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1. Sensitivity Encoding (SENSE)

Method — Four Coils with Acceleration Factor

* Introducing an acceleration factor A = 3

* Measures every third line, essentially cutting the full FOV image into 3 sections
and aliasing (overlapping) them
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1. Sensitivity Encoding (SENSE)

Acceleration Factor

ny = acceleration factor(3)

Skipping lines
in the k-space
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1. Sensitivity Encoding (SENSE)

Method — Four Coils with Acceleration Factor (cont.)

**All Parameters
are complex-valued
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1. Sensitivity Encoding (SENSE)

Complex-valued Nature
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2. Bayesian Approach to SENSE (BSENSE)

Introduction

* Instead of creating a “design” matrix from the a priori calibration images, will be
used to form a joint conjugate multivariate normal-inverse gamma prior
distribution for the unobserved coil sensitivities and the reconstructed images

 The prioris combined with the data likelihood to form a posterior distribution

* Technique for parameter (image) estimation:

 Maximum A Posteriori (MAP) estimate using the Iterated Conditional
Modes (ICM) algorithm

e MCMC Gibbs sampler implemented with posterior conditional distributions
to form a chain of reconstructed posterior conditional images

Chase Sakitis 7



Mathematical and Statistical Sciences

2. Bayesian Approach to SENSE (BSENSE)

ne = number of coils(4)
ny = acceleration factor(3)

Independent Model

 Aliased voxel measurements are observed with random error

* a=5v+e¢ wheree~N(0,0%I,,)
* Data Likelihood

P(a|S,v,0%) < (02)‘230 exp{— 21

2
o)

e Priors:

2ncnp

P(H|ng,H,,0°) < (%) * exp[— ;

(a—Sv)'(a-— Sv)}

Ng

P(v|n,,v,,c°) (az)‘ng exp{— ",
20

P(c?|a, B) < (6?) “Pexp {—ﬁz}
O

e Assessed Hyperparameters: ng, Hy, n,,v,

e Posterior
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P(H,v,c%|a) o« P(a|S,v,6°)P(H |ng,H,,c°)P(v|n,,v,,6°)P(c® | a, B)
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2. Bayesian Approach to SENSE (BSENSE)

ne = number of coils(4)

Independent Model - Parameter Estimation n, = acceleration factor(3)

 Maximum A Posteriori (MAP) estimate using the Iterated Conditional Modes
(ICM) algorithm

+ H=(YC'+nH,)(CC"+ Ngly )™

. V=(8'S+n,l,, ) (S'a+ny,)

52 _ (@a-Sv)'(@a-Sv)+n,(v-v,)'(v-vy) +af +nstr[(H —H,)(H —H,)]
- 2(2n,+2n, + ¢ +2n.n, +1)

* Assessed Hyperparameters: ng, Hy, n,,vy, a, and I—;I =[§R §,]
. A~ ~ ~ A \7R
Given: U(O)/v Given: H(l)/v Given: Hq), U(q) s 0
A |
l,\ l,\ l H, :[SOR Sm]
Solve: H(y) Solve: 7y Solve: 6(21) nex2n,
| Vor
*Repeated N number of times zyfxl - |:V0| }
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2. Bayesian Approach to SENSE (BSENSE)

Independent Model - Parameter Estimation (cont.) n"izc’éﬂf;;gﬁzgfgfgg)
=

MCMC Gibbs sampler implemented with posterior conditional distributions to

form a chain of reconstructed posterior conditional images

. Hlv,0%,a~N(H,Z, =1, ®c7(CC'+ngl,, )™?) - _VVRI ”
H = (YC+ngH,)(CC+ngl,, )™ Y :?aR a]

. v|S,0%,a~N(®,Z, =0*(S'S+n,l,, )7 s, _S,}
U=(S'S+n,l, ) (S'a+ny,) e TR

. o%|v,S,a~ 1G(a, B.) M, 7= 8]

a.=N.N,+N.+N, +a

B = %[(a— Sv)'(@a—Sv)+n,(v—V,)'(V=Vy) +nstr(H —Hy)(H —H,) '+ 23]

Given: Hg), vy Giverl: 0(21), H(O)/v Givenl: 0(21), V(1)

Generate: g} Generate: V(1) Generate: Hy)

*Repeated L number of times (remove burn)
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3. Simulated Results

Aliased Coil Measurements

e Single Slice, One Timepoint

Real Imaginary

Chase Sakitis



Mathematical and Statistical Sciences

3. Simulated Results

Reconstructed Images for Single Slice
True
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3. Simulated Results

Task Activation

* With non-task images, we are given a baseline estimate 3, for the voxel values of
the reconstructed images

« Y =f,,whereY isthe magnitude of the estimated voxel value
* By adding task activation, we introduce a f3; to this regression model giving us:
* Y=F+XB
 Writtenas Y = X3, where X is the nx2 design matrix
* n=number of images in the series

* First column is a column of ones, and the second column is a column
of zeros and ones (zero for the non-task images in the series and one
for task images in the series)

* Objective: to detect the task activation

* Use a simple t-test to check for which voxels in the 96x96 reconstructed
image have statistically significant 3;’s
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3. Simulated Results

Task Activation (cont.)

Bo (non-task)

SNR =

i
o
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3. Simulated Results

Task Activation (cont.)

* We have 500 images in the series

e First 250 are non-task images, last 250 are task images
* For each voxel of the 96x96 reconstructed images, we have the regression model:
Bo
b1

are the parameters to estimate for statistical significance, and X is the

« Y = X[, whereY is the 500 estimated magnitude voxel values, f =

design matrix as shown to the right 1 0]
« Tofind B, we use the equation 8 = (X'X)"1X'Y 1 0 __ 250 zeros
* This is repeated for every voxel in the 96x96 image X = 11
* The following hypothesis is run: © 1|t 2500nes
* Hy: B4 <0,Hy;: 1 >0 1 1)

* Thisis a simple one-tailed t-test with @ = 0.05 and n equal to the number
of images in the series (500 for this example)

131 —
SE(A)
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3. Simulated Results Threshold = 0.05

Detecting Task Activation

BSENSE MAP

SENSE

crit.value = 1.645 crit.value = 3.6568
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4. Discussion

Overview

* Advantages of BSENSE over SENSE
e Utilizes more available prior information from the calibration images
e Clearer reconstructed image
* Better performance when detecting task
* Allows more flexibility (able to access entire posterior or just a single point)

* Future work
* Apply this method to experimental data

* |ntroduce the correlated model

* With this independent model, we work under the assumption of no
coil covariance or aliased voxel covariance
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Thank You!

Questions?
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