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Abstract 

In fMRI, capturing cognitive temporal dynamics is dependent on how quickly volume brain 
images are acquired. The sampling time for an array of spatial frequencies to reconstruct an image 
is the limiting factor in the fMRI process. Multi-coil Sensitivity Encoding (SENSE) image 
reconstruction is a parallel imaging technique that has greatly reduced image scan time. In SENSE 
image reconstruction, coil sensitivities are estimated once from a priori calibration images and 
used as fixed “known” coil sensitivities for image reconstruction of every subsequent image. This 
technique utilizes complex-valued least squares estimation via the normal equation to estimate 
voxel values for the reconstructed image. This method can encounter difficulty in estimating voxel 
values when the SENSE design matrix is not positive definite. Here, we propose a Bayesian 
approach where prior distributions for the unaliased images, coil sensitivities, and uncertainty are 
assessed from the a priori calibration image information. Images and coil sensitivities are jointly 
estimated a posteriori via the Iterated Conditional Modes algorithm and Markov chain Monte 
Carlo using Gibbs sampling. In addition, variability estimates and hypothesis testing is possible. 
This Bayesian SENSE (BSENSE) model utilizes prior image information to reconstruct images 
from the posterior distribution and is applied to simulated and experimental fMRI data. This 
BSENSE model when compared to SENSE produced a cleaner, less noisy reconstructed image 
with a clearer distinction between the different brain matter. It also yielded increased task 
activation in both the simulated data and the experimental data. 
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1. Introduction

1.1 Background 

Magnetic Resonance Imaging (MRI) is a type of medical imaging that creates internal 
anatomic body images using strong magnetic fields. Functional Magnetic Resonance Imaging 
(fMRI) was developed in the early 1990’s as a technique to noninvasively observe the human brain 
in action without exogenous contrast agents (Bandettini et al, 1993). This procedure examines 
brain activity by detecting changes in the blood oxygenation using the blood-oxygen-level 
dependent (BOLD) contrast (Ogawa et al., 1990). When a neuron fires, the blood oxygenation 
changes in the proximity of the neuron and is thus a correlate for neuronal firing. In MRI, the 
machine does not directly measure voxel values and images. Measurements from the machine are 
arrays of complex-valued spatial frequencies called k-space (Kumar et al., 1975). Measuring full 
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arrays of data for all the slices that form the volume image typically takes about one to two seconds, 
limiting the temporal resolution of the acquired images. These k-space values are then 
reconstructed into images using an inverse Fourier transform (IFT). The acquisition of k-space 
arrays to make up a volume image can take a considerable amount of time. A great deal of work 
has been dedicated to reducing the scan time of the MRI process by accelerating the number of 
images acquired per unit of time. Hyde et al. (1986), Pruessmann et al. (1999), and Griswold et al. 
(2002) all explore parallel techniques to reduce the scan time in MRI. 

1.2 Previous Approaches 

Historically, a single channel coil receiver has been utilized in fMRI to measure full-sampled 
k-space data arrays. Along with parallel utilization of multiple receiver coils, parallel imaging
techniques began subsampling lines in-plane by skipping lines of k-space for an image, causing
the reconstructed coil images to be aliased. In 1999, Pruessmann et al. introduced SENSitivity
Encoding (SENSE) which operates on the aliased images after the IFT. GeneRalized
Autocalibrating Partial Parallel Acquisition (GRAPPA) is another parallel imaging technique,
introduced by Griswold et al. (2002), that operates on the subsampled k-space prior to the IFT.
Both are major parallel imaging techniques developed to unalias in-plane images. The purpose of
this research is to introduce a formal Bayesian approach to SENSE (BSENSE) image
reconstruction so the focus will be on SENSE.

As previously noted, acquiring a series of volume images can take a relatively long time and 
reducing scan time is a primary goal of parallel imaging. An intuitive solution to obtaining this 
goal is to travel faster through k-space. However, technical limitations of doing such have already 
been reached. This means the advancements in MRI technology has significantly reduced the 
intervals between the obtained spatial data, essentially maximizing the speed of the sequential data 
acquisition. More recently, the technology development focus has been to reduce time by 
measuring less data without losing the ability to form a full image. This can be accomplished by 
skipping lines in the k-space array and not measuring the corresponding data values which under-
samples, or subsamples, k-space. Skipping lines in k-space introduces what is called an 
acceleration factor, or reduction factor. The acceleration factor indicates which lines of data in k-
space are measured and how many lines are skipped in data acquisition. As shown in Figure 1.1 

Figure 1.1: Four channel coil (left) and k-space zig-zag coverage (right). 
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(right), with an acceleration factor of nA = 3, every third line horizontally in k-space is measured 
by skipping every two lines in the k-space array. This acceleration factor will cause the 
reconstructed coil images to appear as if the full image was cut into three equal horizontal strips 
that are summed together. This happens because the Fourier transform cannot uniquely map the 
insufficiently sampled signals. The SENSE method uses the sensitivity coil information to unfold 
and combine the aliased coil measurements into a full field-of-view (FOV) reconstructed image. 
This technique, however, can produce measurement noise in the reconstructed image which may 
require adding a regularizer to the parameter estimation or smoothing the images to reduce the 
noise. Also, SENSE only uses the sensitivity coil information from the calibration images for 
estimating the unaliased voxel values. With BSENSE, all valuable data from the calibration 
images, such as sensitivity coil weights, full FOV voxel values, noise variance, and the number 
calibration images, is employed as prior information. This prior information is utilized to estimate 
the unaliased voxel values while substantially reducing the contrast noise in the reconstructed 
image leading to more statistically significant task activation. 

1.3 Overview 

The second section of this paper will explain the model of SENSE image reconstruction and 
compare the complex-valued nature of the problem to a real-valued isomorphic representation. 
This will lead into our approach and the mathematics behind the Bayesian model in Section 3 
along with hyperparameter assessment and parameter estimation. Section 4 will illustrate the 
simulated fMRI data for a single slice non-task image, discuss task activation, and show the results 
for task detection from a series of reconstructed images. This section will compare the simulated 
results between the SENSE method and the BSENSE method. In Section 5, we will describe the 
human fMRI data used for the experimental results of task detection. We will conclude in Section 
6 with an overview of the important results of the paper, examine the advantages of BSENSE over 
SENSE, explore other aspects of BSENSE that were tested, and a discussion of future work.  

2. SENSE Method

2.1 Model 

Each local receiver coil possesses a depth sensitivity profile that is related to its size measuring 
a different sensitivity weighted version of the true slice. The use of nC = 4 coils in this section and 
Section 3 are for illustration purposes only. The simulated and experimental results in Sections 4 
and 5 will employ nC = 8 receiver coils. Depicted in Figure 2.1 (middle center) is a true slice image 
with nA = 3 voxels v1, v2, v3 in corresponding locations relative to each strip. Each coil measures 
a rectangular k-space array that after inverse Fourier transform reconstruction produces an aliased 
rectangular image that is the weighted sum of three horizontal strips of the full true image. In 
Figure 2.1 (top right) the true aliased image is the point-wise multiplication of the given voxel by 
the sensitivity profile for coil 1 summed for the three strips, a1 = S11v1 + S12v2 + S13v3 where S11, 
S12, and S13 are the scalar weights (valued between zero and one) that determines how strongly v1, 
v2, v3, respectively, show in coil 1 and a1 is the scalar weighted voxel value (observed coil 
measurement). For each coil, the aliased sensitivities are not constrained to sum to one. For 
example, sensitivities S11, S12, and S13 from the top coil do not need to sum to one. Shown in Figure 
2.1, this is the same process for the other three coils with coil 2 (bottom right) a2 = S21v1 + S22v2 +
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S23v3, coil 3 (bottom left) a3 = S31v1 + S32v2 + S33v3, and coil 4 (top left) a4 = S41v1 + S42v2 + S43v3. 
This is showing that a1, a2, a3, and a4 are located in the same position (the white center point) in 

Figure 2.1: True slice image along with coil sensitivity profiles and sensitivity 
weighted true aliased images. 

their respective aliased coil images which are used, along with coil measurements create a system 
of equations which can be expressed as Eq. 2.1. 
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Where a = [a1,a2,a3,a4]' is a nC × 1 vector of the observed coil measurements, 
S = [[S11,S21,S31,S41]',[S12,S22,S32,S42]',[S13,S23,S33,S43]'] is a nC × nA matrix of the unobserved 
coil sensitivities, and v = [v1,v2,v3]'  is a nA × 1 vector of the unobserved true slice voxel values. 
This system of equations can be represented by Eq. 2.2 and is the model used for SENSE image 
reconstruction. 

a Sv= . [2.2] 
If we are able to obtain an estimate of the coil sensitivities Ŝ from the pre-scan calibration images, 
we can obtain a least squares estimate of the nA true slice voxel values v from Eq. 2.3.  
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1ˆ ˆ ˆˆ ( ' ) 'v S S S a−= . [2.3] 
This process is repeated for each voxel in the aliased image. 

Since S is a matrix for the subsampling of k-space, the least squares estimation projects onto a 
subspace as opposed to the fully sampled k-space where S is a vector and the least squares 
estimation projects onto a vector so we must use caution when attempting to invert (Ŝ 'Ŝ). This 
approach for parameter estimation can be difficult because the design matrix, generally, is ill-
conditioned which means it is not always positive definite. This can cause signal-to-noise ratio 
(SNR) degradation and aliasing artifacts in the final reconstructed image when an acceleration 
(reduction) factor is applied (Pruessmann et al., 1999). 

Rank deficiency or singularity in the design matrix can be a common problem in regression 
which can be mitigated using numerous techniques. In SENSE image reconstruction, the use of a 
regularizer is the most common approach to addressing issues with aliasing artifacts or SNR 
degradation. The regularization can still produce poor, low-resolution images that introduces bias 
resulting in blurred images [11]. Liu et al. (2009) used Bregman iterations to update the 
regularization function to reduce the effect from a fixed regularizer. In practice, however, this 
Bregman optimization can become computationally expensive increasing the reconstruction time. 
These deficiencies become the motivation for a Bayesian approach, which will allow for a more 
general method for image reconstruction, along with the use of available prior information, and 
provide full distributions for unknown parameters. 

2.2 SENSE vs. SENSE-ITIVE 

We now consider the true complex-valued version of the scenarios described in the previous 
subsection, as k-space data acquired by the MRI scanner is not real-valued. Traditional SENSE 
performs reconstruction while the data values are still in complex-valued form. Bruce et al. (2012) 
shows that the complex-valued model in Eq. 2.2 can be expressed by a real-valued isomorphic 
representation called the SENSE-ITIVE model conveyed by Eq. 2.4. 

R R I R

I I R I

a S S v
a S S v

−     
=     

     
.     [2.4] 

Eq. 2.4 characterizes the design matrix S as being skew-symmetric. The BSENSE model will use 
the real-valued isomorphism instead of the complex-valued representation (Bruce et al., 2012). 
Continuing the illustrative use of nC = 4 receiver coils displayed in Figures 1.1 (left) and 2.1, the 
depth sensitivity profiles for each coil now contain a real part and an imaginary part. Each coil 
measures a complex-valued sensitivity weighted true image slice that is dependent on the location 
and size of the coil. Figure 2.2, similar to Figure 2.1 shows the true complex-valued image slices 
with nC = 4 coils (top, bottom, left, right) and their respective depth sensitivity to the aliased true 
image slice (the four corners of the figure) with the real parts on the left and the imaginary parts 
on the right. In Figure 2.2 (top right) the aliased image is the point-wise multiplication of the given 
voxel by the sensitivity profile for coil 1 summed for the three strips. The linear equations for the 
real component and the imaginary component are expressed in Figure 2.2 (top right). This process 
is repeated for coil 2 (bottom right), coil 3 (bottom left), and coil 4 (top left), displayed in Figure 
2.2, with the respective real and imaginary equations. 
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The nC = 4 coil measurements create a system of equations which can be expressed in matrix 
form as shown in Eq. 2.5, where the a’s are observed aliased coil measurements, the S’s are 
unobserved coil sensitivities, and the v’s are unobserved true slice voxel values. Likewise in Eq. 
2.4, this representation creates a skew symmetric design matrix for S. This equation is a latent 
variable model similar to factor analysis but complex-valued and can be more compactly written 
as a = Sv where a ∈ ℝ2nC×1, S ∈ ℝ2nC×2nA, and v ∈ ℝ2nA×1. We can obtain a least squares estimate 
of the nA true slice voxel values v from Eq. 2.3 by estimating the complex-valued coil sensitivities 
Ŝ and using the observed aliased coil measurements a. 
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It is important to note that (Ŝ 'Ŝ) in Eq. 2.3 is not generally positive definite and can be nearly 
singular due to it being ill-conditioned making it numerically unstable to invert. The design and 
construction of the sensitivity coils can cause the columns of S to be nearly linearly dependent. 
This problem can sometimes be mitigated using a regularizer such as lasso (Tibshirani, 1996) or 
ridge regression (Hoerl, Kennard, 1970). Liu et al. (2009) also used Bregmans distance to update 
the regularizer but the iteration algorithm can be computationally expensive. These regularizers 
are derived from Bayesian statistics, so an overarching Bayesian approach is appropriate for 
addressing the problem. Using a Bayesian approach offers more insight into hyperparameter 

Figure 2.2: True slice image along with coil sensitivity profiles and sensitivity weighted true aliased 
images. 

1385



assessment and increased flexibility in parameter estimation by treating the design matrix as an 
unknown parameter to be assessed along with the unaliased voxel values and the noise. We can 
obtain the Maximum A Posteriori (MAP) estimate using the Iterated Conditional Modes (ICM) 
algorithm. The MAP estimate offers us a single data point, similar to that of the least squares 
estimation using a regularizer, however the Bayesian framework utilizes more prior information 
from the calibration images. A Markov chain Monto Carlo (MCMC) estimation technique such as 
Gibbs sampling can be used to assess the full posterior distribution of the unknown design matrix 
(coil sensitivities S), unaliased voxel values v, and the noise variance. This means that any 
statistical analysis can be performed to estimate the parameters, such as marginal posterior means. 
With a Bayesian approach, any and all prior information about our unknown parameters obtained 
from the calibration images can be used to assess the hyperparameters and estimate the parameters, 
unaliasing the folded images. 

3. Bayesian Approach to SENSE (BSENSE)

For the Bayesian approach, the observed aliased voxels will use the same model that SENSE-
ITIVE uses. That is a = Sv + ε where a ∈ ℝ2nC×1, S ∈ ℝ2nC×2nA, v ∈ ℝ2nA×1, and ε ∈ ℝ2nC×1. Two 
different representations of the coil sensitivities will be used. The first representation is S ∈
ℝ2nC×2nA as demonstrated in Eq. 2.5 is necessary for the proper skew symmetric design matrix for 
complex-valued multiplication. The second is H ∈ ℝ2nC×nA, as shown in Eq. 3.1, is used as the 
representation for the prior distribution and ultimately for parameter estimation of the coil 
sensitivities. 
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Using the H representation of the sensitivities will ensure that the real and imaginary components 
only get estimated once since they only appear once in the H depiction. This preserves the proper 
skew symmetry constraint of the a posteriori estimated sensitivities. 

3.1 Data Likelihood, Prior and Posterior Distributions 

Similar to SENSE, it is assumed that the residual error in real and imaginary are normally 
distributed. The likelihood distribution for the measurements become 

2
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−  
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 
[3.2] 

where a is the observed aliased coil image measurements, S is the unobserved coil reception 
sensitivities, v is the unobserved true image slice voxel values, and σ2 is the unobserved image 
noise variance. 

We can quantify available prior information about the unobserved parameters S, v, and σ2 in 
the likelihood with assessed hyperparameters of prior distributions. The coil sensitivities 
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represented as H and the voxel values v are specified to have normal prior distributions and the 
noise variance σ2 is specified to have an inverse gamma prior distribution i.e., 

2
22 2

0 0 02( | , , ) ( ) exp [( ) '( )]
2

n nc A S
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nP H n H tr H H H H 

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with hyperparameters nS, H0, nv, v0, α, and β to be assessed from the pre-scanned calibrated images. 
By combining the likelihood distribution and the prior distributions, the posterior distribution of 
the coil sensitivities S, the true slice voxel values v, and the noise variance σ2 is 

2 2 2 2 2
0 0( , , | ) ( | , , ) ( | , , ) ( | , , ) ( | , )S vP H v a P a S v P H n H P v n v P             [3.6] 

with the distributions specified from Equations 3.2, 3.3, 3.4, and 3.5. 

3.2 Parameter Estimation 

Using the posterior distribution in Eq. 3.6 with the priors described in Equations 3.3, 3.4, and 
3.5 along with the likelihood distribution in Eq. 3.2, two techniques are used to estimate the 
unobserved parameters S, v, and σ2: Maximum A Posteriori (MAP) estimation using the Iterated 
Conditional Modes (ICM) optimization algorithm (Lindley and Smith, 1972) to find the posterior 
mode, and marginal posterior estimates via a Markov chain Monte Carlo (MCMC) Gibbs sampler 
(Geman and Geman, 1984; Gelfand and Smith 1990). Beginning with initial estimates of each 
parameter, ICM iterates over the parameters calculating its posterior conditional mode and 
converges to a global maximum of the joint posterior density. Since each of the posterior 
conditionals are unimodal, the ICM will produce the global maximum, the MAP, instead of the 
local maximum. The posterior conditional modes for the parameters are 

1
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It can be shown that the full conditional distributions of each parameter S , v , and 2 for the 
MCMC Gibbs sampler are given by 

2 1 2 1
2 0 2ˆ| , , ~ ( ( ' ) ( ' ), ( ' ) )

A Av n v v nv S a N v S S n I S a n v S S n I − −= + + +     [3.10]
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2

* *| , , ~ ( , )v S a IG     [3.12] 
where α* = nCnA + nC + nA + α, β*=0.5[(a - Sv)'(a - Sv) + nv(v - v0)'(v - v0) + nStr((H - H0)'(H -
H0))+2β], and Y ∈ ℝ2nC×2 observed coil measurements having the real part in the first column and 
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the imaginary part in the second column as such [aR, aI]. In addition, a skew-symmetric C ∈ ℝ2×2nA 
is utilized with unaliased voxel values as expressed in Eq. 3.13, 

1 2 3 1 2 3

1 2 3 1 2 3

R R R I I I

I I I R R R

v v v v v v
C

v v v v v v
− − − 

=  
 

.  [3.13] 

3.3 Hyperparameter Determination 

Prior to an fMRI experiment, a short non-task based set of ncal = 10 full k-space volume images 
for the nC coils can easily be obtained. These calibration images can be utilized to assess 
appropriate hyperparameters for the prior distribution. For this experiment, the calibration images 
were simulated by adding N(0,0.01) noise to the real and imaginary parts of the true complex-
valued image slice that was multiplied by a designed sensitivity map. This is to accurately resemble 

Figure 3.1: Average of m real and imaginary calibration images for the nC coils. 
an fMRI experiment. These ncal calibration images are averaged together to give us the simulated 
data shown in Figure 3.1. The Euclidean norm in each voxel is computed from these nC = 4 
complex-valued coil images in Figure 3.1 for an initial magnitude v0M of the prior mean as in Eq. 
3.14. 

1/ 22 2 2 2 2 2 2 2
0 1 1 2 2 3 3 4 4 = + + + + + + + M R I R I R I R Iv a a a a a a a a . [3.14] 

The 𝑛𝑐 complex-valued averaged calibration images in Figure 3.1 are pointwise divided by the 
magnitude of the prior mean v0M in order to arrive at the prior mean for the real and imaginary coil 
sensitivities in Figure 3.2 (top section). The hyperparameters nS (in Equations 3.3, 3.6, 3.8, 3.9, 
3.11, and 3.12) and nv (in Equations 3.4, 3.6, 3.7, 3.9, 3.10, and 3.12) were set to be the number of 
calibration images ncal = 10. The average residual variance over the voxels of the calibration 
images were calculated to be σ0

2 = 0.011. The hyperparameters α and β in equations 3.4, 3.8, and 
3.11 were assessed to be α = ncal - 1 and β = (ncal - 1)σ0

2. 

1388



Figure 3.2: Prior mean for coil sensitivities. 

4. Simulated Data

4.1 Simulated Data for Single Slice at One Timepoint 

A single image at one timepoint was generated for nC = 8 coils by adding N(0,0.0025) noise, 
corresponding to a magnitude signal range of 1-6 to the noiseless coil images in Figure 2.2. The  

Figure 4.1: Simulated observed noisy coil images for one 
time point in an fMRI experiment. 
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derived noisy coil images shown in Figure 4.1 were first aliased followed by adding noise and 
were used to demonstrate the use of BSENSE. 

4.2 Reconstructed Image for Simulated Single Slice at One Timepoint 

Using the observed aliased coil images in Figure 4.1, and the assessed hyperparameters, the 
MAP BSENSE unaliased image was estimated using the ICM algorithm and displayed in Figure 
4.2 (left middle). The MCMC Gibbs sampling technique was utilized to estimate the mean of the 
marginal posterior distribution (middle right in Figure 4.2) using 𝐿 = 10,000 total iterations with 
a 𝑏𝑢𝑟𝑛 = 2500. The prior means from the calibration images for the unaliased voxels v and the 
sensitivity coils S were used as initial values for H and v. These initial values were used to generate 
a 𝜎2 value from the posterior conditional from Eq. 3.11, initializing the Gibbs sampler. We can 
see that the joint MAP estimate using the ICM algorithm and the marginal posterior mean of the 
MCMC Gibbs sampler for BSENSE image reconstruction produce images that closely resemble 

Figure 4.2: True non-task unaliased image (left), BSENSE MAP unaliased non-task magnitude image 
(left middle) using ICM, Posterior Mean BSENSE unaliased non-task magnitude image (right middle) 
using Gibbs sampling, and SENSE non-task magnitude image (right). 
the true non-aliased image in Figure 4.2 (left). The SENSE image reconstruction produced an 
image with a higher noise level with less clear distinction between the different brain tissue when 
compared to BSENSE and the true unaliased image. This is also evident by examining the noise 
level outside of the brain which is markedly higher in the SENSE reconstructed image. The process 
illustrated here for reconstructing a single aliased coil image can be replicated to reconstruct the 
rest of the series. 

4.3 Task Activation 

The objective of fMRI is to have the patient perform a task, like tapping their fingers, and to 
capture in which part of the brain increased neuronal activation occurs. The non-task reconstructed 
images essentially create a baseline value for each voxel giving us an intercept only simple linear 
regression y = β0, where y is the estimated voxel value. By adding in task activation to a certain 
number of images in the series of images, we then have a simple linear regression y = β0 + xβ1 for 
our estimated voxel values. In this regression, β0 is the baseline voxel value from the non-task 
reconstructed images determining the SNR, which is β0 σ⁄ , and β1 is the estimated increase from 
β1 which would be the contrast-to-noise ratio (CNR), calculated by β1 σ⁄ . The vector x is a vector 
of zeros and ones where the zeros correspond to the images in the series without task activation 
and ones corresponding to the images with task activation. We can write this regression as y = Xβ 
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Figure 4.3: Adding magnitude-only task activation (middle) to the true noiseless image 
(left) to create the true task activation image (right) 

where X is our nIM×2 design matrix with ones in the first column and zeros and ones in the second 
column and β is a 2 1  vector containing [β0, β1]'. 

Since the CNR is typically much lower than the SNR, the task is not usually visible on the final 
reconstructed image. Instead, a hypothesis test is carried out with β1 ≤ 0 as the null hypothesis and 
β1 > 0 as the alternative. The reason for the one-sided hypothesis test is because we only anticipate 
an increase signal from the task activation. A simple one-tailed t-test is implemented to determine 
if any of the voxels experienced a statistically significant increase in signal (magnitude) from the 
performed task. This statistic summarizes the observed BOLD response to the task at each voxel. 
Figure 4.3 shows a β1 = 0.045 magnitude-only signal increase being added to the true noiseless 
image with σ2 ~ N(0,0.0025) noise yielding a CNR of 0.9. Ranges of tissue signals are 1-1.75 for 
white matter, 1.75-3 for gray matter, and 4-6 for the cerebral spinal fluid in our simulation to mimic 
our experimental data. 

4.4 Simulated Results 

The true noiseless task image along with the true noiseless non-task image was used to create 
a series of 510 simulated full FOV coil images. To simulate our real-world fMRI experimental 
process, the series was generated by starting with 20 non-task images. In experimental fMRI, the 
first few images of the times series have increased signal as the magnetization reaches a steady 

Figure 4.4: Time series of a non-task voxel (left) and time series of a task voxel (right). The blue time 
series is the SENSE reconstructed voxel and the red time series is the BSENSE MAP estimate. 

1391



state. The first image in the simulated series is scaled to increase the signal and used as the 
superimposed brain images for task detection in Figure 4.5. The scaling was determined by 
dividing the first few images in the experimental data by the 21st time point, where the 
magnetization of the machine is stabilized, and calculating the average signal increase for each 
tissue type. The average signal increase for the white matter was 40%, 55% for the gray matter 
and 75% for the cerebral spinal fluid (CSF). So, for the first simulated image, the magnitude of the 
white matter voxels was multiplied by 1.4, the gray matter voxels were multiplied by 1.55, and the 
CSF voxels were multiplied by 1.75. The initial 20 non-task images are then followed by 
alternating between 15 non-task images and 15 task images for 16 epochs. The series was 
culminated with 10 non-task images producing our simulated fMRI series of 510 images. To mimic 
the fMRI experiment, the first 20 time points were discarded leaving 490 time points in the series. 
Then the next 10 time points were utilized as our full FOV calibration images to assess the 
hyperparameters. The remaining 480 points in the time series was first aliased by Fourier 
transforming the coil images into the spatial frequency domain, skipping lines in k-space, then 
taking the IFT resulting in aliased coil images. These are reconstructed into full, unaliased images 
using both SENSE and BSENSE MAP estimation separately. In Figure 4.4 displays the time series 
of a non-task voxel (left) and the time series of a task voxel (right) with blue line being SENSE 
reconstructed voxel and the red line being the BSENSE MAP estimate of the reconstructed voxel 
values. These plots show that the BSENSE method considerately decreases the variance of the 
voxel values over time, reducing the temporal noise of the series. 

Figure 4.5: Statistically significant voxels using PCER for BSENSE 
reconstructed images (top left), significant voxels using FDR for 
BSENSE (top right), significant voxels using PCER for SENSE 
(bottom left), and significant voxels using FDR for SENSE (bottom 
right). 
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The hypothesis test described above was utilized with a 0.05 significance level to determine 
voxels with a statistically significant signal increase. In Figure 4.5, the left column shows the 
statistically significant voxels using the per-comparison error rate (PCER) and the right column 
shows the significant voxels using the 5% false discovery rate (FDR) threshold with BSENSE 
MAP on top and SENSE on bottom for both columns. The FDR was completed by employing the 
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995; Logan and Rowe, 2004) to the 
p-values from the t-test from each voxel. In the region of interest (ROI), there are 28 voxels with
artificially added task activation which both BSENSE and SENSE capture as statistically
significant using the PCER. Examining the mean and standard deviation of the t-statistics for both
methods we get a mean of 4.7279 and standard deviation of 0.985 for BSENSE and 3.9209 mean
and 1.1755 standard deviation for SENSE. However, after applying the FDR, BSENSE identified
25 of the voxels in the ROI as statistically significant while SENSE only identified 10 of the 28
voxels. Along with detecting more voxels as task activation after FDR correction, BSENSE had a
notably higher average t-statistic in the ROI and a lower standard deviation. These results indicate
BSENSE having a better performance at task detection compared to SENSE.

5. Experimental Data

5.1 Human Subject Data 

A 3.0 T General Electric Signa LX magnetic resonance imager was used to conduct an fMRI 
experiment on a single subject to further compare BSENSE and SENSE. A unilateral right-hand 
finger-tapping task was performed in a block design with an initial 20 s rest followed by 16 epochs 
with 15 s off and 15 s on. The experimental was finished off with 10 s of rest giving us a series of 
510 TRs (repetitions) with each repetition being 1 second, a flip angle of 90° and an acquisition 
bandwidth of 125 kHz. The data set comprised of nine 2.5 mm thick axial slices with nC = 8 
receiver coils that have a 96×96 dimension for a 24 cm full field of view (FOV), with a posterior 
to anterior phasing encoding direction. For each volume image in the series, a time dependent echo 
time, TEt, consisted of three parts. The first part was fixed to have a value of 42.7 ms at the first 
10 time points. In the second part, the next 5 TE values were an equally spaced interval of values 
42.7, 45.2, 47.7, 50.2, and 52.7 and was repeated for another 5 time points. For the final part, the 
last 490 time points were fixed back at 42.7 ms. To account for T1 effects and varying echo times, 
the first 20 TRs were discarded leaving 490 time points for the fMRI experiment. The center row 
of k-space for each TR in each receiver coil was acquired with three navigator echoes which is 
used to correct any potential Nyquist “ghosting.” The additional rows of k-space were 
implemented to estimate and adjust the error in the center frequency and group delay offsets 
between the odd and even lines of k-space (Nencka et al., 2008). 

The first 10 time points of the remaining 490 TRs were utilized as pre-scan “calibration” 
images to assess the hyperparameters for the prior distributions. The remaining 480 TRs were 
treated as the fMRI experiment. Rows of k-space were censored in each coil for each slice in 
accordance with an nA = 3 acceleration factor. This means that every two rows of the fully sampled 
spatial frequencies were removed resulting in a subsampled k-space of dimension 32×96 in each 
coil for each slice. This causes the images after IFT to be aliased, the same as the aliased images 
in Figure 4.1, which mimics an experimentally subsampled fMRI dataset. Typically, the B-field 
gradients in an fMRI experiment will experience a drift in the phase over time which we correct 
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to give us a stable phase through time. First, the angular phase mean of the time-series is calculated 
and subtracted for each voxel time-series. A local second order polynomial was fit to the resultant 
difference of the voxel time-series which. Then the polynomial fitted difference phase is added to 
a mean phase producing a steady phase over time for each coil. 

5.2 Experimental Results 

Similar to the process for the simulated data expressed in Section 4.4, the entire times series 
of aliased coil measurements were simultaneously unaliased and combined using BSENSE MAP 
estimation and SENSE image reconstruction separately. Figure 5.1 shows the magnitude of our 
reference image of the 8th slice at the first time point (left), the BSENSE MAP estimate (middle), 

Figure 5.1: Reference non-task unaliased image (left), BSENSE MAP unaliased non-task magnitude 
image (middle) using ICM, and SENSE non-task magnitude image (right). 

and the SENSE reconstructed image (right). Like the simulated results, the BSENSE 
reconstruction produced a clearer, less noisy image compared to the SENSE reconstruction. It is 
less noticeable inside of the brain where the SNR is high, but the distinction between the noise 
level of the two reconstruction processes is more apparent outside the brain. To examine at the 
noise over time, Figure 5.2 displays the magnitude time series of two voxels one being a non-task 
voxel (left) and one experiencing task activation (right). The blue colored time series of the SENSE 
reconstructed voxel, and the red time series of the BSENSE reconstructed voxel. We can see that 

Figure 5.2: Time series of a non-task voxel (left) and time series of a task voxel (right). The blue 
time series is the SENSE reconstructed voxel and the red time series is the BSENSE MAP estimate. 
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the variance over time is notably smaller for BSENSE than it is for SENSE, which demonstrates 
that BSENSE greatly reduces noise variability compared to SENSE resulting in a more accurate 
image reconstruction over time. 

For detection of task activation, the hypothesis test outlined in Section 4.3 was carried out 
using a 0.05 significance level with 28 voxels in the ROI. The image on the left in Figure 5.3 
displays the expected task activation (outlined in green) of the 8th slice after the 5% FDR 
correction. The image in the middle of Figure 5.3 illustrates the statistically significant voxels 
using BSENSE and the image on the right shows the statistically significant voxels using SENSE, 
both after the FDR correction. The mean and standard deviation of our t-statistics in the ROI for 
SENSE are 4.2365 and 3.5914, respectively. For BSENSE we get a mean t-statistic of 5.4416 and 
a standard deviation of 3.5634. Both methods exhibit activation in the areas where the task is 
expected but after the FDR correction, SENSE identified 13 of the 28 voxels with task activation 
while BSENSE identified 16 of the 28 voxels. Further, BSENSE yielded fewer false positives than 
SENSE. These results from the experimental data indicate that BSENSE performed better at 
detecting task than SENSE. 

Figure 5.3: Expected task activation of the 8th slice (left), statistically significant voxels using a 5% FDR 
for BSENSE reconstructed images (middle), and significant voxels using a 5% FDR for SENSE (right). 

6. Discussion

6.1 Method and Results Overview 

Usage of parallel imaging techniques such as SENSE (Pruessmann et al., 1999) and GRAPPA 
(Griswold et al., 2002) have accomplished subsampling of k-space and reducing scan times for 
MR imaging. This could increase the number of images, reconstruct higher resolution images, or 
a combination of both in the same unit of time as fully sampled k-space. The IFT of the subsampled 
k-space causes the images to be aliased, so for SENSE image reconstruction, a least squares
estimate has been used to unalias the transformed image. This can be difficult to calculate when
the design matrix is ill-conditioned, so this paper introduces a Bayesian approach (BSENSE) to
estimate the unaliased voxel values. Using more available information from the calibrated images
to assess the hyperparameters, this approach successfully reconstructed a single slice simulated
brain image using a Bayesian model and a series of simulated slices without any aliasing artifacts.
BSENSE also had better performance when detecting the signal increase in the voxels that
experienced task activation in the simulated fMRI experiment. Experimental data was also used to
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compare the new Bayesian method to the traditional SENSE method and was able to uphold similar 
results as the simulated experiment. 

6.2 Other Advancements 

This paper used the full posterior distribution for reconstructing images, meaning available 
prior information was quantified on all three parameters (S, v, and 𝜎2) and utilized for parameter 
estimation. In addition to the Gibbs sampling technique above to obtain marginal posterior 
estimates of S, v, and 𝜎2, we have also integrated out 𝜎2 yielding a reduced posterior where S and 
v are the only two unknowns to be estimated. Integrating out 𝜎2 produces a joint Student-t posterior 
for S and v from which we have obtained Gibbs sampling marginal estimates consistent with our 
three-parameter approach. 

For the task detection in this paper, only the MAP estimate using the ICM algorithm was used 
to reconstruct the simulated series of non-task and task aliased images for capturing activation for 
both the simulated and experimental data. This is due to the Gibbs sampler being computationally 
expensive when running a long series of images so it may not be as practical to use compared to 
evaluating the MAP estimate. This does not mean there is no use for running a Gibbs sampler as 
the posterior mean does produce similar results to the MAP estimate with the additional benefit of 
producing entire marginal posterior distributions. For this research, it was used as a technique to 
confirm proper results from using the ICM to estimate the BSENSE MAP measure. It could be 
utilized for a shorter series of images or provide us more statistical information about any voxel. 
This Bayesian approach allows for more options of how to run an fMRI experiment based on the 
objective of the scan. 

6.3 Future Work 

Correlation between the unaliased voxels that were previously aliased is a topic that is not 
covered in this paper (Bruce et al., 2012). An approach to addressing this without changing the 
model would be to subsample the calibration images at each timepoint and use that data as prior 
information for those respective timepoints. One circumstance we can consider is increasing the 
acceleration factor, no greater than the number of coils, and attempt to reconstruct images without 
having any aliasing artifacts along with capturing any signal increase from task activation. Another 
can be using a different number and arrangement of coils. Increasing the number of coils does not 
change the process but it demonstrates the flexibility of the application of this BSENSE. These 
procedures can also be repeated for vertical aliasing as opposed to the horizontal aliasing used in 
this research. An extension of the model can be introduced that incorporates both coil covariance 
and aliased voxel covariance as this current independent model, like SENSE, assumes no 
correlation between each coil and no correlation between the aliased voxels. The goal of this 
current research is to introduce BSENSE image reconstruction as an improved parallel imaging 
technique over SENSE and is expressed through simulated and real-world fMRI experiments.
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