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Functional Magnetic Resonance Imaging (fMRI) is a type of medical

imaging that was developed in the early 1990’s as a technique to

noninvasively observe the human brain in action using strong magnetic

fields. Historically, a single channel coil receiver has been utilized in fMRI

to measure full-sampled k-space data arrays which are reconstructed into

images using the inverse Fourier transform (IFT). Along with parallel

utilization of multiple receiver coils, here we use 𝑛𝑐 = 4 coils as displayed

in Fig. 1 (left), parallel imaging

techniques began subsampling lines

in-plane by skipping lines of k-space for

an image causing the reconstructed

coil images to be aliased. Skipping

lines in k-space introduces what is

called an acceleration factor, or

reduction factor. The acceleration

factor indicates which lines of data in k-space are measured and how

many lines are skipped in data acquisition. As shown in Fig. 1 (right), with

an acceleration factor of 𝑛𝐴 = 3, every third line horizontally in k-space is

measured by skipping every two lines in the k-space array. In 1999,

Pruessmann et al. introduced SENSitivity Encoding (SENSE) which

operates on the aliased images after the IFT [1].

INTRODUCTION BSENSE
The k-space arrays acquired by the MRI scanner are complex-valued

which means after the IFT, the aliased coil measurements would also be

complex-valued. This would indicate that the a, S, and v in Eq. 2 are

complex-valued parameters, so the SENSE parameter estimation remains

in complex form. For BSENSE, we can represent Eq. 2 by a real-valued

isomorphic representation [3] of the complex model, shown in Eq. 4.

(4)

This representation will

cause S to have a skew

symmetric structure

and can be compactly

written like Eq. 2 but is

now an isomorphism

representation of the

complex equation. With

the Bayesian approach,

prior distributions are provided for the unknown parameters and valuable

available prior information is utilized for parameter estimation. Using Eq.

2 with added measurement error, our model becomes:

(5)

where 𝑎 ∈ ℝ2𝑛𝑐×1 , S ∈ ℝ2𝑛𝑐×2𝑛𝐴 , v ∈ ℝ2𝑛𝐴×1 , ε ∈ ℝ2𝑛𝑐×1 , and

𝜀~𝑁(0, 𝜎2𝐼𝑛𝑐). The likelihood distribution of the measurements is

(6)

where a is the observed aliased coil image measurements, S is the

unobserved coil reception sensitivities, v is the unobserved true image

slice voxel values, and 𝜎2 is the unobserved image noise variance. We

can quantify available prior information about the unobserved parameters

S, v, and 𝜎2 with assessed hyperparameters of the prior distributions

fusing information contained in pre-scan calibration images.

(7)

(8)

(9)

Using the H = S𝑅
′ S𝐼

′ representation of the sensitivities will ensure that

the real and imaginary components only get estimated once, preserving

the proper skew symmetry constraint of the a posteriori estimated

sensitivities which was previously not done [2]. The Maximum A Posteriori

(MAP) was estimated using the Iterated Conditional Modes (ICM)

optimization algorithm [4] with equations 10, 11, and 12 showing the

conditional modes used for the algorithm.

(10)

(11)

(12)

The MCMC Gibbs sampler [5] was implemented with posterior conditional

distributions to form a chain of reconstructed posterior conditional images.

(13)

(14)

(15)

(1) KP Pruessmann et al. SENSE: Sensitivity Encoding for fast MRI. MRM 42:952-962, 1999.

(2) Rowe DB. A Bayesian approach to SENSE Image Reconstruction in FMRI. Proc. Joint Stat Meet, Statistical Society of

Canada, 21:378-92, Baltimore, MD, 2017.

(3) Bruce IP, Karaman MM, Rowe DB. A statistical examination of SENSE image reconstruction via an isomorphism

representation. Magn Reson Imaging, 29:1267-87, 2011.

(4) Lindley DV, Smith AFM. Bayes estimates for the linear model, J Royal Stat Soc B, 34:1-18, 1972.

(5) Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans

Pattern Anal Mach Intell, 6:721-41, 1984

REFERENCES

SENSE
Each local receiver coil possesses a depth sensitivity profile that is

related to its size measuring a different sensitivity weighted version of the

true slice. Depicted in Fig. 2 (center) is a true slice image with 𝑛𝐴 = 3
voxels 𝑣1, 𝑣2, 𝑣3 in corresponding locations relative to each strip [2]. Each

coil measures a rectangular k-space array that after IFT reconstruction

produces an aliased image that is the weighted sum of three horizontal

strips of the full true image. In Fig. 2 (top right), the true aliased image is

the pointwise multiplication of the given voxel by the sensitivity profile for

coil 1 summed for the three strips. This process is the same for the other

3 coils creating a system of equations

shown in Eq. 1.

(1)

Which can be represented as

(2)

and solved using the least squares

estimate in Eq 3.

(3)

This parameter estimation approach can

be difficult because the design matrix, generally, is ill-conditioned

meaning it is not positive definite. There are numerous methods to

correcting the rank deficiency in the design matrix, however, these

methods could result in valuable data being unused, limitation of useful

results, or can be more computationally expensive. These flaws become

the main motivation for a Bayesian approach to SENSE (BSENSE) that

allows for a more general process for image reconstruction.

Figure 1: Four channel coil (left) and k-space zig-zag coverage 

(right).

Figure 2: True slice image (center) along with coil sensitivity
profiles (left, right, top, bottom) and sensitivity weighted
true aliased images (corners).
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Figure 3: True slice complex-valued image (center) along with complex-valued coil sensitivity
profiles (left, right, top, bottom) and complex-valued sensitivity weighted true aliased images
(corners).
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These techniques were applied to

simulated data and compared to SENSE

as shown in Fig. 4. We can see that the

joint MAP estimate and marginal posterior

mean for BSENSE image reconstruction

produce images with no aliasing artifacts

and clearer brain tissue contrast when

compared to SENSE. The objective of

fMRI is to have the patient perform a task,

finger tapping, and observe the working

brain where increased neuronal activation

occurs. The non-task reconstructed images

create a baseline value for each voxel

giving us an intercept only simple linear regression y = 𝛽0, where y is the

estimated voxel value. By adding task activation to certain images in the

series, we then have a simple linear regression y = 𝛽0 + x𝛽1 for our

estimated voxel values. In this regression, 𝛽0 is the baseline voxel value

from the non-task reconstructed images determining the signal-to-noise

ratio (SNR), which is 𝛽0/𝜎, and 𝛽1 is the estimated increase from 𝛽0
which would be the contrast-to-noise ratio (CNR), calculated by 𝛽1/𝜎. The

vector x consists of zeros and ones where the zeros correspond to

images in the series without task activation and ones corresponding to

images with task activation. Since CNR is often notably lower than SNR

with noise generally present, the activation is not usually visual on the

final reconstructed image. Instead, a hypothesis test is carried out with

𝛽1 ≤ 0 as the null hypothesis and 𝛽1 > 0 as the alternative hypothesis. A

one-tailed t-test is implemented to determine if any of the voxels

experienced statistically significant increase from the performed task. The

true noiseless non-task image and task image was used to generate a

series of 512 simulated aliased coil images by alternating between 8 task

and 8 non-task images, mimicking a real-world fMRI experimental process.

The entire series was reconstructed into full, unaliased images using both

SENSE and BSENSE MAP separately.

Then the hypothesis test was utilized with a

0.1 significance level to determine voxels

with a statistically significant signal

increase. In Fig. 5, the left column shows

the statistically significant voxels using the

per-comparison error rate (PCER) and the

right column shows the significant voxels

using the false discovery rate (FDR)

correction with BSENSE on top and

SENSE on bottom for both columns. We

can see that the BSENSE MAP estimate

performed better at detecting task

activation after the multiplicity correction.

RESULTS

Figure 4: True non-task unaliased image (top left), BSENSE

MAP unaliased non-task magnitude image (top right)

using ICM, Mean BSENSE unaliased non-task magnitude

image (bottom left) using Gibbs sampling, and SENSE

non-task magnitude image (bottom right)

Figure 5: Statistically significant voxels using PCER for

BSENSE reconstructed images (top left), significant voxels

using FDR for BSENSE (top right), significant voxels using

PCER for SENSE (bottom left), and significant voxels using

FDR for SENSE (bottom right).


