bottom middle) which is then transformed into a full brain image (bottom left) using the IFT.
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are averaged together. The full spatial frequency is then IFT reconstructed into a single, full
FOV brain image (bottom left of Figure 2).

2.2. Model. In GRAPPA, the complex-valued localized interpolation weights are esti-
mated using pre-scan coil calibration spatial frequency arrays. These coil calibration k-space
arrays are fully sampled coil spatial frequency arrays that are collected prior to the actual
fMRI experiment. Kernels of varying sizes can be used to estimate the weights, creating a
system of linear equations. Figure 3 illustrates how a 2×1 kernel is utilized to estimate the
weights from the full coil calibration spatial frequencies with a four-channel coil array. In
Figure 3, all the complex-valued data points are acquired, but are treated differently depend-
ing on the location of the data point. The black data points, fl, are utilized as the “acquired”
complex-valued spatial frequency values, the red points, fcalib, are the complex-valued cali-
bration spatial frequency points, and the white points are ignored for the calculation of those
weights associated with the current fcalib points. The white dots represent the spatial frequen-
cies that would be unacquired during the fMRI experiment but are used as calibrations points
to estimate the complex-valued weights for those spatial frequencies.

The calibration points fcalib and the “acquired” spatial frequencies fl along with the un-
acquired complex-valued weights, Wc, create a system of linear equations as displayed in

FIG 3. The k-space coil arrays in the top left are fully sampled where the black dots are treated as the acquired
spatial frequencies and the red dots are the calibration points utilized to calculate the weights for those coil spatial
frequencies. The yellow box shows a 2×1 kernel indicating which points are utilized to estimate the weights. From
this, we get an acquired black dot above and below each red coil calibration point. The black points above the
calibration points are then stacked by coil (1 through 4) which is then placed above the stacked black dots below
the calibration points. The image in the top right demonstrates the stacking of the black dots through the purple
line and the orange line with the purple vector then being placed above the orange vector in the system of linear
equations (bottom). The weights, Wc, for those “unacquired” coil spatial frequencies are then estimated using
least squares. Once the weights have been estimated, the red calibration points move to the next white dots to
estimate the set of weights for the next unacquired spatial frequencies.
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Figure 3 (bottom). From the linear equations, we can estimate the weights wc using Eq. 2.1,

(2.1) Wc
(ν) = fcalib

(ν)fl
(ν)H(fl

(ν)fl
(ν)H)−1, ν = 1, ...,K

where Wc ∈ CnC×p is the complex-valued weights, fcalib ∈ CnC×1 is the complex-valued
calibration spatial frequencies, fl ∈ Cp×1 is the “acquired” complex-valued spatial frequen-
cies, p = nckrowskcols, krows is the number of rows in the kernel, kcols is the number of
columns in the kernel, H is the Hermitian or conjugate transpose, and K is the total number
of unacquired spatial frequencies in the subsampled k-space array. The process is repeated
for each spatial frequency point that would be unacquired during the actual fMRI experiment
(the white dots in Figure 3), yielding different weights for each unacquired spatial frequency.

Once the weights for each of the unacquired coil spatial frequencies are estimated from
the calibration k-space arrays, those weights are then utilized to interpolate the unacquired
spatial frequencies in the actual fMRI experiment. The GRAPPA model with the estimated
weights becomes

(2.2) fec
(ν) =Wc

(ν)fkc
(ν) + ηc

(ν), ν = 1, ...,K

where fec ∈ CnC×1 is the complex-valued interpolated k-space values, fkc ∈ Cp×1 is the
complex-valued acquired k-space values, and ηc ∈ CnC×1 is the additive complex-valued
noise with ηc ∼N(0, τ2(1+ i)). The interpolated coil k-space values, fec, are inserted in the
respective locations of each coil yielding full coil k-space arrays (top right of Figure 2).

With GRAPPA image reconstruction, however, the resulting reconstructed brain images
can have diminished SNR which is a consequence of either a decreased signal intensity,
increased temporal noise variance, or a combination of the two. With an increase in the
temporal noise variance, this can lead to reduced power in task detection as well. These
deficiencies motivate our Bayesian approach, which will allow for a more automated method
for image reconstruction without having to potentially store and use large matrices. Unlike
GRAPPA, our Bayesian approach will utilize all valuable available prior information from the
calibration spatial frequency arrays and provide full distributions for the unacquired spatial
frequencies, the weights, and the residual k-space variance.

3. Bayesian Approach to GRAPPA. For our proposed Bayesian approach, we use the
same linear model as GRAPPA as expressed Eq. 2.2, except the acquired spatial frequencies
will be the fec variable instead of the fkc variable. This creates a model where the design
matrix and the coefficients can both be treated as unknown parameters, allowing us to take a
Bayesian approach to the linear regression. Then the weights, Wc, and the unacquired spatial
frequencies, fkc, along with the residual k-space variance, τ2, are treated as unknowns with
prior distributions placed on them. We also use an isomorphic real-valued representation of
the linear GRAPPA model in Eq. 2.2 and is given by

(3.1)
[
feR
feI

]
=

[
WR −WI

WI WR

][
fkR
fkI

]
+

[
ηR
ηI

]
,

where feR ∈ RnC×1 and feI ∈ RnC×1 are the real and imaginary components, respectively,
of fec, WR ∈RnC×p and WI ∈RnC×p are the real and imaginary components of Wc, fkR ∈
Rp×1 and fkI ∈ Rp×1 are the real and imaginary components of fkc, and ηR ∈ RnC×1 and
ηI ∈ RnC×1 are the real and imaginary components of ηc with (ηR, ηI)

′ ∼ N(0, τ2I2nC
).

This equation is a latent variable model with complex values and can be more compactly
written as fe =Wfk + η where fe ∈ R2nC×1, W ∈ R2nC×2p, fk ∈ R2p×1, and η ∈ R2nC×1

are the real-valued isomorphic representations of fec, Wc, fkc, and ηc, respectively.
In this method, two different representations of the weights will be used. The first repre-

sentation is the proper skew-symmetric design matrix W as shown in Eq. 3.1. The second
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representation is D = [WR, WI ] which is used in the prior distribution and for parameter
estimation of the weights. This is to ensure WR and WI are uniquely estimated for W and
do not need to be duplicated.

3.1. Data Likelihood, Prior, and Posterior Distributions. Like GRAPPA, we assume that
the residual spatial frequency error is normally distributed in the real and imaginary compo-
nents, since the real and imaginary components of fMRI data are assumed to be normally
distributed (Lindquist, 2008). The data likelihood for the acquired spatial frequencies for the
nc coils is

(3.2) P (fe|W,fk, τ
2)∝ (τ2)−

2nC
2 exp

[
− 1

2τ2
(fe −Wfk)

′(fe −Wfk)

]
.

We can quantify available prior information about the unacquired spatial frequencies fk, the
weights W , and the residual k-space variance τ2 with assessed hyperparameters of prior
distributions. The unacquired spatial frequencies fk are specified to have a normal prior dis-
tribution, expressed in Eq. 3.3. The weights D are also specified to have a normal prior dis-
tribution (Eq. 3.4) and the k-space noise variance τ2 is specified to have an inverse gamma
prior distribution (Eq. 3.5),

(3.3) P (fk|nk, fk0, τ
2)∝ (τ2)

−2p

2 exp
[
− nk

2τ2
(fk − fk0)

′(fk − fk0)
]
,

(3.4) P (D|nw,D0, σ
2)∝ (τ2)

−2nCp

2 exp
[
− nw

2τ2
tr(D−D0)(D−D0)

′
]
,

(3.5) P (τ2|αk, δ)∝ (τ2)−(αk+1) exp

[
− δ

τ2

]
,

where tr is the trace of the (D−D0)(D−D0)
′ matrix and the hyperparameters nk, fk0, nw,

D0, αk, and δ are assessed from the pre-scan calibration spatial frequencies. The joint pos-
terior distribution of the unacquired spatial frequencies fk, the weights W , and the residual
k-space variance τ2 is

(3.6) P (D,fk, τ
2|fe)∝ P (fe|W,fk, τ

2)P (fk|nk, fk0, τ
2)P (D|nw,D0, τ

2)P (τ2|αk, δ),

with the distributions specified from Equations 3.2, 3.3, 3.4, and 3.5.
A technique that can be utilized for parameter estimation is using Markov chain Monte

Carlo (MCMC) Gibbs sampling. The Gibbs sampler uses the posterior conditionals to gen-
erate the entire distribution for each parameter at each time point yielding more information
that can be used for statistical analysis. However, the computation time is longer compared
to using an iterative maximum a posteriori (MAP) method. For this paper, we only use the
MAP estimate since we would only be interested in the mean of the distributions for each
parameter which is theoretically equal to the mode for the unacquired spatial frequencies fk0
and the weights W .

3.2. Hyperparameter Determination. The hyperparameters can be appropriately as-
sessed in an automated way using the full pre-scan coil calibration spatial frequencies. For
the BGRAPPA hyperparameter assessment, the same full calibration spatial frequencies and
fcalib =Wfl model are used like in GRAPPA reconstruction, but each spatial frequency point
is treated differently than GRAPPA. As shown in Figure 4, the calibration spatial frequen-
cies fcalib for BGRAPPA are in the location of the data points where the acquired spatial
frequencies are in the actual fMRI experiment. For GRAPPA, these data points are assigned
to the fl variable in the fcalib =Wcfl model shown at the bottom of Figure 4. Using Eq. 2.1,
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FIG 4. Full calibration k-space arrays that indicate which data points are used as fcalib points and the fl points
for GRAPPA (left) and BGRAPPA (right).

this will result in the prior for the weights in BGRAPPA, D0, to be different than the esti-
mated weights utilized in GRAPPA image reconstruction. The fl points used for estimating
the prior mean for the weights are averaged to obtain the prior mean of the unacquired spatial
frequencies, fk0.

The hyperparameters nk and nw, which are the prior scalars of the prior means, are as-
sessed to be the number of calibration time points ncal. The average residual k-space variance
over the coil spatial frequency arrays is calculated to obtain a prior mean for the residual k-
space variance τ20 . The hyperparameters αk (shape parameter of the inverse gamma) and δ
(scale parameter of the inverse gamma) are assessed to be αk = ncal−1 and δ = (ncal−1)τ20 .
This prior information is incorporated to estimate the unacquired spatial frequencies in the
subsampled k-space arrays.

3.3. Posterior Estimation. Using the posterior distribution in Eq. 3.6, the MAP estimate
for the unacquired spatial frequencies fk, the weights W , and the residual k-space variance
τ2 is estimated via the Iterated Conditional Modes (ICM) optimization algorithm (Lindley
and Smith, 1972; O’Hagan, 1994). Beginning with the prior means for each parameter as
initial estimates, the ICM algorithm iterates over the parameters, calculating its posterior
conditional mode until convergence at the joint posterior mode. The posterior conditional
modes are

(3.7) f̂k = (W ′W + nkI2p)
−1(W ′fe + nkfk0),

(3.8) D̂ = (FeF
′
k + nwD0)(FkF

′
k + nwI2p)

−1,

(3.9) τ̂2 =
Θ

2(2nC + 2p+ 2nCp+ 1)
,

where Θ= (fe−Wfk)
′(fe−Wfk)+nk(fk−fk0)

′(fk−fk0)+αkδ+nwtr[(D−D0)(D−
D0)

′], Fe = [feR, feI ] and Fk ∈ R2p×2 is a skew symmetric matrix representation of the
unaliased voxel values fk as expressed by

(3.10) Fk =

[
fkR fkI
−fkI fkR

]
.
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4. Simulation Study.

4.1. Non-Task Spatial Frequency Data. A noiseless non-task image was used to create
two separate series of nTR = 510 simulated full coil images for one slice to mimic real-
world MRI experimental data. The last ncal time points of the first time series will serve as
the calibration information utilized for hyperparameter assessment. The second time series
was used for simulating a subsampled non-task experiment. The complex-valued non-task
images were multiplied by a complex-valued designed sensitivity map with nC = 8 coils.
Figure 5 illustrates the real and imaginary parts of the full simulated brain image (first and
second column) being voxel-wise multiplied by the real and imaginary components of the
sensitivities for each of the nC = 8 coil (third and fourth column). This results in the real

FIG 5. Real and imaginary components of the true complex-valued simulated image (first and second column)
voxel-wise multiplied by the real and imaginary parts of the complex-valued coil sensitivities for each of the
nC = 8 coils (third and fourth column) yielding the real and imaginary components of the complex-valued coil-
weighted images (fifth and sixth column column).
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and imaginary components of the complex-valued full coil-weighted images (fifth and sixth
column).

In real-world MRI experiments, the first few images in an fMRI time series have increased
signal as the magnetization reaches a stable state. To mimic this, the first three of both non-
task time series of nTR = 510 time points of the simulated non-task time series were scaled
with the signal slightly decreasing from the first to the third time point before reaching a sta-
ble signal in the fourth time point. The scaling was determined by dividing the first three im-
ages of the experimental data by the 21st image, separately. After dividing the three images,
the signal increase for each tissue type (white matter, grey matter and CSF) was averaged
together for each of the three divided images, calculating the average signal increase for each
matter type. For example, the average signal increase in the first image for the white matter
was 40%, 55% for the grey matter and 75% for the CSF giving multiplication factors of 1.40,
1.55, and 1.75 for the matter types, respectively. This process was repeated for the second
and third image in the series with the multiplication factors decreasing from the first to the
third image.

The series of images for both the ncal calibration images and the full simulated images
were then Fourier transformed into noiseless full coil k-space arrays. The time series of coil
k-space arrays were simulated by adding separate N(0,0.0036nynx) noise, where ny and nx

are the number of rows and columns, respectively, in the full k-space array, to the real and
imaginary parts of full coil k-space arrays, corresponding to the noise in the real-world fMRI
experimental data. To mimic the fMRI experiment, the first 20 time points of the second
time series were omitted leaving 490 time points of spatial frequency arrays for the single
slice. However, the first 10 time points of an fMRI experiment can be used to estimate a T1

map which efficiently segments the different tissue types. The next 10 time points can be
utilized to estimate a static magnetic field map to adjust for geometric distortions (Karaman,

FIG 6. Simulated acquired noisy subsampled coil spatial frequency arrays for the first time point in the non-task
time series with an acceleration factor of nA = 3.
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Bruce and Rowe, 2015). The remaining 490 time points in the time series were subsampled
by censoring lines in k-space according to an acceleration factor of nA = 3. An example of
the real and imaginary components of subsampled k-space arrays for nC = 8 coils and an
acceleration factor of nA = 3 at one time point is exhibited in Figure 6.

4.2. Non-Task Reconstruction Results. To analyze the reconstruction performance of
BGRAPPA vs. GRAPPA, we first reconstructed subsampled k-space arrays at one time
point, yielding a single unaliased image for both methods. For calibration analysis, the last
ncal = 30 time points from the first non-task time series were utilized for hyperparameter
assessment. The first time point of the 490 subsampled, simulated non-task time series with
an acceleration factor of nA = 3, shown in Figure 6. The results of reconstructing the first
time point in the subsampled time series using both BGRAPPA and GRAPPA are shown in
Figures 7, 8, 9, and 10.

The prior means from the calibration information for the unacquired spatial frequency ar-
rays fk0 and the localized weights D0 were used as initial values for fk and D. These initial
values were used to generate a τ2 value from the posterior conditional mode from Eq. 3.9,
initializing the ICM optimization algorithm. The simulated subsampled coil k-space arrays
were reconstructed into a single, full brain image using the BGRAPPA MAP estimate from
the ICM algorithm, and traditional GRAPPA estimate. For the ICM algorithm, only three
iterations were needed for estimating the parameters with a computation time of approxi-
mately half a second per time point. Figure 7 displays the true noiseless simulated image
(first column) along with the reference magnitude and phase images (second column). These
reference images were determined by simply averaging the full, noisy coil k-space arrays in
the time series yielding a single spatial frequency array and then applying the IFT resulting
in a full brain image. This provides us what image reconstruction would look like without
applying an acceleration factor. This process is used for all of the reference images provided
in the figures displaying simulated results for the remainder of the paper. Figure 7 also shows
the BGRAPPA MAP unaliased image (third column), and the GRAPPA unaliased image
(fourth column) for the first time point in the simulated non-task series. We can see that the

FIG 7. True non-task unaliased images (first column), reference non-task reconstructed images (second column),
BGRAPPA MAP unaliased non-task images (third column) using ICM and GRAPPA non-task images (fourth
column) with magnitude images in the first row and phase images in the second row. Due to the circular nature of
phase angles, the color bar for the phase images have wrap-around.
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joint MAP estimate from BGRAPPA and the GRAPPA estimate both produce magnitude
and phase images that closely resemble the true non-aliased image in Figure 7 (left column).
Visually the BGRAPPA image is slightly more accurate and less noisy than the GRAPPA
image.

To quantify the differences between the true and reconstructed magnitude and phase im-
ages, we use the mean squared error, MSE = 1

K

∑K
j=1 (vj − vj)

2, where K is the num-
ber of voxels (either inside or outside the brain) in the full reconstructed image, vj is the
reconstructed magnitude or phase value of the jth voxel, and vj is the true magnitude or
phase value of the jth voxel. This measure will indicate the accuracy of a single recon-
structed image compared to the true simulated image with lower MSE indicating a more
accurate reconstructed image. The MSE for BGRAPPA for inside and outside the brain was
lower for the magnitude and phase images compared to GRAPPA. The MSE for the magni-
tude reconstructed image of GRAPPA was 114% and 51% higher for inside and outside the
brain, respectively, compared to BGRAPPA. For the MSE of the phase reconstructed images,
GRAPPA was 12% and 3% higher for inside and outside the brain compared to BGRAPPA.

Next, we evaluated how the number of calibration time points, ncal, affected the recon-
structed images. For the pre-scan calibration analysis, we fixed the acceleration factor to
be nA = 3 for the subsampled k-space coil arrays of the simulated non-task time series
with nIMG = 490 time points. Then we set the number of calibration time points to be
ncal = 5,10,15,20,25,30 for separate hyperparameter assessments. After assessing the hy-
perparameters using each number of calibration time points, the simulated non-task time se-
ries with the subsampled coil spatial frequency arrays were reconstructed using BGRAPPA
MAP and GRAPPA.

The results, displayed in Figure 8, indicate that increasing the number of calibration
time points does not noticeably affect the noise level inside or outside the brain for ei-
ther BGRAPPA or GRAPPA. This means we can have short calibration scans and do not
need to take up valubale scanner time. For each of the number of calibration time points,
GRAPPA, visually, is slightly noisier than BGRAPPA. To further analyze the differences be-
tween the BGRAPPA and GRAPPA reconstructed magnitude images, the MSE and entropy
for BGRAPPA and GRAPPA for each number of calibration time points were calculated to

FIG 8. Reconstructed magnitude images for different number of calibration images using BGRAPPA MAP esti-
mate (top row of the right three columns) and GRAPPA (second row of the right three columns) with the true
simulated magnitude image (top left), and the reference magnitude image (bottom left).
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FIG 9. (a) MSE for inside and outside the brain for BGRAPPA and GRAPPA comparing both method’s recon-
structed images to the true simulated magnitude image for each number of calibration images. For the MSE plot,
BGRAPPA is shown in red for outside the brain (blue for GRAPPA) and dark red for inside the brain (dark blue for
GRAPPA). (b) Entropy plot for BGRAPPA and GRAPPA for each number of calibration images where BGRAPPA
is shown red, and GRAPPA is shown in blue.

quantify this result. Entropy analyzes uncertainty and smoothness across a single image with
lower entropy meaning less uncertainty throughout the image. The equation for entropy is
given by E = −

∑N
j=1

[
vj

vmax
ln

(
vj

vmax

)]
, where ln is the natural log, N is the number of

voxels in the full reconstructed image, vj is the reconstructed magnitude value of the jth
voxel, and vmax is the voxel intensity if all the image intensities were in one pixel (Atkinson

et al., 1997) given by vmax =
√∑N

j=1 vj
2.

Shown in Figure 9a, the MSE for inside and outside the brain for the BGRAPPA MAP re-
constructed magnitude images was markedly smaller than the GRAPPA reconstructed mag-
nitude images for both inside and outside the brain. BGRAPPA also had noticeably smaller
entropy values compared to the GRAPPA reconstructed magnitude images, displayed in
Figure 9b. Lower MSE for BGRAPPA indicates a more precise reconstructed image while

FIG 10. Reconstructed magnitude images for different acceleration factors using BGRAPPA MAP estimate (top
row of the right three columns) and GRAPPA (second row of the right three columns) with the true simulated
magnitude image (top left), and the reference magnitude image (bottom left).
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smaller entropy means less uncertainty with image reconstruction. For both BGRAPPA and
GRAPPA, increasing the number of calibration images does not meaningfully affect the tem-
poral variance, resulting in similar SNR for each ncal which again means we can have a short
calibration scan. In all cases, the temporal variance for BGRAPPA is substantially lower than
for GRAPPA, demonstrating that BGRAPPA mitigates noise in the reconstructed image. The
phase of the reconstructed images for the different calibration time points can be found in
Section 1 of the Supplementary Material (Sakitis and Rowe, 2024).

Along with analysis of the number of calibration time points, we evaluated how different
acceleration factors, nA, affected the reconstructed magnitude and phase images. Here, we
fixed the number of calibration time points to be ncal = 30 for hyperparameter assessment
and set the acceleration factors of the non-task time series to be nA = 2,3,4,6,8,12. We only
show results for nA = 2,4,8 just to see how increasing the acceleration factor effects the re-
construction results. These subsampled coil k-space arrays with separate acceleration factors
were reconstructed into full images using the BGRAPPA MAP estimate and GRAPPA, again
comparing the results for both methods.

FIG 11. Temporal variance and SNR images for different acceleration factors using BGRAPPA MAP estimate
(first row and third row, respectively, of the right three columns) and GRAPPA (second row and fourth row,
respectively, of the right three columns). The first column shows the true variance and SNR (first and third row,
respectively) and the reference variance and SNR (second and fourth row, respectively).
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The results, exhibited in Figure 10, showed that inside the brain of the reconstructed mag-
nitude images from BGRAPPA and GRAPPA are negligibly affected by increasing the ac-
celeration factor with BGRAPPA visually slightly more accurate. The noise level outside the
brain for BGRAPPA does decrease as the acceleration factor increases while it only slightly
decreases for GRAPPA. Again, the GRAPPA magnitude reconstructed images have slightly
more noise than the BGRAPPA magnitude reconstructed images. The phase of the recon-
structed images for the different acceleration factors can be found in Section 1 of the Supple-
mentary Material (Sakitis and Rowe, 2024).

In Figure 11, we examine the temporal variance of the reconstructed time series and the
SNR images for BGRAPPA, GRAPPA, the true images, and the reference images when no
acceleration factor is applied. The reference reconstruction is simply averaging the full coil
k-space arrays and applying the IFT to get full brain images for the full time series. The
temporal variance for BGRAPPA decreases and for GRAPPA increases as the acceleration
factor increases (first and second row of Figure 11 of the right three columns). The temporal
variance, overall, from Figure 11 for BGRAPPA is substantially lower than GRAPPA, the
theoretically true variance (first row, first column), and the reference (second row, first col-
umn), showing that BGRAPPA reduces the noise through of the reconstructed time series.
This also leads to higher SNR for BGRAPPA compared to GRAPPA (third and fourth row of
Figure 11 of the right three columns), the true SNR (first column, third row), and the refer-
ence SNR (first column, fourth row). The average of the BGRAPPA reconstructed time series
was also taken and the result magnitude image looks similar to the true simulated magnitude
image.

4.3. Task Activation Model. In task-based fMRI, the non-task reconstructed images cre-
ate a baseline value for each voxel. This yields an intercept only simple linear regression
model y = β0 + ε where y is the magnitude of the reconstructed voxel value. By adding in
task activation to select images in the series of images, we have a simple linear regression
model y = β0 + xβ1 + ε for the unaliased voxel values. In this regression, β0 is the baseline
voxel value from the non-task reconstructed images determining the SNR = β0/σ, as demon-
strated in the previous subsection. The β1 value is the estimated task related signal increase
from β0 determining the contrast-to-noise ratio CNR = β1/σ. The vector x ∈ {0,1}nIMG ,
where nIMG is the number of reconstructed images in the series, is a vector such that the ze-
ros correspond to the images in the series without task activation and the ones correspond
to the images with task activation. We can write this regression as y = XB + ε, where
X = [1, x] ∈RnIMG×2 and B = [β0, β1]

′.
The task is not usually visible on the reconstructed images since the CNR is typically

much lower than the SNR. Instead, a right-tailed t-test is carried out with β1 ≤ 0 as the null
hypothesis and β1 > 0 as the alternative. The reason for the one-sided hypothesis test is be-
cause we only anticipate an increased signal from the task activation. To simulate added task,
a β1 = 0.045 magnitude-only signal increase is added to select voxels of the true noiseless
non-task image. This added task activation is located in the left motor cortex to resemble the
region of interest (ROI) of brain activity from the fMRI unilateral right-hand finger tapping
experiment used in the Section 5 (Karaman, Bruce and Rowe, 2014).

Similar to magnitude-only task activation, we can also use the phase images for task de-
tection. A simulated phase task of π/120 was also added to the simulated true simulated task
image. A simple linear regression model, ϕ= θ0 + θ1x+ ϵ, can be used for the phase acti-
vation as well. In this regression, ϕ is the phase of the reconstructed voxel, θ0 is the baseline
phase voxel value from the non-task reconstructed images, and θ1 is the estimated increase
from θ0. We then use a one-tailed t-test, t= θ̂1/SE(θ̂1), to determine which voxels contain
statistically significant θ1 values indicating which voxels experience phase task activation
(Rowe, Meller and Hoffmann, 2007).
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FIG 12. Statistically significant voxels in the ROI using FDR for BGRAPPA reconstructed images (first row of
the right three columns), significant voxels in the ROI using FDR for GRAPPA (second row of the right three
columns), and analysis of the t-statistics in the boxes on the right with BGRAPPA in red and GRAPPA in blue.
The true (first row) and the reference (second row) magnitude-only task activation is shown in the first column
with the analysis of t-statistics of the reference reconstruction shown in the image.

4.4. FMRI Spatial Frequency Data. A noiseless task image was used along with the
noiseless non-task image to create a series of nTR = 510 simulated full coil images for one
slice mimicking real-world fMRI data. The simulated task activation was designed to mimic
tapping of the subject’s right fingers leading to activity in the left motor cortex which becomes
our ROI for analyzing task detection in this experiment, as mentioned above. Knowing this,
artificial signal increase was added to the voxels in the ROI (as mentioned in Subsection 4.3)
for task images.

The true images were multiplied by the same nC = 8 coil sensitivity maps used for the
non-task simulated time series (as illustrated in Figure 5), and then the series of images were
Fourier transformed in full coil k-space arrays. This series was also generated by adding
separate N(0,0.0036nynx) noise to the real and imaginary parts of the full coil k-space
arrays and were then inverse Fourier transformed back into full coil images, yielding a CNR
of 0.75. To simulate our real-world fMRI experimental process, the first 20 time points in
the series 20 were non-task. The scaling for the first few images in the fMRI simulated data
is similar to that outlined in Subsection 4.1 for each of the tissue types. The initial 20 non-
task time points are followed by 16 epochs alternating between 15 non-task and 15 task
time points. An epoch is a stimulation period with time points of the subject at rest (non-
task) and the subject performing an action or task. The series culminated with 10 non-task
time points producing the simulated fMRI series of nTR = 510 images. To mimic the fMRI
experiment in Section 5, the first 20 time points were omitted leaving 490 time points in
the series. This series is transformed into the spatial frequency domain and then subsampled
according to the acceleration factor to simulate subsampling of a real fMRI experiment. The
last ncal full coil FOV time points in the second non-task time series from Subsection 4.1
were utilized as full FOV coil calibration k-space arrays to assess the hyperparameters. For
this simulation, we evaluate both BGRAPPA and GRAPPA using ncal = 5,10,15,20,25,30
calibration time points. The results for the different calibration time points were similar to
that of Subsection 4.2 where the different number of calibration time points had negligible
affects on the results. Different acceleration factors of nA = 2,3,4 were also tested in this
simulated fMRI experiment and are shown in the next subsection.
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4.5. FMRI Reconstruction Results. The hypothesis test described in Subsection 4.3 was
utilized to determine voxels with a statistically significant magnitude-only signal increase.
The statistically significant voxels for different acceleration factors were analyzed for the
BGRAPPA MAP reconstructed time series and the GRAPPA reconstructed time series using
the 5% false discovery rate (FDR) threshold procedure (Benjamini and Hochberg, 1995;
Genovese, Lazar and Nichols, 2002; Logan and Rowe, 2004). The ROI here consists of 28
voxels located in the left motor cortex.

Figure 12 shows the statistically significant magnitude-only voxels from the BGRAPPA
MAP reconstructed time series (first row of the right three columns) and the GRAPPA recon-
structed time series (second row of the right three columns) for the different acceleration fac-
tors compared true and reference activations in the first column. Figure 12 also summarizes
the t-statistics in the ROI for each acceleration factor. BGRAPPA identified more statistically
significant voxels in the ROI for each acceleration factor. For acceleration factors of 3 and 4,
the task activation is virtually undetected using the GRAPPA method. The mean value for the
t-statistics was also substantially higher for BGRAPPA compared to GRAPPA, demonstrat-
ing that BGRAPPA has a stronger task detection power. Increasing the acceleration factor
decreases number of voxels identified and the mean of the t-statistics for both BGRAPPA
and GRAPPA, but much more activation is captured from BGRAPPA than GRAPPA.

Using the 5% FDR threshold, Figure 13 shows phase activation for BGRAPPA and
GRAPPA reconstructed time series using acceleration factors of 2, 3, and 4. Like the
BGRAPPA reconstructed magnitude images, we can see that it captures the simulated task
activation in the ROI for each acceleration factor. For GRAPPA, the phase task activation is
captured using an acceleration of 2, but noticeably diminishes when applying acceleration
factors of 3 and 4. With higher mean t-statistic values for BGRAPPA, this indicates that
BGRAPPA has more power in phase task detection. Phase activation is a topic of study as
previously described in Subsection 4.2.

5. Experimental Data.

5.1. Data Description. A 3.0 T General Electric Signa LX magnetic resonance imager
was used to conduct an fMRI experiment on a single subject. A right-handed finger-tapping

FIG 13. Statistically significant voxels in the ROI using FDR for BGRAPPA phase reconstructed images (first row
of the right three columns), significant voxels in the ROI using FDR for GRAPPA (second row of the right three
columns), and analysis of the t-statistics in the boxes on the right with BGRAPPA in red and GRAPPA in blue.
The true (first row) and the reference (second row) phase-only task activation is shown in the first column with
the analysis of t-statistics of the reference reconstruction shown below in the image.
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task was performed in a block design with an initial 20 s rest followed by 16 epochs with 15
s off (rest state) and 15 s on (task performed). The experiment was concluded with 10 s of
rest giving us a series of nTR = 510 repetitions with each repetition being 1 s, a flip angle
of 90° and an acquisition bandwidth of 125 kHz. The data set consists of nine 2.5 mm thick
axial slices with nC = 8 receiver coils that have a 96×96 dimension for a 24 cm full FOV,
with a posterior to anterior phase encoding direction. For this paper, the time series for all
nine slices was used to analyze the effects of applying acceleration factors of nA = 2,3,4 for
both BGRAPPA and GRAPPA, but only the time series of the second slice is shown. Note
that the simulation study in Section 4 directly mimic this experimental data.

Typically, the magnetic fields in an fMRI experiment will induce a drift in the phase over
time which we correct before reconstruction to give us a stable phase through time. Once the
phase was corrected, the last ncal = 30 full k-space arrays of a non-task series of nTR = 510
time points performed on the subject were used for hyperparameter assessment. The fMRI
experimental series described above was used for fMRI analysis. The first 20 images of each
series were discarded due to varying echo times and magnetization stability. Like the simu-
lation study, the subsampled coil k-space arrays came from artificially skipping lines in the
full coil k-space arrays of the fMRI experimental time series, mimicking the effect of ac-
tually subsampling the coil k-space arrays. Before subsampling the time series, a reference
image (left image in Figure 14) was produced by averaging the nC = 8 full coil spatial fre-
quency arrays at the first time point. This provides a magnitude and phase image with which
to compare to GRAPPA and our proposed BGRAPPA.

5.2. Experimental Results. Similar to the process for the simulated data described in
Section 4, the unacquired spatial frequencies at each time point in the entire time series of
subsampled coil k-space arrays were estimated using BGRAPPA and GRAPPA separately.
The estimated full coil k-space arrays were then averaged together and transformed into im-
age space resulting in a single composite brain image. Figure 14 displays the BGRAPPA
MAP reconstructed images (top row) and the GRAPPA reconstructed images (bottom row)
of the first time point of the 490 images using acceleration factors 2, 3, and 4. Just as the
simulated results in Figure 10 demonstrated, the BGRAPPA reconstruction method in Figure

FIG 14. BGRAPPA MAP unaliased non-task magnitude images for each acceleration factor (first row of the
right three columns) using the ICM algorithm, and GRAPPA unaliased non-task magnitude images for each
acceleration factor (second row of the right three columns) with the magnitude reference image (left column).



18

14 produced visually similar magnitude reconstructed images compared to GRAPPA recon-
struction but with slightly less noise.

MSE was again utilized to quantify the differences between the reference image and re-
constructed images. The MSE for inside the brain for GRAPPA was approximately 12%,
10%, and 3% higher for each acceleration factor, respectively, compared to BGRAPPA.
GRAPPA having a larger MSE inside the brain for each acceleration factor, respectively,
reflects decreased noise from BGRAPPA versus GRAPPA. The entropy for BGRAPPA
(214.1026, 207.5331, and 204.1746, respectively) was also lower than the entropy for
GRAPPA (216.0362, 212.3556, and 210.3667, respectively) indicating that the BGRAPPA
reconstructed images are more smooth. The phase of the experimental reconstructed images
for the different acceleration factors can be found in Section 2 of the Supplementary Material
(Sakitis and Rowe, 2024).

For the detection of magnitude task activation, the hypothesis test outlined in Subsection
4.3 was carried out. Figure 15 shows the statistically significant voxels under BGRAPPA
(top row) and GRAPPA (bottom row) reconstruction. The images for the statistically signif-
icant voxels in Figure 15 for both methods use the 5% FDR threshold. Voxels outside the
brain are usually masked out meaning the statistically significant voxels shown outside the
brain in Figure 15 would typically be discarded. Figure 15 also summarizes the t-statistics
with BGRAPPA (red) and GRAPPA (blue). BGRAPPA correctly detected more voxels than
GRAPPA as task activation in the ROI for all three acceleration factors. Our BGRAPPA ap-
proach also had a much higher mean t-statistic and a lower standard deviation for all the
acceleration factors.

FIG 15. Statistically significant voxels in the ROI using FDR for BGRAPPA reconstructed images (first row of the
right three columns) for three different acceleration factors, significant voxels in the ROI using FDR for GRAPPA
(second row of the right three columns) for three different acceleration factors, and analysis of the t-statistics to
the right of the images with BGRAPPA in red and GRAPPA in blue. The reference magnitude-only task activation
is shown on the left column with the analysis of t-statistics below in black.

6. Discussion. Parallel imaging techniques such as GRAPPA (Griswold et al., 2002)
have utilized subsampling of k-space to reduced the acquisition time for MR imaging. This
allows practitioners to reconstruct higher resolution images, decrease the time between each
image, increase the number of images or slices in an fMRI experiment, or a combination
of both in the same time as fully sampled k-space, depending on the acceleration factor. The
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acceleration factor in an fMRI experiment is determined by how important time is in complet-
ing a scan. The number of coils used in an experiment is dependent on the coil configurations
that facility possesses.

Applying an acceleration factor in an fMRI experiment can significantly reduce the ac-
quisition time of spatial frequency arrays and volume images, but taking the IFT of the sub-
sampled k-space yields aliased images. GRAPPA parallel image reconstruction estimates
the unacquired spatial frequencies that are skipped during the acquistion of the subsampled
k-space arrays yielding full FOV coil spatial frequency arrays. However, GRAPPA has its
drawbacks which include low image quality, low SNR, and weakened task detection power
at higher acceleration factors. Hence we introduce a Bayesian approach to estimate the un-
acquired spatial frequencies. Using more available information from the calibration spatial
frequencies to assess the hyperparameters, our proposed approach successfully reconstructed
a series of simulated non-task images without any aliasing artifacts. The BGRAPPA recon-
structed images were shown to more accurately reconstruct the truth compared to GRAPPA.
The number of calibration time points had minimal effect on the GRAPPA reconstructed im-
ages and its performance against BGRAPPA reconstructed images. The results also indicated
that the different acceleration factors had little effect on the reconstruction of the images but
did have lesser task detection power for both methods. Our BGRAPPA approach had better
performance when detecting the signal increase in the voxels that experienced task activation
which is demonstrated from both the simulated and experimental data.

For this paper, only the MAP estimate using the ICM algorithm was used to reconstruct
the time series both the simulated and experimental data. Since we have posterior condi-
tionals for each of the parameters, this allows us to use other estimation techniques such as
the MCMC Gibbs sampling method. We chose not to present this method due to the Gibbs
sampler being more computationally expensive when running a long series of images so it
is not be as practical to use compared to evaluating the MAP estimate. This does not mean
there is no value in running a Gibbs sampler, as it has the additional benefit of quantifying
uncertainty. For instance, it can be utilized on a shorter series of images, provide us more sta-
tistical information about any voxel, hypothesis testing between two reconstructed images,
or identifying which voxels are outside the brain for masking. We could also hybridize the
ICM and Gibbs sampler where we start with a few iterations of the ICM algorithm followed
by a short, no-burn Gibbs sampler. Our Bayesian approach allows for more options of how
to run an fMRI experiment based on the objective of the scan compared to GRAPPA.

In this paper, a magnitude-only and phase-only activation model was utilized to detect
task activation. Due to the high noise in the experimental data set, there were no phase active
voxels as there were in the idealized simulation. Since the reconstructed images are complex-
valued, our proposed model is expected to be applicable for complex activation models for
task detection (Rowe and Logan, 2004; Rowe, 2005, 2009) as well as magnetic field mapping.
Further, our proposed procedure can also be repeated for vertical aliasing as opposed to the
horizontal aliasing used here.

Acknowledgments. The authors thank the Wehr Foundation as this research was funded
by the Computational Sciences Summer Research Fellowship (CSSRF) at Marquette Uni-
versity in the Department of Mathematical and Statistical Sciences. This research was also
funded by the Regular Research Grant (RRG) provided by the Committee on Research at
Marquette University.

SUPPLEMENTARY MATERIAL

Supplement to "Bayesian Approach to GRAPPA Parallel Image Reconstruction In-
creases SNR and Power of Task Detection"
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The supplement to this paper provides additional results for phase reconstructed images,
subsampling the calibration time points for separate hyperparameter assessment, and details
about the experimental data.
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S-1. Simulated Results. Since the reconstructed images are complex-valued, we are
able to examine the phase images. Even though phase images are typically discarded in re-
construction analysis, there can be value information that you could get from the phase that
may not be in the magnitude images (Rowe and Logan, 2004; Rowe, 2005; Rowe, Meller
and Hoffmann, 2007; Rowe, 2009). The phase of the reconstructed images for a different
number of calibration images is shown in Figure S-1 for BGRAPPA (top row of the right
three columns) and GRAPPA (bottom row of the right three columns). The images in Figure
S-1 indicate that increasing the number of calibration images has little to no effect on the
phase of the reconstructed images for both BGRAPPA and GRAPPA. Both methods produce
phase images that resemble the true simulated phase with GRAPPA being visually slightly
less accurate and noisier than BGRAPPA.

Figure S-2 displays the phase of reconstructed images for both BGRAPPA (top row of the
right three columns) and GRAPPA (bottom row of the right three columns) using acceleration
factors of 2, 4, and 8. The phase images inside the brain for BGRAPPA and GRAPPA are un-
affected by the different acceleration factors. For GRAPPA, the phase images appear to have
a minor aliasing effect outside the brain as the acceleration factor increases with BGRAPPA
having visually lower noise and higher accuracy than GRAPPA. Note that as nA increases,
the GRAPPA phase images exhibit homogeneous values outside the brain when they should
be random.

FIG S-1. Reconstructed phase images for different number of calibration images using BGRAPPA MAP estimate
(top row of the right three columns) and GRAPPA (second row of the right three columns) with the true simulated
phase image (top left), and the reference phase image (bottom left). Due to the circular nature of phase angles,
the color bar for the phase images have wrap-around.
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FIG S-2. Reconstructed phase images for different acceleration factors using BGRAPPA MAP estimate (top row
of the right three columns) and GRAPPA (second row of the right three columns) with the true simulated phase
image (top left), and the reference phase image (bottom left). Due to the circular nature of phase angles, the color
bar for the phase images have wrap-around.

For estimating priors of BGRAPPA, we use up to 30 calibration time points which are
utilized to assess the hyperparameters. This means the same prior information is used at
each time point when reconstructing the fMRI time series which could potentially lead to
correlation with previously aliased voxels or task leakage (false detection of task in voxels
that were previously aliased). To possibly mitigate this, we can randomly subsample the
calibration spatial frequency arrays used at each time point in the fMRI time series. This
means different hyperparameters are applied at each time point to the reconstruction of the
subsampled k-space time series. We can also change the prior scalars nk and nw in the
posterior conditional mode equations to be less than the number of calibration time points
which decreases the weight of the prior information incorporated in the reconstructed images.

Here, we analyzed how the same subsampling parameters effect task detection for
BGRAPPA fixing the prior scalars nk = 1 and nW = 1. Figure S-3a displays the number
of voxels identified as task in the ROI along with the top and bottom task leakage from un-
aliasing. Figure S-3b illustrates the mean of the t-values in the ROI, the voxels in the top
leakage, and the voxels in the bottom leakage. For both plots in Figure S-3, the lines with
black dots are the values for the ROI, the lines with the black stars are the values for the top
leakage region, and the lines with the black triangles are the values for the bottom leakage
region.

As demonstrated in Figure S-3a, the number of magnitude task voxels correctly identified
does not drastically change (except for subsampling of 5 calibration time points). Subsam-
pling the calibration time points does not markedly decrease the number of voxels incorrectly
identified as task in the leakage areas either. Corresponding results for this method are exhib-
ited in analyzing the mean t-statistics shown in Figure S-3. Along with the identification of
task voxels, introducing subsampling does not affect the mean of the t-values for the ROI or
the region of task leakage compared to the normal BGRAPPA method. These results show
that subsampling does not affect the power of task detection for BGRAPPA.

S-2. Experimental Data and Results. For each volume image in the experimental se-
ries, a time dependent echo time, TEt, consisted of three parts. The first part was fixed to
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FIG S-3. (a) Plot for number of voxels detected as task activation in the ROI and location of the potential task
leakage (with nA = 3) for each subsample size for bootstrapping the calibration image. (b) Plot for mean of the
t-statistics of voxels in the ROI and location of the potential task leakage (with nA = 3) for each subsample size
for bootstrapping the calibration images. The lines with the black dots indicate the lines for analysis inside the
ROI, the lines with the black stars indicate analysis for the top task leakage, and the lines with the black triangles
lines for analysis of the bottom task leakage.

have a value of TE = 42.7 ms at the first 10 time points. In the second part, the next five TE
values were an equally spaced interval of values 42.7 ms, 45.2 ms, 47.7 ms, 50.2 ms, and 52.7
ms and was repeated for another 5 time points. For the final part, the last 490 time points were
fixed at 42.7 ms. To account for T1 effects and varying echo times, the center row of k-space
for each TR in each receiver coil was acquired with three navigator echoes which is used to
correct any potential Nyquist “ghosting.” The additional rows of k-space were integrated to
estimate and adjust the error in the center frequency and group delay offsets between the odd
and even lines of k-space (Nencka, Hahn and Rowe, 2008).

FIG S-4. BGRAPPA MAP unaliased non-task phase images for each acceleration factor (first row of the right
three columns) using the ICM algorithm, and GRAPPA unaliased non-task phase images for each acceleration
factor (second row of the right three columns) with the phase reference image (left column). Due to the circular
nature of phase angles, the color bar for the phase images have wrap-around.
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Before correcting the phase, the full non-task and full task experimental time series was
appended to be one long time series. The angular phase temporal mean of the long time
series is calculated and subtracted for each voxel time-series. A local spatial second order
polynomial was spatially fit to the resultant difference of the voxel phase time-series. Then
the fitted polynomial is added to the mean phase image producing a steady phase over time for
each coil. Once the phase was corrected, the two series were partitioned back into calibration
and experimental series.

We also analyzed the phase of the reconstructed experimental time series using accelera-
tion factors of nA = 2,3,4, displayed in Figure S-4. The appearance of the BGRAPPA and
GRAPPA phase reconstructed images are due to the imperfect shims of the magnetic field
gradients. An example of this can be seen in the experimental data of the Bruce, Karaman
and Rowe 2011 paper. In the simulated data used for the this study, perfect homogeneity
throughout the magnetic gradient field is assumed resulting in clear anatomical structure for
the phase reconstructed images in Figure S-2 The reconstructed phase images for both meth-
ods in Figure S-4 accurately represent the phase images and can also be utilized estimate the
change in the B-field inhomogeneity, ∆B (Hahn, Nencka and Rowe, 2012). Like the experi-
mental magnitude images, increasing the acceleration factor has little effect of the BGRAPPA
and GRAPPA reconstructed phase images.
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