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Abstract

In linear regression, the coefficients are simple to estimate using the least squares method with a known design matrix for
the observed measurements. However, real-world applications may encounter complications such as an unknown design
matrix and complex-valued parameters. The design matrix can be estimated from prior information, but can potentially
cause an inverse problem when multiplying by the transpose as it is generally ill-conditioned. This can be combat by
adding regularizers to the model, but does not always mitigate the issues. Here, we propose our Bayesian approach to a
complex-valued latent variable linear model with an application to fMRI image reconstruction. The complex-valued linear
model and our Bayesian model are evaluated through extensive simulations and applied to experimental fMRI data.
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1. Introduction

Background
Linear regression is a common tool used for prediction analysis

of one variable based on the value of another variable. The

equation for linear regression is that of a line of best-fit with

measurement error as expressed in Eq. 1.1

yj = β0+β1xj1+β2xj2+ ...+βpxjp+εj , j = 1, ..., n, (1.1)

where p is the number of regression coefficients and n is the

number of observations. Some applications, such as in fMRI

image reconstruction, do not have a y-intercept in the model

which would remove the β0 from the model. For this paper, we

will focus on the regression model with no y-intercept which

can be compactly written as

y = Xβ + ε, (1.2)

where y ∈ Rn×1 is the observed dependent variable, X ∈ Rn×p

is the design matrix, β ∈ Rp×1 is the vector of regression

coefficients, and ε ∈ Rn×1 is the measurement error or

residuals. With regression models, our goal is to solve for the

coefficients β. If the variables of this model are real-valued and

the design matrix X is known, we can simply apply a least

squares method to solve for β by using Eq. 1.3

β = (X
′
X)

−1
X

′
y. (1.3)

This linear model can encounter complex values instead of

real-valued variables which changes y to yc ∈ Cn×1, X to

Xc ∈ Cn×p, β to βc ∈ Cp×1, and ε to εc ∈ Cn×1. With

complex-valued parameters, we can write the linear model using

a real-valued isomorphic representation to essentially remove

the nuisance of complex values. This isomorphic representation

is shown as

[
yR

yI

]
=

[
XR −XI

XI XR

] [
βR

βI

]
+

[
εR

εI

]
, (εR, εI)

′ ∼ N(0, σ
2
2In),

(1.4)

where yR ∈ Rn×1 and yI ∈ Rn×1 are the observed real and

imaginary components, respectively, of y, XR ∈ Rn×p and

XI ∈ Rn×p are the unobserved real and imaginary components

of X, βR ∈ Rp×1 and βI ∈ Rp×1 are the unobserved real and

imaginary components of β, and εR ∈ Rn×1 while εI ∈ Rn×1

are the real and imaginary components of ε. This isomorphic

representation can be compactly written to be y = Xβ + ε,

where y ∈ R2n×1, X ∈ R2n×2p, β ∈ R2p×1, and ε ∈ R2n×1.

In real-world applications, we may not always have a known

design matrix X. In this case, we may need to acquire other

information to estimate our design matrix. This would allow

us to treat the design matrix as “known,” but is generally ill-

conditioned leading to an inverse problem. To address this issue,

a common solution is to add regularizers such as ridge (Hoerl

and Kennard, 1970) or lasso regression (Tibshirani, 1996)

to the model. These regularizers, however, may not always

mitigate the problems as they can introduce bias which may

lead to subjective parameter estimation or be computational

expensive.

For this paper, we introduce a Bayesian approach to

complex-valued latent variable linear model where the design
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matrix X along with the regression coefficients β and the

noise variance σ2 are treated as unknown parameters. Prior

distributions are then placed on the unknown variables and

combined with the likelihood to get the joint posterior

distribution. This model can be applied to any complex-valued

data that can be modeled using linear regression.

An example of a complex-valued, latent variable real-world

application can be seen in speech enhancement. For speech

enhancement, the goal is to improve the quality of noisy signals

(Loizou, 2013). Most models in speech enhancement ignore

the phase information yielding real-valued signals (Williamson

et al., 2013, 2014) that can be modeled using linear regression.

Chen et al. (2018a) incorporates the phase information in

the reconstruction of the complex-valued short-time Fourier

transformation using a nonlinear complex-valued Gaussian

process model. This work is further improved by adding in

locality-preserving and discriminative constraints (Chen et al.,

2018b). Despite the use of nonlinear models for the complex-

valued speech signal data, linear regression can be used on

the complex-valued signals (Schreier and Schraf, 2010). With

available prior information (Williamson et al., 2013, 2014) and

a complex-valued linear model, our Bayesian approach can

be applied to speech signal data. Also, Nguyen et al. (2017)

addresses the possibility of under-determined systems in the

complex-valued linear regression, in signals such as speech,

by using a generalization of sparse filtering and K-hyperlines

clustering. Even with under-determined systems, our Bayesian

approach can still be applied without any alterations creating

a fully automated process.

Similar to signal processing, the data in functional magnetic

resonance imaging (fMRI) is also complex-valued and can

be modeled using a linear regression. To demonstrate the

utilization of our proposed isomorphic Bayesian complex-valued

latent variable model, we applied the model to simulated and

experimental fMRI data for image reconstruction.

Overview
The second section of this paper will explain the model of

the Bayesian complex-valued latent variable model. Section 3

of the paper describes the fMRI application with Section 4

analyzing the results of image reconstruction application. We

will conclude in Section 5 with an overview of the important

results of the paper and a discussion of future work.

2. Bayesian Complex-Valued Model

For our Bayesian model, we use the isomorphic representation

of the complex linear model as expressed in Eq 1.4. In this work,

two different representations of the design matrix will be used.

The first representation is X ∈ R2n×2p as shown in Eq. 1.4

is necessary for the proper skew symmetric design matrix for

complex-valued multiplication. The second is G = [XR, XI ],

used in the prior distribution and ultimately for parameter

estimation, since XR and XI uniquely determine X and do

not need to be duplicated.

Data Likelihood, Prior, and Posterior Distributions
We assume that the residual error is normal and independent

and identically distributed in the real and imaginary

components. The likelihood for the observed measurements for

the n observations becomes

P (y|X, β, σ
2
)∝(σ

2
)
− 2n

2 exp

[
−

1

2σ2
(y − Xβ)

′
(y − Xβ)

]
. (2.1)

We can quantify available prior information about the

regression coefficients β, the unobserved parameters of the

design matrix X, and the residual variance σ2 in the

likelihood with assessed hyperparameters of prior distributions.

The regression coefficients β are specified to have a normal

prior distribution, expressed in Eq. 2.2. The design matrix,

represented as G, is also specified to have a normal prior

distribution (Eq. 2.3) and the noise variance σ2 is specified

to have an inverse gamma prior distribution (Eq. 2.4),

P (β|nβ , β0, σ
2
)∝(σ

2
)
− 2p

2 exp

[
−

nβ

2σ2
(β − β0)

′
(β − β0)

]
, (2.2)

P (G|nX , G0, σ
2
)∝(σ

2
)
−2np

2 exp

[
−

nX

2σ2
tr(G−G0)

′
(G−G0)

]
, (2.3)

P (σ
2|α, δ) ∝ (σ

2
)
−(α+1)

exp

[
−

δ

σ2

]
, (2.4)

where tr is the trace of the (G − G0)
′(G − G0) matrix. The

hyperparameters nX , G0, nβ , β0, α, and δ are assessed from

available prior information, but can also be determined using

a fully subjective approach. The joint posterior distribution of

the regression coefficients β, the design matrix X, and the noise

variance σ2 is

P (G, β, σ
2|a) ∝ P (y|X, β, σ

2
)P (β|nβ , β0, σ

2
)

·P (G|nX , G0, σ
2
)P (σ

2|α, δ),
(2.5)

with the distributions specified from Equations 2.1, 2.2, 2.3,

and 2.4.

Posterior Estimation
Using the posterior distribution in Eq. 2.5, two approaches

are used to estimate the regression coefficients β, design

matrix X, and residual variance σ2. Maximum a posteriori

(MAP) estimation using the Iterated Conditional Modes (ICM)

optimization algorithm (Lindley and Smith, 1972; O’Hagan,

1994) to find the joint posterior mode, and marginal posterior

mean (MPM) estimation via Markov chain Monte Carlo

(MCMC) Gibbs sampling (Geman and Geman, 1984; Gelfand

and Smith, 1990). Beginning with initial estimates of each

parameter, ICM iterates over the parameters, calculating

its posterior conditional mode until convergence at the joint

posterior mode. The posterior conditional modes are

β̂ = (X
′
X + nβI2p)

−1
(X

′
y + nββ0), (2.6)

Ĝ = (B
′
B + nXI2p)

−1
(BY

′
+ nXG0), (2.7)

σ̂
2
=

Θ

2(2n + 2p + α + 2np + 1)
, (2.8)

where Θ = (y − Xβ)′(y − Xβ) + nβ(β − β0)
′(β − β0) + αδ +

nXtr[(X−X0)(X−X0)
′], Y = [yR, yI ] and B ∈ R2p×2 is a skew

symmetric matrix representation of the regression coefficients

β as expressed by

B =

[
βR βI

−βI βR

]
. (2.9)

The full conditional distributions are given by

β|X,σ
2
, y ∼ N{β̂, σ2

(X
′
X + nβIp)}, (2.10)

G|β, σ2
, y ∼ MN{Ĝ, σ

2
(B

′
B + nXI2p)}, (2.11)

σ
2|β,X, y ∼ IG (α∗, δ∗) , (2.12)

where α∗ = np + n + p + α and δ∗ = [(y − Xβ)′(y − Xβ) +

nβ(β − β0)
′(β − β0) + nXtr((G−G0)(G−G0)

′) + 2δ]/2. This
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process is completely objective providing a fully automated

method without having to calculate a subjective penalty. Our

Bayesian approach, however, is flexible enough to include

subjective priors if desired. Because we are using available

prior information, we expect the subsequent estimators to

have smaller variance. To illustrate this, extensive realistic

simulations are performed in Section 4.

3. FMRI Application

FMRI Background
Magnetic resonance imaging (MRI) is a type of medical

imaging that creates images using magnetic fields. Functional

(fMRI) was developed in the early 1990’s as a technique

to noninvasively observe the human brain in action without

exogenous contrast agents (Bandettini et al., 1993). This

procedure examines brain activity by detecting changes in the

brain using the blood-oxygen-level dependent (BOLD) contrast

(Ogawa et al., 1990). When a neuron fires, the BOLD contrast

increases in the proximity of the neuron and is a correlate

for neuronal firing. The firing of neurons is a proxy for brain

activity and is of interest when examining the brain in action in

fMRI analysis. Measurements for images are arrays of complex-

valued spatial frequencies in so called k-space (Kumar, Welti,

and Ernst, 1975). These k-space arrays are then reconstructed

into images using an inverse Fourier transform (IFT) producing

brain images. The reconstructed brain images are made up

of complex-valued voxels which contain the signal intensity

for each pixel in the image. The magnitude and phase of

the complex-valued reconstructed images can be utilized for

analysis (Rowe and Logan, 2004; Rowe, 2005), but generally

only the magnitude is used (Bandettini et al., 1993).

In fMRI, obtaining hundreds of volume images is necessary

to detect activation in the brain. This series of observations

are of the same underlying volume image taken over time.

Measuring full arrays of data for all slices required to form

volume images takes a considerable amount of time due to the

size a dataset is from a single fMRI experiment. For example,

the experimental data used in this paper contain nine slices

of 96×96 images with 510 time points yielding 41,472,000

complex-valued data points. Acquiring fully sampled k-space

arrays where every value in the array is measured limits the

temporal resolution of the reconstructed images which can

diminish effectively capturing brain activity.

Historically, a single channel receiver coil has been utilized

in fMRI to measure fully sampled k-space. The drawbacks of

acquiring fully sampled k-space arrays directed fMRI research

to increase the number of images acquired per unit of time.

More recently, the focus of research has been to acquire

more images per unit of time by measuring less data without

losing the ability to form a full image. To accomplish this,

multiple receiver coils are utilized in parallel to each measure

spatial frequencies. This would require the multiple coil images,

after using the IFT, to be combined into a single, composite

brain image. In 1999, Pruessmann et al. introduced a parallel

imaging technique called SENSitivity Encoding (SENSE) which

operates on the images after IFT.

The SENSE method uses the linear regression, as expressed

in Eq. 1.2, with complex-valued parameters and a fixed design

matrix. A complex-valued least squares solution (Eq. 1.3) is

used to estimate the unknown parameter, which would be the

voxel values of the single, full brain image. This approach for

parameter estimation can be difficult because the complex-

valued design matrix, generally, is ill-conditioned. This can

cause aliasing artifacts, low image quality, and signal-to-noise

ratio (SNR) degradation in the final reconstructed image, which

has lead to variations of the traditional technique (King and

Angelos, 2001; Liang et al., 2002; Lin et al., 2004; Ying, Xu, and

Liang, 2004; Liu et al., 2009). These modified regularization

models have deficiencies that hardly mitigate the limitations of

the traditional maximum likelihood SENSE procedure. These

variations cause trade-off between SNR and aliasing artifacts

(King and Angelos, 2001) or can lead to a significant increase

in computational expense (Lin et al., 2004; Ying et al., 2004;

Liu et al., 2009) due to selection of the regularizer which can

render these techniques ineffective in practice. We can apply

a Bayesian approach to this complex-valued linear model with

an unknown design matrix called Bayesian SENSE (BSENSE).

Our Bayesian model will incorporate prior information, which

is assessed with complete automation and minimal computation

time (less than one second) and does not use a single a priori

fixed complex-valued sensitivity matrix. Through the extensive

simulation study and application to experimental data, the

results yield increased SNR, no aliasing artifacts, and increased

image quality with improved task detection results.

For the fMRI application, the notation for the observed

measurements (y), the design matrix (X), and the regression

coefficients (β) in the linear model become a, S, and v,

respectively.

Research Problem
As mentioned in the previous subsection, fMRI historically

utilized a single channel receiver coil as illustrated in Figure

1. With a single channel coil, the height of the receiver is

taller than the size of the subject’s head, shown in the three-

dimensional depiction in Figure 1a. Both parts a and b of Figure

1 show the single coil receiver wraps completely around the

subject’s head starting from posterior to anterior and connects

back at the posterior.

Fig. 1. (a) Illustration of a three-dimensional single coil channel along

with (b) the top-down view of the coil receiver.

From the single channel coil, the k-space arrays are acquired

along a trajectory as shown in Figure 2 (top left) where the

machine starts in the bottom left corner and moves across

the row measuring complex-valued spatial frequencies along

the Cartesian grid. At the end of each row, you move up one

line and the process is repeated in the opposite direction. This

acquisition of complex-valued spatial frequencies is continued

until all the rows of the k-space array is obtained, yielding

fully sampled k-space depicted in Figure 2 (top right). These

complex-valued spatial frequency arrays are then reconstructed
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into full field-of-view (FOV) magnitude and phase brain images

using the IFT (bottom of Figure 2). The reconstructed phase

image is not shown.

Fig. 2. Fully sampled k-space zig-zag coverage (top left) with the finalized

full k-space array after omitting the turn-around points(top right) and the

reconstructed brain image using the IFT (bottom).

To acquire more images per unit of time, nC > 1 receiver

coils are utilized instead of a single channel coil. The number

of coils nC > 1 would be the n observations as described in

Subsection 1.1. An example of a four-channel coil arrangement

is illustrated in Figure 3. The three-dimensional depiction of the

multi-coil arrays in Figure 3a show the height of the receiver

coils being taller than the head of the subject. In Figure 3b,

starting with coil 1 at the anterior of the subject, the coils

increment clockwise with coil 2 on the right lateral, coil 3 on

the posterior, and coil 4 on the left lateral of the subject’s head.

Each of the four coils can measure full sampled k-space arrays,

as exhibited in Figure 2, in parallel which does not increase the

acquisition time compared to the single channel coil array.

Fig. 3. (a) Illustration of a three-dimensional multi-coil channel with four

receivers along with (b) the top-down view of the multiple coils.

Each channel receiver coil possesses a depth sensitivity

profile which depends on its size and location. This means that

each coil can only “see” parts of the object with a particular

depth sensitivity that decreases as we move farther from the

coil. The same four-channel coil configuration in Figure 3b is

displayed in Figure 4 (center image with four coils on each side)

showing how the coils would look around a single slice brain

image. Figure 4 gives an illustrative example of image slices

with nC = 4 coils (top, bottom, left, right) and their respective

depth sensitivity to the true image slice (the four corners of the

figure). The images for Figure 4 are magnitude images used

to visualize the how the linear model is designed. In Figure 4,

the top right corner image displays the true image point-wise

multiplied by the depth sensitivity profile of coil 1 which is

located at the front of brain. The resulting image shows that

the signal intensity of the image decreases as you move farther

from the coil location towards the back of the brain (bottom of

the top right image). When examining a single complex-valued

voxel in the weighted brain image for coil 1, the complex-valued

voxel from the true image (center) is multiplied by the complex-

valued weighted sensitivity, S1c, to get a1c = S1cvc. The other

three coils follow this same operation creating the system of

equations ac = Scvc where ac = [a1c, a2c, a3c, a4c]
′ and Sc =

[S1c, S2c, S3c, S4c]
′. With this system of equations, ac is the

complex-valued coil measurements (the observed measurements

y from Eq. 1.2), Sc is the coil sensitivities (the design matrix

X from Eq. 1.2), and vc is the unaliased, and coil combined,

voxel values (the regression coefficients β from Eq. 1.2). With

this system of equations, ac (the corner images in Figure 4)

is the observed measurements, after applying the IFT, from

the machine that need to be combined into a single, composite

brain image. Since voxels are spatially discrete, this process is

repeated for the rest of the voxels in the coil measurements.

Fig. 4. True slice image (center) along with coil sensitivity profiles

(top, bottom, left, right) and sensitivity weighted true images (the four

corners). The coil sensitivity profiles are typically masked outside the

brain but left here to show how the sensitivity decreases with voxels that

are further from the coil.

As previously noted, the primary goal of parallel imaging

is to increase the number of images acquired per unit of

time which can be attained by measuring less data. This can
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Fig. 5. Subsampled k-space zig-zag coverage with na = 2 acceleration

factor (left), the finalized subsampled k-space array after omitting

the turn-around points (top right) and the aliased brain image after

reconstruction using the IFT (bottom right).

be accomplished by skipping lines in the k-space array, i.e.

subsampling, as displayed in Figure 5. Skipping lines in k-

space introduces what is called an acceleration factor, nA.

The acceleration factor indicates the fraction of lines of data

in k-space that are measured and how much sampling time is

reduced for a volume image. For example, with an acceleration

factor of nA = 2, every other line horizontally in k-space

is measured as exhibited on the left side of Figure 5. This

would result in each slice of the volume k-space arrays to be

48×96 (top right of Figure 5) instead of the full 96×96. If it

took one second to obtain a full volume k-space array, with

nA = 2, the subsampled volume image would take half a second,

doubling the rate at which we can observe brain dynamics. If an

acceleration factor of nA = 3 is used, a third of the points along

the horizontal lines of k-space are measured yielding each slice

of the volume image to be 32×96 which means three subsampled

volume images would be observed in the time it would take to

observe one full sampled volume image.

However, skipping lines in k-space causes reconstructed coil-

weighted brain images to appear folded over itself, or aliased,

because the IFT cannot uniquely map the downsampled signals.

We can see an example of this in Figure 5 where the IFT of the

subsampled k-space (top right), with nA = 2, causes the brain

image to be aliased (bottom right). The depiction in Figure 5

only shows the aliasing for one of the coils, and since multiple

coils are utilized in parallel imaging, a weighted aliased image

transpires for each coil. It also only shows the magnitude images

as the associated phase images are not shown.

Figure 6 shows a similar depiction of the full coil-weighted

magnitude brain images to Figure 4, but introduces an

acceleration factor of nA = 3. The sequential subsampling

pattern follows one similar to that shown in Figure 5 (left), but

measuring every third line of k-space instead of every other line,

resulting in aliased coil-weighted brain images. In Figure 6 (top

right), the true aliased image is the point-wise multiplication of

the given voxel by the sensitivity profile for coil 1 summed for

the three strips, a1c = S11cv1c+S12cv2c+S13cv3c. This process

is repeated for a2c in coil 2 (bottom right), a3c in coil 3 (bottom

left), and a4c in coil 4 (top left). This depiction of four observed,

complex-valued aliased images, ac, along with the unobserved,

complex-valued coil sensitivities, Sc, the unobserved, complex-

valued unaliased voxel values, vc, and the complex-valued

measurement error, εc, create a linear system of complex-valued

equations, shown in Eq. 3.1. Since the unaliased voxel values,

vc, are the parameter of interest, SENSE estimates the coil

Fig. 6. True slice image (center) along with coil sensitivity profiles (top,

bottom, left, right) and sensitivity weighted true aliased images (the four

corners). The coil sensitivity profiles are typically masked outside the

brain but left here to show how the sensitivity decreases with voxels that

are further from the coil.

sensitivities, Sc, treats it as a known parameter, and models

the process as a complex-valued regression model,


a1c

a2c

a3c

a4c

 =


S11c S12c S13c

S21c S22c S23c

S31c S32c S33c

S41c S42c S43c


v1c

v2c

v3c

 +


ε1c

ε2c

ε3c

ε4c

 . (3.1)

BSENSE uses the isomorphic representation of Eq. 3.1,

similar to Eq. 1.4 (Bruce et al., 2012). The likelihood,

prior distributions, and posterior along with the parameter

estimation are outlined in Section 2.

Hyperparameter Determination
The full pre-scan coil calibration images can be utilized to fully

assess appropriate hyperparameters for the prior distributions

in an automated way. For example, the ncal coil calibration

images (top left of Figure 7) can be averaged together to give

us full complex-valued coil images. An initial magnitude v0M of

the prior mean can be estimated for each voxel in the unaliased

image by computing the Euclidean norm shown in the top right

of Figure 7.

The nC averaged coil calibration images can then be

pointwise divided by v0M to obtain a prior mean for the real

and imaginary coil sensitivities, as displayed in the bottom

of Figure 7. The phase of the coil sensitivities is estimated

by arctan(I/R)/2 where R and I are the real and imaginary

components of the coil sensitivities, respectively. This phase

is utilized to estimate complex-valued prior means for the coil

sensitivities, H0. These coil sensitivity estimates, H0, along

with the full averaged calibration coil images are used to

estimate complex-valued prior means for the voxel values, v0.

The hyperparameters nS and nv, which are the scalar

weights of the prior means, are assessed to be the number of
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Fig. 7. The ncal calibration coil images (top left) are averaged through

time and the Euclidean norm is taken yielding a prior mean for the

magnitude unaliased voxel values v0M (top right). The average of the

coil calibration images are then pointwise divided by v0M resulting in

prior means for the real and imaginary parts of the coil sensitivities H0R

and H0I , respectively

calibration images ncal. The average residual variance over the

voxels of the calibration images is calculated to obtain a prior

for the noise variance noted as σ2
0 . The hyperparameters α

(shape parameter of the inverse gamma) and β (scale parameter

of the inverse gamma) are assessed to be α = ncal − 1 and

β = (ncal − 1)σ2
0 . This prior information is incorporated to

reconstruct each voxel measurement in the aliased coil image

into the unaliased voxel values at every time in the fMRI series.

The software used for this research was MATLAB run on a

12th Gen Intel(R) Core(TM) i7-1255U laptop computer with

16GB RAM, operating on Windows 11.

4. Simulation and Experimental Studies

Non-Task Data
A noiseless non-task image was used to create two series of

510 simulated full FOV coil images for one slice to mimic

the experimental data shown in Subsection 4.6. The last ncal

time points of the first time series of non-task images served

as calibration images that were utilized for hyperparameter

assessment, and the second time series was used for a simulated

non-task experiment. A complex-valued image was multiplied

by a designed sensitivity map with nC = 8 coils, similar to the

four-channel coil shown in Figure 3 but with four additional

coils in each corner as well, and then the series of images

were Fourier transformed into full coil k-space arrays. In real-

world MRI experiments, the first few images of the time series

have increased signal as the magnetization reaches a steady

state. The first three images in both the simulated series

of non-task images are appropriately scaled, based on the

experimental data, replicating the increased signal. These series

were simulated by adding separate N(0, 0.0036nxny) noise to

both time series, where ny and nx are the number of rows and

columns, respectively, in the full k-space array, to the real and

imaginary parts of full coil k-space, corresponding to the noise

in the fMRI experimental data used in Section 4. This data

generation is following a general linear model with normally

distributed noise and no spatial or temporal dependencies.

The arrays were then inverse Fourier transformed back into

full coil images. To mimic the fMRI experiment shown in

Section 4.6, the first 20 time points were discarded leaving

490 time points of non-task images for the single slice, though

they could be used to estimate T1 and magnetic field maps

as described in Section 1.3 of the Supplementary Material.

The remaining 490 images in the time series were Fourier

transformed and aliased by censoring lines in k-space according

to the different acceleration factors used for the simulation,

then back transforming the downsampled data.

Fig. 8. Simulated observed noisy aliased coil images for first time point

in the non-task time series.

Reconstruction Results
To analyze the reconstruction performance of BSENSE vs.

SENSE, we first reconstructed aliased coil measurements at one

time point, giving us a single unaliased image for both methods.

For this, we used the first time point of the 490 simulated non-

task time series with an acceleration factor of nA = 3, shown

in Figure 8.

Fig. 9. Time series of the 10,000 iterations from the Gibbs sampler with

the real (left) and imaginary (right) components of a gray matter voxel.

The red line for both plots indicates the point where the burn-in iterations

end.
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The last ncal = 30 time points, corresponding to 30 seconds,

from the first 510 non-task full FOV calibration time series

were utilized to assess the hyperparameters. The prior means

from the calibration images for the unaliased voxels v0 and the

sensitivity coils S0 were used as initial values for H and v. These

initial values were used to generate a σ2 value from the posterior

conditional from Eq. 2.8, initializing the ICM algorithm and

the Gibbs sampler. The simulated aliased coil images were

reconstructed into a single, full brain image using the BSENSE

MAP estimate from the ICM algorithm, the BSENSE MPM

via MCMC, and traditional SENSE estimate. For the ICM

algorithm, only three iterations were needed for estimating

the parameters (computation time about 0.10 seconds per time

point), and for the Gibbs sampling, 10,000 total iterations were

run (computation time about 90 seconds per time point) with

a burn of 2,500 leaving 7,500 iterations for estimation. Plots of

the 10,000 iterations for a gray matter voxel at one single time

point is displayed in Figure 9. The plot on the left of Figure

9 is the real part of the complex-valued voxel and the plot on

the right is for the imaginary part. The red line in the plots

show where the burn-in iterations end. Figure 9 shows that the

Gibbs sampler converges relatively quickly. Figure 10 displays

the true simulated image (first column) along with the BSENSE

MAP unaliased image (second column), the BSENSE posterior

marginal mean unaliased image (third column), and the SENSE

unaliased image (fourth column).

We can see that the joint MAP estimate and the marginal

posterior mean from BSENSE both produce magnitude and

phase images that closely resemble the true non-aliased image

in Figure 10 (left column). SENSE, on the other hand, produced

an image with a higher noise level in the magnitude image

resulting in less clear distinction between the different brain

tissue when compared to our BSENSE approach and the true

unaliased image. This is also evident by examining the noise

level outside of the brain which is markedly higher in the

SENSE reconstructed image. Typically, in fMRI studies, the

voxels outside the brain are masked out, but here we leave them

in to further show the spatial noise level of the reconstructed

images for both techniques. Unlike the BSENSE and true

phase images, SENSE also produced an unusable phase image

with no anatomical structure. Activation using both magnitude

and phase images has been shown to yield increased power of

detection (Rowe and Logan, 2004; Rowe, 2005) and additional

biological information (Petridou et al., 2006).

To quantify the differences between the true and

reconstructed magnitude images, we use the mean squared

error, MSE = 1
K

∑K
j=1 (vj − vj)

2, where K is the number

of voxels (either inside or outside the brain) in the full

reconstructed image, vj is the reconstructed magnitude value

of the jth voxel, and vj is the true magnitude value of the

jth voxel. This measure will indicate the accuracy of a single

reconstructed image compared to the true simulated image

with lower MSE indicating a more accurate reconstructed

image. The MSE for both BSENSE MAP and BSENSE MPM

are <0.001 inside the brain and 0.001 outside the brain,

respectively. For SENSE, the MSE was calculated to be 0.035

inside the brain and 0.03 outside the brain. This means that

SENSE has a 26, 670% larger MSE inside the brain compared to

BSENSE MAP and BSENSE MPM, and 2940% and larger MSE

outside the brain, respectively. The process illustrated here for

reconstructing aliased coil images at a single time point can be

replicated to reconstruct the rest of the series.

For the remaining results discussed in this paper, only the

BSENSE MAP estimate was used to reconstruct the time series

of aliased coil. For the study covered in this paper, we are only

interested in a single estimate for each of the reconstructed

images. From the Gibbs sampler, that is the posterior mean

for each unaliased voxel, v. Since the v follows a normal

distribution, the estimated posterior mean and mode would be

Fig. 10. True non-task unaliased images (first column), BSENSE MAP unaliased non-task images (second column) using ICM, Posterior Mean BSENSE

unaliased non-task images (third column) using Gibbs sampling, and SENSE non-task images (fourth column) with magnitude images in the first row

and phase images in the second row.
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equivalent. This allows us to only need the MAP estimate for

image reconstruction for this study, saving computation time.

Next, we evaluated how the number of calibration images,

ncal, affected the reconstructed images. For the calibration

image analysis, we fixed the acceleration factor to be nA =

3 for the aliased coil measurements of the simulated non-

task time series with nTR = 490 time points and set the

number of calibration images to be ncal = 5, 10, 15, 20, 25, 30

for separate hyperparameter assessments. After assessing the

hyperparameters using the different numbers of calibration

images, the simulated non-task time series with the aliased

coil measurements were reconstructed using BSENSE MAP and

SENSE.

The results, displayed in Figure 11, indicate that increasing

the number of calibration images decreases the noise level

outside of the brain for BSENSE but has little effect inside the

brain. Even the BSENSE MAP reconstruction with ncal = 5

still produces an image with less noise than SENSE. The MSE

of inside and outside the brain for both BSENSE and SENSE

and the entropy for BSENSE and SENSE for the different

number of calibration images were also calculated to quantify

this result. Entropy analyzes uncertainty and smoothness across

a single image with lower entropy meaning less uncertainty

throughout the image. The equation for entropy is given by

E = −
∑N

j=1

[
vj

vmax
ln

(
vj

vmax

)]
, where ln is the natural log, N is

the number of voxels in the full reconstructed image, vj is the

reconstructed magnitude value of the jth voxel, and vmax is

the voxel intensity if all the image intensities were in one pixel

given by vmax =
√∑N

j=1 vj
2 (Atkinson et al., 1997).

Fig. 11. Reconstructed magnitude images for different number of

calibration images using BSENSE MAP estimate (top row) and SENSE

(second row).

Shown in Figure 12a, the MSE for inside and outside

the brain for the BSENSE MAP reconstructed magnitude

images was immensely smaller than the SENSE reconstructed

magnitude images. BSENSE also had much smaller entropy

compared to SENSE, displayed in Figure 12b, as it decreased

from 193.6 to 181.4 with the entropy for SENSE remaining

around 218.5 as the number of calibration images increased.

Lower MSE for BSENSE indicates a more precise reconstructed

image while smaller entropy means less uncertainty with

image reconstruction. Increasing the number of calibration

images also decreases the temporal variance for BSENSE

yielding increased SNR. For SENSE, the number of calibration

images does not meaningfully affect the temporal variance,

resulting in similar SNR for each ncal. In all cases, the

temporal variance for BSENSE is substantially lower than for

SENSE. This demonstrates that BSENSE mitigates noise in the

reconstructed image.

Fig. 12. (a) MSE for inside and outside the brain for BSENSE and SENSE

comparing both method’s reconstructed images to the true simulated

magnitude image for each number of calibration images. For the MSE

plot, BSENSE is shown in red for outside the brain (blue for SENSE) and

dark red for inside the brain (dark blue for SENSE). (b) Entropy plot

for BSENSE and SENSE for each number of calibration images where

BSENSE is shown red, and SENSE is shown in blue.

Along with analysis of the number of calibration images, we

evaluated how different acceleration factors, nA, affected the

reconstructed images. Here, we fixed the number of calibration

images to be ncal = 30 for hyperparameter assessment and

set the acceleration factors of the non-task time series to be

nA = 2, 3, 4, 6, 8, 12. For SENSE, the maximum acceleration

factor was nA = 8 since it cannot exceed the number of

coils used as it yields a severely under-determined system

of equations. These aliased coil measurements with separate

acceleration factors were reconstructed into full images using

the BSENSE MAP estimate and SENSE, again comparing the

results for both methods.

The results, exhibited in Figure 13, showed that the

reconstructed magnitude images from BSENSE are negligibly

affected by increasing the acceleration factor with SENSE being

severely affected. The reconstructed phase images for BSENSE

applying the different acceleration factors also closely resemble

the true phase image while the reconstructed phase images for

SENSE show zero phase inside the brain, rendering unusable

phase information for anatomical and task analysis. These

phase results are shown in Section 1.1 of the Supplementary

Material. The BSENSE temporal variance stays relatively the

same (first row of Figure 14) with the increased acceleration

Fig. 13. Reconstructed magnitude images for different acceleration

factors using BSENSE MAP estimate (top row) and SENSE (second row).



Bayesian Complex-Valued Latent Variable 9

factors, still producing high SNR (third row of Figure 14).

SENSE was heavily influenced by the acceleration factor,

as the reconstructed images with acceleration factors greater

than nA = 3 fail to produce usable images with distinct

matter types throughout the brain as shown in Figure 13.

The increased acceleration factor also markedly increases the

temporal variance (second row of Figure 14) which substantially

degrades the SNR of SENSE (fourth row of Figure 14).

Fig. 14. Temporal variance and SNR images for different acceleration

factors using BSENSE MAP estimate (first row and third row,

respectively) and SENSE (second row and fourth row, respectively).

We examined the reconstruction time of both methods for

the different acceleration factors as well. The average time, in

seconds, it took to reconstruct each image in the time series for

BSENSE decreased from 0.1195 seconds to 0.0744 moving from

an acceleration factor of 2 to 8 with a slight increase to 0.0855

with an acceleration factor of 12. SENSE does have a shorter

reconstruction time with it decreasing from 0.0441 seconds to

0.0201 moving from an acceleration factor of 2 to 8. Despite

this, our BSENSE approach still offers the potential for real

time image reconstruction while producing remarkably better

results in image reconstruction.

Task Activation
In task-based fMRI, the non-task reconstructed images create a

baseline value for each voxel giving us an intercept only simple

linear regression y = β0 + ε where y is the unaliased voxel

value. By adding in task activation to select images in the series

of images, we have a simple linear regression y = β0 + xβ1 +

ε for the unaliased voxel values. In this regression, β0 is the

baseline voxel value from the non-task reconstructed images

determining the SNR = β0/σ, and β1 is the estimated task

related increase from β0 determining the contrast-to-noise ratio

CNR = β1/σ. The vector x ∈ {0, 1}nIMG , where nIMG is the

number of reconstructed images in the series, is a vector such

that the zeros correspond to the images in the series without

task activation and ones corresponding to the images with task

activation. We can write this regression as y = XB + ε, where

X = [1, x] ∈ RnIMG×2 and B = [β0, β1]
′.

Since the CNR is typically much lower than the SNR, the

task is not usually visible on the reconstructed images. Instead,

a right-tailed t-test is carried out with β1 ≤ 0 as the null

hypothesis and β1 > 0 as the alternative. The reason for the

one-sided hypothesis test is because we anticipate an increased

signal from the task activation. To simulate added task, a

β1 = 0.045 magnitude-only signal increase is added to the

true noiseless non-task image with ε ∼ N(0, 0.0036) noise

yielding a CNR of 0.75. A simulated phase task of π/120 was

also added and analyzed in Section 1.3 of the Supplementary

Material. This added task activation is located in the left motor

cortex to resemble the region of interest (ROI) of brain activity

from the fMRI unilateral right-hand finger tapping experiment

(Karaman, Bruce, and Rowe, 2014). Ranges of tissue pixel

intensities are 1.00 − 1.75 for white matter, 1.75 − 3.00 for

grey matter, and 4.00− 6.00 for the cerebral spinal fluid (CSF)

in the simulation to mimic the experimental data discussed in

Subsection 4.6.

FMRI Time Series Data Generation
A true noiseless task image along with a true noiseless non-

task image were used to simulate a series of 510 full FOV

coil images for one slice. The true images were multiplied by

the same nC = 8 coil sensitivity maps used for the non-task

simulated time series, and then the series of images were Fourier

transformed in full coil k-space arrays. This series was also

generated by adding separate N(0, 0.0036nxny) noise to the

real and imaginary parts of the full coil k-space arrays and were

then inverse Fourier transformed back into full coil images. To

simulate the real-world fMRI experimental process, the series

was generated by starting with 20 non-task time points. The

scaling for the first few images in the fMRI simulated data was

the same as the signal increases outlined in Subsection 4.1 for

each of the tissue types. The initial 20 non-task time points

are followed by 16 epochs alternating between 15 non-task and

15 task time points. An epoch is a stimulation period with

time points of the subject at rest (non-task) and the subject

performing an action or task. The series culminated with 10

non-task time points producing the simulated fMRI series of

510 images. To mimic the forthcoming fMRI experiment, the

first 20 time points were discarded leaving 490 time points in the

series. The last ncal time points in the non-task time series from

Subsection 4.1 were utilized as full FOV coil calibration images

to assess the hyperparameters. For this simulation, we evaluate

both BSENSE and SENSE using nC = 5, 10, 15, 20, 25, 30

calibration images. The transformation and aliasing are the

same as in Subsection 4.1. The different acceleration factors

tested in this simulated fMRI experiment are nA = 2, 3, 4.

FMRI Time Series Reconstruction Results
The hypothesis test described in Subsection 4.3 was utilized

to determine voxels with a statistically significant signal

increase. The statistically significant voxels for each number

of calibration images were analyzed for the BSENSE MAP

reconstructed time series and the SENSE reconstructed time

series using the 5% false discovery rate (FDR) threshold

procedure (Benjamini and Hochberg, 1995; Genovese, Lazar,
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Fig. 15. Statistically significant voxels in the ROI using FDR for BSENSE reconstructed images (first row), significant voxels in the ROI using FDR

for SENSE (second row), and analysis of the t-statistics in the boxes on the right with BSENSE in red and SENSE in blue.

and Nichols, 2002; Logan and Rowe, 2004). The ROI here

consists of 28 voxels located in the left motor cortex. Increasing

the number of calibration images did not notably affect the

detection of task for either BSENSE or SENSE, shown in

Section 1.3 of the Supplementary Material. The number of

identified voxels with task activation and the mean value of the

t-statistics was greater with BSENSE while having a smaller

standard deviation compared to SENSE. These results indicate

our BSENSE approach performs better with task detection

compared to traditional SENSE, regardless of the number

of calibration images that are utilized for hyperparameter

assessment.

Figure 15 shows the statistically significant magnitude-only

voxels from the BSENSE MAP reconstructed time series (first

row) and the SENSE reconstructed time series (second row) for

the different acceleration factors. Figure 15 also summarizes the

t-statistics in the ROI for each acceleration factor. BSENSE

identified more statistically significant voxels in the ROI for

each acceleration factor while SENSE does not detect a single

voxel when the acceleration factor was nA = 4. The mean

value for the t-statistics was again much higher for BSENSE

with a lower standard deviation for the different acceleration

factors compared to SENSE, demonstrating that BSENSE

performs better when detecting task activation. Increasing the

acceleration factor decreases the number of voxels identified

and the mean of the t-statistics for both BSENSE and SENSE.

The false positive rate for BSENSE for each of the acceleration

factors were 0.033%, 0.033%, and 0.098%, respectively, while

SENSE had 0.022%, 0%, and 0%, respectively.

Experimental Data Description
A 3.0 T General Electric Signa LX magnetic resonance imager

was used to conduct an fMRI experiment on a single subject.

The last ncal = 30 full k-space arrays of a non-task series

of 510 time points performed on the subject was inverse

Fourier transformed into full coil brain images and used for

hyperparameter assessment. A bilateral finger-tapping task was

performed in a block design with an initial 20 s rest followed

by 16 epochs with 15 s off and 15 s on. The experiment was

concluded with 10 s of rest giving us a series of nIMG = 510

repetitions with each repetition being 1 s, a flip angle of 90° and
an acquisition bandwidth of 125 kHz. The data set consists of

nine 2.5 mm thick axial slices with nC = 8 receiver coils that

have a 96×96 dimension for a 24 cm full FOV, with a posterior

to anterior phase encoding direction. For this paper, the time

series for all nine slices was used to analyze the effects of

applying acceleration factors of nA = 2, 3, 4 for both BSENSE

and SENSE, but only the time series of the second slice is

shown. Like the simulation study, the aliased coil images came

from artificially skipping lines in the full coil k-space arrays,

mimicking the effect of actually subsampling the coil k-space

arrays. The first 20 images were discarded due to varying echo

times and magnetization stability, leaving 490 time points for

the fMRI experiment. The first 10 images not used for fMRI

activation can be used to estimate a T1 map (Karaman et al.,

2014) as shown in Section 2.2 of the Supplementary Material

while the second 10 images could be used for static magnetic

field mapping (Hahn, Nencka, and Rowe, 2012), also discussed

in the Supplementary Material.

Before artificially aliasing the time series by omitting lines

of k-space, a reference image (left image in Figure 16) was

produced by taking the square norm between the nC = 8

full FOV coil images at the first time point. This provides a

magnitude image with which to compare to SENSE and our

BSENSE. Rows of k-space in the fMRI experiment were omitted

in each coil in accordance to the specified acceleration factors.
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Fig. 16. BSENSE MAP unaliased non-task magnitude images for each acceleration factor (first row) using the ICM algorithm, and SENSE unaliased

non-task magnitude images for each acceleration factor (second row) with the magnitude reference image (left).

Experimental Results
Similar to the process for the simulated data described in

Section 4, each image in the entire time series of aliased coil

measurements were simultaneously unaliased and combined

using BSENSE and SENSE separately. Figure 16 displays the

BSENSE MAP reconstructed images (top row) and the SENSE

reconstructed images (bottom row) of the first time point of

the 490 images using acceleration factors 2, 3, and 4. Just as

the simulated results in Figure 13 demonstrated, the BSENSE

reconstruction in Figure 16 produced clearer, less noisy images

Fig. 17. Statistically significant voxels in the ROI using FDR for BSENSE reconstructed images (first row) for three different acceleration factors,

significant voxels in the ROI using FDR for SENSE (second row) for three different acceleration factors, and analysis of the t-statistics to the right of

the images with BSENSE in red and SENSE in blue.
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compared to SENSE reconstruction. It is noticeable inside of

the brain where the signal is higher, but the distinction is

strongest outside the brain.

MSE was again utilized to quantify the differences between

the reference image and reconstructed images. The MSE for

inside the brain for the BSENSE MAP was approximately 0.016

for each acceleration factor. For SENSE, the MSEs inside the

brain were 0.030, 0.038, and 0.170 for acceleration factors 2,

3, 4, respectively. The MSE for outside the brain for BSENSE

was 0.034, 0.033, and 0.033 for each of the acceleration factors

while the MSE for SENSE was 0.061, 0.085, and 0.157. This

means SENSE had an 88%, 140%, and 968% larger MSE inside

the brain and an 81%, 160%, and 379% larger MSE outside the

brain, respectively, for each acceleration factor. These results

reflect the decreased noise from BSENSE versus SENSE. The

entropy for BSENSE (191.0, 190.2, and 190.2, respectively) was

also lower than the entropy for SENSE (214.9, 226.6, 243.3)

indicating less uncertainty for each reconstructed image.

For the detection of task activation, the hypothesis test

outlined in Subsection 4.3 was carried out. Figure 17 shows

the statistically significant voxels under BSENSE (top row)

and SENSE (bottom row) reconstruction. The images for the

statistically significant voxels in Figure 17 for both methods

use the 5% FDR threshold. Voxels outside the brain are

usually masked out meaning the statistically significant voxels

shown outside the brain in Figure 17 would typically not be

there. Figure 17 also summarizes the t-statistics with BSENSE

(red) and SENSE (blue). BSENSE correctly detected more

voxels than SENSE as task activation in the ROI for all three

acceleration factors. Our BSENSE approach also had a much

higher mean t-statistic and lower standard deviation for all

the acceleration factors. The false positive rate for BSENSE

for each of the acceleration factors were 0.697%, 0.664%, and

0.642%, respectively, while SENSE had 0.283%, 0.163%, and

0.109%, respectively. We also evaluated BSENSE and SENSE

task detection performance on the other eight slices which is

outlined in Section 2.2 of the Supplementary Material.

5. Discussion

In linear regression, having an unknown design matrix and

complex-valued parameters can make parameter estimation of

the regression coefficients more difficult. Here, we implement

a Bayesian complex-valued latent variable linear model and

applied it, along with the non-Bayesian model, to image

reconstruction in fMRI. The results of the simulated and

experimental studies showed that the Bayesian complex-valued

latent variable model (BSENSE) out performed the complex-

valued model (SENSE).

The BSENSE unaliased images were shown to more

accurately reconstruct the truth compared to SENSE. The

number of calibration images had minimal effect on the SENSE

reconstructed images and its performance against BSENSE

reconstructed images. Increasing the number of calibration

images, however, did reduce the noise level in the BSENSE

reconstructed images, leading to increased SNR. The results

also indicated that the different acceleration factors had less

influence on BSENSE than SENSE. BSENSE was able to

successfully reconstruct images with an acceleration factor of

up to 12, which was greater than the nC = 8 coils used,

without any aliasing artifacts or increasing the spatial variance

but diminished activation. The SENSE reconstructed images

beyond acceleration factors of nA = 3 were essentially unusable.

Our BSENSE approach also had better performance when

detecting the signal increase in the voxels that experienced task

activation, as shown with both simulated and experimental

data. The number of coils did not have a notable effect

on our BSENSE approach which indicates that it works for

any coil configuration as demonstrated in Section 1.1 of the

Supplementary Material. There was a noticeable effect on the

SENSE image reconstruction. With four coils, the noise for the

SENSE reconstructed images was higher compared to the 8,

12, and 16 simulated coil arrays as shown in Section 1.1 of the

Supplementary Material. This suggests that SENSE requires

a deeper coil sensitivity map coverage to properly reconstruct

images.

This paper used the full posterior distribution for

reconstructing images, meaning available prior information was

quantified on all three parameters (v, S, and σ2) and utilized

for parameter estimation. We have also analytically integrated

out σ2 yielding a marginal posterior where v and S are the only

two unknowns to be estimated. Integrating out σ2 produces

a joint Student-t posterior for S and v from which we have

obtained Gibbs sampling marginal estimates consistent with

the three-parameter model.

For the task detection in this paper, only the MAP estimate

using the ICM algorithm was used to reconstruct the time series

of non-task and task aliased images for capturing activation

for both the simulated and experimental data. This is due to

the Gibbs sampler being more computationally expensive when

running a long series of images so it may not be as practical to

use compared to evaluating the MAP estimate. This does not

mean there is no value in running a Gibbs sampler, as it has

the additional benefit of quantifying uncertainty. For instance,

it could be utilized on a shorter series of images, provide us

more statistical information about any voxel, or for hypothesis

testing between two images. It is also possible to hybridize the

ICM and Gibbs sampler with a couple of ICM steps followed

by a short or no-burn Gibbs sampler. Our Bayesian approach

allows for more options of how to run an fMRI experiment based

on the objective of the scan compared to SENSE.

In this paper, a magnitude-only activation model was

utilized to detect task activation. In Section 1.3, phase-only

activation for BSENSE is analyzed with the results showing

strong task detection power. Since the reconstructed images

are complex-valued, our model is expected to be applicable for

complex activation models for task detection (Rowe and Logan,

2004; Rowe, 2005). Further, an extension of our model would

be to incorporate both covariance between the observations and

covariance between the regression coefficients.
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Abstract

In linear regression, the coefficients are simple to estimate using the least squares method with a known design matrix for
the observed measurements. However, real-world applications may encounter complications such as an unknown design
matrix and complex-valued parameters. The design matrix can be estimated from prior information, but can potentially
cause an inverse problem when multiplying by the transpose as it is generally ill-conditioned. This can be combat by
adding regularizers to the model, but does not always mitigate the issues. Here, we propose our Bayesian approach to
a complex-valued latent variable linear model with an application to fMRI image reconstruction. The complex-valued
linear model and our Bayesian model evaluated through extensive simulations and applied to experimental fMRI data.

Simulation Results

Non-Task Reconstruction
As mentioned in Section 4.1 of the main paper, the first few

images in an fMRI time series have increased signal as the

magnetization reaches a stable state. To mimic this, the first

three of the 510 time points of the simulated non-task time

series were scaled with the signal slightly decreasing from the

first to the third time point before reaching a stable signal in

the fourth time point. The scaling was determined by dividing

the first three images by the 21st time point, separately.

After dividing the three images, the signal increase for each

tissue type (white matter, grey matter and CSF) was averaged

together for each of the three divided images, calculating the

average signal increase for each matter type. For example, the

average signal increase in the first image for the white matter

was 40%, 55% for the grey matter and 75% for the CSF giving

multiplication factors of 1.40, 1.55, and 1.75 for the matter

types, respectively. This process was repeated for the second

and third image in the series with the multiplication factors

decreasing from the first to the third image. The first 10 time

points of an fMRI experiment can be used to estimate a T1 map

which efficiently segments the different tissue types, which is

demonstrated later in this Supplementary Material. The next

10 time points can be utilized to estimate a magnetic field

map to adjust for geometric distortions (Karaman et al., 2015).

These first 20 time points are typically discarded in the task

detection component of fMRI analysis.

Since the reconstructed images are complex-valued, we

are able to examine the phase images. The phase of the

reconstructed images for a different number of calibration

images is shown in Figure 1 for BSENSE (top row) and SENSE

(bottom row). The images in Figure 1 indicate that increasing

the number of calibration images has little to no effect on

the phase of the reconstructed images for both BSENSE and

SENSE. Similar to the phase images displayed in Section 4.2 of

the main paper, the SENSE phase images show no anatomical

structure while the BSENSE phase images resemble the true

simulated phase.

Fig. 1. Phase of the reconstructed images for different number of

calibration images using BSENSE MAP estimate (top row) and SENSE

(bottom row).

Along with analyzing different number of calibration images,

we also examined phase images for different acceleration

factors. Figure 2 displays the phase of reconstructed images

for both BSENSE (top row) and SENSE (bottom row) using

© The Author 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com
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Fig. 2. Reconstructed phase images for different acceleration factors using

BSENSE MAP estimate (top row) and SENSE (bottom row).

acceleration factors of 2, 4, and 8. The phase images for

BSENSE are unaffected by the different acceleration factors.

For SENSE, the phase images appear to be overtaken by noise

as the acceleration factor increases.

For the simulated and experimental data, nC = 8 coils were

used to evaluate the reconstruction results for BSENSE and

SENSE. We also wanted to test how different coil configurations

would affect the image reconstruction results for the BSENSE

and SENSE magntude images. Figure 3 shows that the MSE

for the magnitude BSENSE MAP reconstructed images are

smaller than the magnitude SENSE reconstructed images when

compared to the true simulated image for each number of

coils. Also, SENSE had a noticeably higher MSE for nC = 4

coils in the configuration compared to nC = 8, 12, 16. This

indicates that SENSE requires coils with higher coverage of

the field-of-view while BSENSE still produces highly accurate

reconstructed images.

For estimating priors of BSENSE, we use up to 30

calibration image time points which are averaged together

and then utilized to assess the hyperparameters. This means

Fig. 3. MSE for inside and outside the brain for BSENSE and SENSE

comparing both method’s magnitude reconstructed images to the true

simulated magnitude image for each number of coils (4, 8, 12, 16).

BSENSE is shown in red for outside the brain (blue for SENSE) and

dark red for inside the brain (dark blue for SENSE).

Fig. 4. Plot for the average correlation between all voxels and the

voxels they were previously aliased with for each subsampling size of

the calibration images. The red line indicates subsampling without

replacement and the blue line indicates subsampling with replacement

for both plots.

the same prior information is used at each time point when

reconstructing the fMRI time series which could potentially

lead to correlation with previously aliased voxels or task

leakage. Task leakage is false detection of task in voxels

that were previously aliased. To possibly mitigate this, we

can randomly subsample (with or without replacement) the

calibration images used at each time point in the fMRI time

series. This means different hyperparameters are applied at

each time point to the reconstruction of the aliased time series.

We can also change the prior scalars nv and nS in the parameter

estimation equations 3.6, 3.7, and 3.8 to be less than the

number the calibration which decreases the weight of the prior

information in the reconstructed images.

Figure 4 demonstrates the effects of subsampling the

calibration images on magnitude voxel correlation while

decreasing the prior scalars to nv = 1 and nS = 1. Figure

4 shows a plot of the average correlation between all voxels and

the voxels they were previously aliased with for subsampling

sizes of 5, 10, 15, 20, 25, and 27, out of 30 calibration images,

comparing them to the non-subsampling BSENSE that has

been demonstrated throughout the main paper. The results

indicate that subsampling the calibration images, either with

or without replacement, remarkably decrease the correlation

between voxels and their previously aliased voxels.

Coil Sensitivity and Residual Noise
Along with the unaliased voxel values, BSENSE estimated

the coil sensitivities for each TR in the time series. Figure

5a displays the true magnitude image (center) and the true

magnitude coil sensitivities starting with coil 1 on the top

middle and going clockwise to coil 8. Figure 5b has the same

setup with the BSENSE magnitude reconstructed image and

coil sensitivities for the first TR of the 490 non-task time series.

The estimated BSENSE coil sensitivities appear to be similar

to the the true coil sensitivities.

The estimated coil sensitivities were also analyzed using

different number of calibration images (5, 10, 15, 20, 25,

30) and acceleration factors (2, 3, 4, 6, 8, 12). With fixing
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Fig. 5. (a) True magnitude coil sensitivities surrounding the true magnitude image and (b) BSENSE estimated magnitude coil sensitivities surrounding

the reconstructed magnitude image.

nA = 3, Figure 6a exhibits the MSE for the different number

of calibration images for each coil inside the brain. The MSE

for each coil is very small and decreases as the number of

calibration images increase, similar to the MSE decreasing

outside the brain in the BSENSE magnitude reconstructed

images. With fixing ncal = 30, Figure 6b exhibits the MSE

for the different acceleration factors for each coil inside the

brain. Again, the MSE for each coil is very small with a slight

increase as the acceleration factor increases. This illustrates

that our BSENSE approach accurately estimates the simulated

coil sensitivities as well.

Our proposed BSENSE technique also estimated the

residual variance for the aliased coil measurements. We

evaluated the affects of the number of calibration images

and acceleration factors on the residual variances. Figure 7a

shows the residual variances of the coil measurements for each

number of calibration images with nA = 3. The residual

variance appears to increase as the number of calibration images

increase. This is due to the coefficients for the estimation of σ2,

outlined in Subsection 3.3 of the main paper, increasing with

the number of calibration images. Figure 7b shows the residual

variances of the coil measurements for each acceleration factor

with ncal = 30. The residual variance appears to decrease as

the acceleration factor increases because the denominator of the

Iterated Conditional Modes (ICM) estimate of σ2 is increasing.

All residual variances appear to be uniform across the aliased

images in Figure 7 which is expected as noise is anticipated to

be uniform across the image.

Fig. 6. (a) MSE for each of the nC = 8 coils using a different number of calibration images and (b) MSE for each of the nC = 8 coils using different

acceleration factors.
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Fig. 7. (a) Residual variance of the aliased coil images for each number

of calibration images and (b) Residual variance of the aliased coil images

for each acceleration factor.

Simulated fMRI
As mentioned above, the first 10 time points in an fMRI

experiment can be used to estimate a T1 map of the brain. To

reconstruct the first image of the simulated fMRI time series,

the first time point of the non-task time series was utilized

as a calibration image to assess hyperparameter of the first

time point. The same was accomplished for the second and

third points as well since they also experiencing increased but

declining signals. The rest of the time points from the 20

that were discarded in the fMRI experiment were reconstructed

using the priors from the hyperparameter assessment that used

the last 30 time points from the non-task simulated time series.

Before estimating the T1 map, we first calculated R = M1/MSS

where M1 is the magnitude of the reconstructed first time point

and MSS is the average magnitude images of time points six

through 10 (Karaman, Bruce, and Rowe, 2015). Then the T1

map was estimated by T1 = TR
ln[R/(R−1)] where TR is the

repetition time, which is 1 s for our data, and ln is the natural

log (Karaman, Bruce, and Rowe, 2015). Figure 8 displays the

estimated T1 map for the simulated fMRI time series. The

values estimated for the grey matter and the white in the

T1 map for the simulated data were approximately 1410 ms

and 1199 ms, respectively. These values are consistent with

those found in literature where, using a 3 Tesla machine, of

1331 ms for grey matter and 832 ms for white matter as

shown by Karaman, Bruce, and Rowe, 2015. These results

show that BSENSE preserves quantitative T1 estimation and

considering the accurate reconstructed phase images, should

be able estimate the change in the B-field inhomogeneity, ∆B.

Similar to magnitude-only task detection, we can also use

the phase images for task detection. As mentioned in the

Section 4.3 of the main paper, a simulated phase task of π/120

was added to the simulated true simulated task image. A simple

linear regression model, ϕ = θ0 + θ1x + η, can be used for

the phase activation as well. In this regression, ϕ is the phase

of the unaliased voxel, θ0 is the baseline phase voxel value

from the non-task reconstructed images, θ1 is the estimated

increase from θ0, and x ∈ {0, 1}nIMG is a vector such that

the zeros correspond to the images in the series without task

activation and ones corresponding to the images with task

activation. We then use a one-tailed t-test, t = θ̂1/SE(θ̂1),

Fig. 8. Estimated T1 map from the ratio of the first time point image

over the time points 6-10 where the magnetization reaches stability in

the simulated data. The scale is from zero seconds to two seconds,

equivalently 2000 ms.

to determine which voxels contain statistically significant θ1

values indicating which voxels experience task activation.

Fig. 9. Statistically significant voxels in the ROI using FDR for different

acceleration factors from the BSENSE phase reconstructed images.

Using the 5% FDR threshold, Figure 9 shows phase

activation for BSENSE reconstructed time series using

acceleration factors of 2, 3, and 4. Like the BSENSE

reconstructed magnitude images, we can see that it captures the

simulated task activation in the ROI. Since the phase images

for SENSE are unusable without any anatomical structure, it

is unreasonable to analyze phase task activation.

In Section 1.1 of the Supplementary Material, we

examined how subsampling from 30 calibration images

for hyperparameter assessment at each time point effects

correlation with other voxels. Here, we analyzed how the

same subsampling parameters effect task detection for BSENSE

fixing the prior scalars nv = 1 and nS = 1. Figure 10a displays

the number of voxels identified as task in the ROI along with

the top and bottom task leakage from unaliasing. Figure 10b

illustrates the mean of the t-values in the ROI, the voxels in

the top leakage, and the voxels in the bottom leakage. For

both plots in Figure 10, the red lines and blue lines indicate

subsampling with and without replacement, respectively, the

lines with black dots are the values for the ROI, the lines with

the dark grey dots are the values for the top leakage region, and
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Fig. 10. (a) Plot for number of voxels detected as task activation in the ROI and location of the potential task leakage (with nA = 3) for each subsample

size for bootstrapping the calibration image. (b) Plot for mean of the t-statistics of voxels in the ROI and location of the potential task leakage (with

nA = 3) for each subsample size for bootstrapping the calibration images. The red lines indicate subsampling without replacement and the blue lines

indicate with replacement. The lines with the black dots indicate the lines for analysis inside the ROI, The dark grey dot lines indicate analysis for the

top task leakage, and the light grey dot lines for analysis of the bottom task leakage.

the lines with the light grey dots are the values for the bottom

leakage region.

As demonstrated in Figure 10a, the number of task

voxels correctly identified slightly decreases when introducing

subsampling and subsample size decreases. Except for 15,

subsampling without replacement does correctly identify more

task voxels than with replacement. Subsampling the calibration

images does decrease the number of voxels incorrectly identified

as task in the leakage areas. Corresponding results for this

method is exhibited in analyzing the mean t-statistics shown

in Figure 10. Introducing subsampling does decrease the mean

of the t-values compared to the normal BSENSE method, but

also decreases the t-values’ mean in the areas of leakage as well.

Subsampling without replacement has higher average t-values

than with replacement and both decrease as the subsample size

decreases as well. These task detection results coincide with

the correlation results of subsampling which ultimately decrease

correlation and task leakage but also decrease the power of task

detection in the ROI.

Fig. 11. Task detection from the phase reconstructed images using

an acceleration of 3 for normal BSENSE (left) and subsampling of 27

calibration images without replacement with prior scalars of nv = 1 and

nS = 1 from Eqs. 3.6, 3.7, and 3.8 (right).

With the simulated fMRI series using an acceleration factor

of nA = 3, we examined the effect subsampling would have on

phase task detection. Figure 11 displays the images of phase

task activation using normal BSENSE (left) and subsampling

BSENSE of size 27 without replacement and prior scalars of

nv = 1 and nS = 1 (right) with purple circles showing the

locations of potential task leakage. It appears that subsampling

removes the task leakage that normal BSENSE experiences, but

slightly decreases the number of active voxels in the ROI.

Real-World Experimental Data

Data Description
Additional details of the experimental data are described in this

subsection. For each volume image in the experimental series,

a time dependent echo time, TEt, consisted of three parts. The

first part was fixed to have a value of TE = 42.7 ms at the

first 10 time points. In the second part, the next five TE values

were an equally spaced interval of values 42.7 ms, 45.2 ms, 47.7

ms, 50.2 ms, and 52.7 ms and was repeated for another 5 time

points. For the final part, the last 490 time points were fixed

at 42.7 ms. To account for T1 effects and varying echo times,

the center row of k-space for each TR in each receiver coil was

acquired with three navigator echoes which is used to correct

any potential Nyquist “ghosting.” The additional rows of k-

space were integrated to estimate and adjust the error in the

center frequency and group delay offsets between the odd and

even lines of k-space (Nencka, Hahn, and Rowe, 2008).

Typically, the magnetic fields in an fMRI experiment will

induce a drift in the phase over time which we correct before

reconstruction to give us a stable phase through time. First, the

angular phase temporal mean of the time-series is calculated

and subtracted for each voxel time-series. A local second order

polynomial was spatially fit to the resultant difference of the

voxel phase time-series. Then the fitted polynomial is added to

the mean phase image producing a steady phase over time for

each coil.
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Experimental Data Results
The BSENSE and SENSE reconstruction results for the

experimental data, outlined in Subsection 5.1 of the main

paper, are further demonstrated in this section. Similar to

the simulated fMRI experiment, the first and six through 10

time points of the 20 discard time points in the experimental

data were utilized to estimate a T1 map as shown in Figure 12.

For the grey and white matters, the T1 estimation values were

approximately 1410 ms and 1267ms, respectively, which closely

resembles the T1 estimates from the simulation study and those

found in the literature.

Fig. 12. Estimated T1 map from the ratio of the first time point image

over the time points 6-10 where the magnetization reaches stability in

the experimental data. The scale is from zero seconds to two seconds,

equivalently 2000 ms.

Figure 13 displays the time series of two reconstructed voxels

using BSENSE (red) and SENSE (blue): one voxel not in the

ROI (non-task) and one voxel in the ROI (task). These plots

show much smaller temporal variability with BSENSE.

We also analyzed the phase of the reconstructed

experimental time series using acceleration factors of nA =

2, 3, 4, displayed in Figure 14. The appearance of the BSENSE

phase reconstructed images are due to the imperfect shims

of the magnetic field gradients. An example of this can

be seen in the experimental data of the Bruce et al. 2011

paper. In the simulated data used for the this study, perfect

homogeneity throughout the magnetic gradient field is assumed

resulting in clear anatomical structure for the BSENSE phase

Fig. 13. (a) Time series of a non-task voxel and (b) Time series of a task

voxel.

reconstructed images in Figure 8 of the main paper. The

BSENSE reconstructed phase images in Figure 14 more

accurately represent the phase images and can also be utilized

estimate the change in the B-field inhomogeneity, ∆B. Like the

magnitude images, increasing the acceleration factor has little

effect of the BSENSE reconstructed phase images, but appear

to cause the SENSE reconstructed phase images to be noisier.

Fig. 14. Reconstructed phase images for different acceleration factors

using BSENSE MAP estimate (top row) and SENSE (bottom row) from

the experimental data.

We evaluated BSENSE and SENSE task detection

performance on all nine slices utilizing 30 calibration images

and applying an acceleration factor of 3. Both methods were

visually compared to the reference task detection image for

each slice. For each slice of experimental data, we estimated

single magnitude images at each time point by taking the

root sum of squares of the full coil images. The series of the

magnitude images was then utilized to estimate task activation

using the same linear regression described in Section 4.3 of the

main paper to yield the reference task detection images. Figure

15 shows the statistically significant voxels for the root sum

of squares of the full coil images (left column), the BSENSE

MAP estimate (middle column) and the SENSE (right column)

reconstructed experimental time series for each slice. For the

The images for the statistically significant voxels in Figure 15

for each techniques use the 5% FDR threshold. For this real-

world fMRI experiment, only slices 1-4 observe task activation

in our ROI which is the left motor cortex. Figure 15 also

displays the analysis of the t-statistics for each slice with

activation for both BSENSE (red) and SENSE (blue). Note

that BSENSE correctly identified more voxels than SENSE as

task activation in the ROI for all four slices. The BSENSE

technique also had a higher mean t-statistic for each slice, and

the standard deviation is lower for all but one of the slices

(fourth slice). These experimental results demonstrate that our

proposed BSENSE technique performs better with detecting

activation compared to SENSE for multiple slices.

Further Discussion

The main paper described theoretical advantages of BSENSE

image reconstruction over SENSE image reconstruction. It also

exhibited statistical improvements of BSENSE over SENSE

through simulated and experimental applications. These

applied results mainly focused on magnitude reconstructed

images, temporal variance, SNR, and magnitude-only task
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Fig. 15. Statistically significant voxels in the ROI using FDR for root

sum of squares of the full coil images (left column), statistically significant

voxels in the ROI using FDR for BSENSE reconstructed images (middle

column), significant voxels in the ROI using FDR for SENSE (right

column), and analysis of the t-statistics in the boxes on the right with

BSENSE in red and SENSE in blue.

detection. This Supplementary Material further supported the

improved results by looking at the phase of the reconstructed

images for both simulated and real-world experimental data

and analyzing phase activation with the simulated data.

Beyond the reconstructed images, BSENSE also successfully

estimated the sensitivities of the coils and uniformity of the

noise variance of the aliased coil images. We were also able

to successfully estimate a T1 map for both simulated and

experimental data. Our BSENSE model, and the SENSE

model, assume there is no correlation between the previously

aliased voxels (Bruce, Karaman, and Rowe, 2012) along with

no correlation between the coils when reconstructing the

aliased coil measurements. The correlation between previously

aliased voxels was addressed, without changing the model,

by performing the subsampling of the calibration images.

This method decreased the effects of unaliasing by decreasing

the correlation of the previously aliased voxels along with

decreasing the leakage in detecting task activation. These

improvements from subsampling make it reasonable to apply

this method over normal BSENSE to MR image reconstruction.

This enhances the flexibility of our BSENSE technique which

increases its practical use for real-world fMRI experiments.

Appendix: Table of Variables

nC Number of coils

nA Acceleration factor

aC Observed complex-valued aliased coil voxel

measurements

aR Real component of the observed complex-valued

aliased coil voxel measurements

a Real-valued representation of the observed complex-

valued aliased coil measurements

aI Imaginary component of the observed complex-

valued aliased coil voxel measurements

SC Unobserved complex-valued coil sensitivities

SR Real component of the unobserved complex-valued

coil sensitivities

SI Imaginary component of the unobserved complex-

valued coil sensitivities

S Real-valued isomorphic representation of the

unobserved complex-valued coil sensitivities

vC Unobserved complex-valued unaliased voxel values

vR Real component of the unobserved complex-valued

unaliased voxel values

vI Imaginary component of the unobserved complex-

valued unaliased voxel values

v Real-valued representation of the unobserved

complex-valued unaliased voxel values

εC Additive image space measurement error

εR Real component of the additive image space

measurement error

εI Imaginary component of the additive image space

measurement error

σ2 Variance of the additive image space measurement

error

H Representation of the real and imaginary

components of the sensitivity coils not in isomorphic

form

v0 Complex-valued prior mean for the unaliased

voxels, v, in the BSENSE model in real-valued

representation

v0M Magnitude of the prior mean for the unaliased

voxels, v, in the BSENSE model

nv Scalar prior for the unaliased voxels, v, in the

BSENSE model

H0 Complex-valued prior mean for the coil sensitiviites,

S, in the BSENSE model in real-valued

representation
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S0 Complex-valued prior mean for the coil sensitiviites,

S, in the BSENSE model in real-valued skew

symmetric representation

nS Scalar prior for the coil sensitiviites, S, in the

BSENSE model

α Shape parameter for the inverse gamma distribution

of σ2 in the BSENSE model

β Scale parameter for the inverse gamma distribution

of σ2 in the BSENSE model

Y Real-valued representation of ac where the real

component is stacked in the first column and the

imaginary component is stacked in the second

column

V Transpose of the skew symmetric matrix

representation of vc

nY Number of rows in the full k-space array

nX Number of columns in the full k-space array

ncal Number of calibration time points used for

hyperparameter assessment

vj Magnitude of the jth voxel in the reconstructed

image

vj Magnitude of the jth voxel in the true simulated

image

vj The magnitude voxel intensity if all image

intensities were in one voxel

y The reconstructed voxel for the task detection linear

regression model

X The design matrix for the task detection linear

regression model

B The coefficients for the task detection linear

regression model

nIMG The number of images in an fMRI time series
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