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fMRI Background

• Functional Magnetic Resonance Imaging (fMRI) is a noninvasive medical 
imaging technique that observes the human brain in action

• Primary goal: Detect brain activity

• Machine uses receiver coils to capture complex-valued arrays of spatial 
frequencies called k-space

• Can take a considerable amount of time to fully sample k-space

• Limits the temporal and spatial resolution of the acquired images which 
can diminish effectively capturing brain activity

• Solution: Measure less data

• Subsample spatial frequencies by skipping lines in the sequential 
acquisition process

• Causes reconstructed image to be aliased

Subsample
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Subsampling k-space

Reconstruct

Multiple Coils
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Method

• GRAPPA is a 
parallel imaging 
technique that 
utilizes weights 
to interpolate 
the missing 
spatial 
frequencies

• Estimates 
weights using 
full FOV 
calibration coil 
k-space arrays 
acquired before 
the fMRI 
experiment

Subsampled k-space

• Acquired
• Unobserved
• Estimated

Subsampled k-space Estimated k-space

Full estimated coil k-spaceFull single k-spaceFull brain image
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Interpolating – Kernel Size: 2x1

4Cn =

2rowsk =

1colsk =

C rows colsp n k k=

*Full Spatial Frequency Arrays* • Acquired
• Omitted
• Calibration
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Coil 1
Coil 2
Coil 3
Coil 4

Interpolating – Kernel Size: 2x1

4Cn =

2rowsk =

1colsk =

C rows colsp n k k=

*Full Spatial Frequency Arrays* • Acquired
• Omitted
• Calibration
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Coil 1
Coil 2
Coil 3
Coil 4

calib lf wf=
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calibf calibration=
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Estimating Missing Spatial Frequencies

k lf wf=

• Once when the weights are calculated, 
they are used to interpolate the 
missing spatial frequencies

• Weights are used for each time point 
in the fMRI series

lf acquired=

kf estimated=
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• Acquired
• Unobserved
• Estimated
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Subsampled k-space array

GRAPPA BGRAPPA

:lf observed

:w estimated

:kf unobserved

k lf wf = +

: ( )lf unknown prior

: ( )w unknown prior

:kf observed

**What we are interested in

2

2~ (0, )
CnN I 

2 : ( )unknown prior

Model Parameters

**What we are interested in

• Acquired
• Omitted
• Calibration

k lf wf = +
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Model, Likelihood, and Prior Distribution

• Subsampled k-space measurements are observed with random error

•         , where

• Data Likelihood

•  

• Priors

•  

•  

•  

• Assessed Hyperparameters: 𝑛𝑤, 𝐷0, 𝑛𝑙,𝑓𝑙0, 𝛼𝑘, and 𝛿

• Posterior

•  
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𝑛𝐶 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑖𝑙𝑠
𝑛𝐴 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

Normal

Normal

Normal

Inverse Gamma
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Simulated Data

• 490 time points in the simulated fMRI time 
series

• Started with 510 time points discarding 
first 20 to mimic experimental fMRI

• 30 calibration time points utilized for 
hyperparameter assessment

• Calibration time points from a separate 
simulated series

• Number of coils used is 8 with an 
acceleration factor of 3

• 2x1 kernel size used for the 
hyperparameter assessment and parameter 
estimation

• Reconstruction Method: MAP estimate via 
ICM for BGRAPPA

ImaginaryReal

Coil 1

Coil 2

Coil 3

Coil 4

Coil 5

Coil 6

Coil 7

Coil 8

Full coil k-spaces 
are averaged 

together to form 
one full k-space 

then reconstructed 
to a full image 
using the IFT  

*Averaging the coil arrays 
does not properly scale 
the image since it does 
not utilize coil sensitivities 
in the reconstruction
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Reconstructed Images for One Time Point
BGRAPPA MAP

𝑛𝐶 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑖𝑙𝑠(8)
𝑛𝐴 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟(3)
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Magnitude MSE

• Decreased noise inside and outside 
the brain for BGRAPPA

• This leads to more accurate 
reconstruction when compared to 
the true simulated images

• The MSE plot above shows the 
larger MSE for the GRAPPA 
magnitude image (which is 
statistically significant)



4. Simulation Study

16

Mathematical & Statistical Sciences

Chase Sakitis

Analysis for Time Series
SNR

𝑛𝐶 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑖𝑙𝑠(8)
𝑛𝐴 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟(3)

0.00050

Temporal Variance Task Detection
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Threshold: 3.8262

Threshold: 3.8262

• Lower temporal variance for the 
BGRAPPA reconstructed time series 
which leads to higher SNR

• With an FDR threshold of 3.8262, 
BGRAPPA identified 18/28 task voxels 
in the ROI while GRAPPA identified 1

• The plot below shows BGRAPPA 
having a higher mean t-stat values in 
the ROI, increasing the power of task 
detection



5. Discussion

17

Mathematical & Statistical Sciences

Chase Sakitis

Conclusion and Future Work

• BGRAPPA is a Bayesian approach to GRAPPA which incorporates more valuable prior information in 
estimating the missing spatial frequency values

• BGRAPPA reconstructed images more accurately than GRAPPA while decreasing temporal variation 
which increased SNR and task detection power

• Future work:

• Analyze correlation between previously aliased voxels and all other voxels in the image

• Potential bootstrapping of the calibration images

• Apply BGRAPPA to experimental fMRI data and compare to GRAPPA reconstruction along the way



 

Thank You

 Questions?
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