

Modeling and Analysis of Inherently Complex-Valued FMRI Data

Daniel B. Rowe

Program in Computational Sciences Department of Mathematics, Statistics, and Computer Science Marquette University

April 14, 2016

D.B. Rowe

NIHR21 NS087450

Outline Introduction

MRI, fMRI and fcMRI data are truly complex-valued.

Modeling

Use complex-valued time series! Greater sensitivity/specificity.

Phase Information

Studies have demonstrated biological information in the phase.

Results

Gains from not throwing away phase half of data.

Discussion

We need utilize as much of the rawest data as possible.

Activation or Connectivity

Biswal, MRM 1995.

•	MO TS m_t	$ TS Model \rightarrow \beta, \sigma^2, \alpha $	Activation t, F, χ^2	Threshold FWE,FDR,PCE
	Big	g Bla	ck E	Box

In fMRI the statistical analysis (almost) always begins with magnitude-only time series.

There is a **Big Black Box** that is ignored between MO TS model and the physical quantities.

Introduction Tip of Iceberg → MO TS → TS Model → Activation → Threshold β, σ^2, α t, F, χ^2 FWE,FDR,PCE m_{t} Big Black Box

Shed light on part of the **black box**!

(FOV=240 mm) $(n_x = n_y = 96, \Delta x = \Delta y = 2.5 \text{ mm})$

We inverse Fourier transform spatial freqs to generate image.

Due to imperfect reconstruction (noise, $T_2^*, \Delta B, \ldots$), image is complex-valued, $Y(x, y) = Y_R(x, y) + iY_I(x, y)$.

given voxel at time t

Imaginary Image, *y*_{It}

D.B. Rowe

Real Image, y_{Rt}

Due to imperfect reconstruction (noise, $T_2^*, \Delta B, ...$), image is complex-valued, $Y(x, y) = M(x, y) \exp[i\Phi(x, y)]$

This opens up the opportunity for complex-valued analysis!

Voxel measurements are described as (absorption/dispersion, in-phase/quadrature)

 $y_{R} = \rho \cos \theta + \eta_{R}$ $y_{I} = \rho \sin \theta + \eta_{I}$

 y_R and y_I are measurements for the real and imaginary parts

 η_R and η_I are error terms for the real and imaginary parts

 ρ and θ are the population magnitude and phase.

Modeling Three non-zero

- Complex Magnitude w/ Constant Phase (CP) Activation^{1,2}
- Complex Magnitude and/or Phase (MP) Activation^{3,7}
- Real Magnitude-Only (MO/UP) Activation (Discard Phase)^{4,5}
- Real Phase-Only (PO) Activation (Discard Magnitude)⁶

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

²Rowe: NIMG 25:1124-1132, 2005a. ⁴Bandettini et al.: MRM, 30:161-173, 1993. ⁶Rowe, et al.: JNSM, 161:331-341, 2007.

Modeling Three non-zer

- Complex Magnitude w/ Constant Phase (CP) Activation^{1,2}
- Complex Magnitude and/or Phase (MP) Activation^{3,7}
- Real Magnitude-Only (MO/UP) Activation (Discard Phase)^{4,5}
- Real Phase-Only (PO) Activation (Discard Magnitude)⁶

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

- Complex Magnitude w/ Constant Phase (CP) Activation^{1,2}
- Complex Magnitude and/or Phase (MP) Activation^{3,7}
- Real Magnitude-Only (MO/UP) Activation (Discard Phase)^{4,5}
- Real Phase-Only (PO) Activation (Discard Magnitude)⁶

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

²Rowe: NIMG 25:1124-1132, 2005a. ⁴Bandettini et al.: MRM, 30:161-173, 1993. ⁶Rowe, et al.: JNSM, 161:331-341, 2007.

Modeling Three non-zero

- Complex Magnitude w/ Constant Phase (CP) Activation^{1,2}
- Complex Magnitude and/or Phase (MP) Activation^{3,7}
- Real Magnitude-Only (MO/UP) Activation (Discard Phase)^{4,5}
- Real Phase-Only (PO) Activation (Discard Magnitude)⁶

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

²Rowe: NIMG 25:1124-1132, 2005a. ⁴Bandettini et al.: MRM, 30:161-173, 1993. ⁶Rowe, et al.: JNSM, 161:331-341, 2007.

- Complex Magnitude w/ Constant Phase (CP) Activation^{1,2}
- Complex Magnitude and/or Phase (MP) Activation^{3,7}
- Real Magnitude-Only (MO/UP) Activation (Discard Phase)^{4,5}
- Real Phase-Only (PO) Activation (Discard Magnitude)⁶

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

²Rowe: NIMG 25:1124-1132, 2005a.
⁴Bandettini et al.: MRM, 30:161-173, 1993.
⁶Rowe, et al.: JNSM, 161:331-341, 2007.

- Complex Magnitude w/ Constant Phase (CP) Activation^{1,2}
- Complex Magnitude and/or Phase (MP) Activation^{3,7}
- Real Magnitude-Only (MO/UP) Activation (Discard Phase)^{4,5}
- Real Phase-Only (PO) Activation (Discard Magnitude)⁶

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

²Rowe: NIMG 25:1124-1132, 2005a. ⁴Bandettini et al.: MRM, 30:161-173, 1993. ⁶Rowe, et al.: JNSM, 161:331-341, 2007.

In each voxel at time *t*:

$$\begin{pmatrix} y_{Rt} \\ y_{It} \end{pmatrix} = \begin{pmatrix} \rho_t \cos \theta_t \\ \rho_t \sin \theta_t \end{pmatrix} + \begin{pmatrix} \eta_{Rt} \\ \eta_{It} \end{pmatrix}$$

 $(\eta_{Rt},\eta_{It})' \sim N(0,\Sigma_t)$

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

In each voxel at time t:

$$\begin{pmatrix} y_{Rt} \\ y_{It} \end{pmatrix} = \begin{pmatrix} \rho_t \cos \theta_t \\ \rho_t \sin \theta_t \end{pmatrix} + \begin{pmatrix} \eta_{Rt} \\ \eta_{It} \end{pmatrix}$$

$$CP^{1,2}: \qquad \rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{q_1} x_{q_1t}$$

$$CP \qquad MP \qquad CM$$

 $(\eta_{Rt},\eta_{It})' \sim N(0,\Sigma_t)$

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

In each voxel at time t:

$$\begin{pmatrix} y_{Rt} \\ y_{It} \end{pmatrix} = \begin{pmatrix} \rho_t \cos \theta_t \\ \rho_t \sin \theta_t \end{pmatrix} + \begin{pmatrix} \eta_{Rt} \\ \eta_{It} \end{pmatrix}$$

$$CP^{1,2}: \quad \rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{q_1} x_{q_1t}$$

$$\theta_t = \theta$$

$$MO/UP^{4,5}: \rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{q_1} x_{q_1t}$$

$$\theta_t \neq \theta_{t'}$$

$$(\eta_{Rt}, \eta_{It})' \sim N(0, \Sigma_t)$$

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

In each voxel at time t: $\begin{pmatrix} y_{Rt} \\ y_{It} \end{pmatrix} = \begin{pmatrix} \rho_t \cos \theta_t \\ \rho_t \sin \theta_t \end{pmatrix} + \begin{pmatrix} \eta_{Rt} \\ \eta_{It} \end{pmatrix}$ $\rho_{t} = \beta_{0} + \beta_{1} x_{1t} + \dots + \beta_{a_{1}} x_{a_{1}t}$ CP^{1,2}: $\theta_{\star} = \theta$ MO/UP^{4,5}: $\rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{a_1} x_{a_1t}$ $\theta_{t} \neq \theta_{t'}$ $\rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{a_1} x_{a_1t}$ MP^{3,7}: $\theta_t = \gamma_0 + \gamma_1 u_{1t} + \dots + \gamma_{q_2} u_{q_2t}$

 $(\eta_{Rt},\eta_{It})' \sim N(0,\Sigma_t)$

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

²Rowe: NIMG 25:1124-1132, 2005a. ⁴Bandettini et al.: MRM, 30:161-173, 1993. ⁶Rowe, et al.: JNSM, 161:331-341, 2007.

In each voxel at time t:

$$\begin{pmatrix} y_{Rt} \\ y_{It} \end{pmatrix} = \begin{pmatrix} \rho_t \cos \theta_t \\ \rho_t \sin \theta_t \end{pmatrix} + \begin{pmatrix} \eta_{Rt} \\ \eta_{It} \end{pmatrix} \qquad ($$

$$CP^{1,2}: \qquad \rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{q_1} x_{q_1t} \\ \theta_t = \theta$$

$$MO/UP^{4,5}: \rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{q_1} x_{q_1t} \\ \theta_t \neq \theta_{t'}$$

$$MP^{3,7}: \qquad \rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{q_1} x_{q_1t} \\ \theta_t = \gamma_0 + \gamma_1 u_{1t} + \dots + \gamma_{q_2} u_{q_2t}$$

PO/UM⁶:
$$\beta_t \neq \beta_{t'}$$

 $\theta_t = \gamma_0 + \gamma_1 u_{1t} + \dots + \gamma_{q_2} u_{q_2t}$

 $(\eta_{Rt},\eta_{It})' \sim N(0,\Sigma_t)$

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, 62:1356-1357, 2009.

Statistical properties of magnitude-only data

and of various complex-valued data.

$$y_{Rt} = \rho_t \cos \theta_t + \eta_{Rt}$$

$$y_{It} = \rho_t \sin \theta_t + \eta_{It}$$

$$m_t = \sqrt{y_{Rt}^2 + y_{It}^2}$$

$$\begin{pmatrix} y_{Rt} \\ y_{It} \end{pmatrix} = \begin{pmatrix} \rho_t \cos \theta_t \\ \rho_t \sin \theta_t \end{pmatrix} + \begin{pmatrix} \eta_{Rt} \\ \eta_{It} \end{pmatrix}$$

Real and Imaginary

Magnitude

Bivariate Observations

The complex-valued voxel measurement is $y_{Ct} = y_{Rt} + iy_{It}$

with $y_{Rt} \sim N(\mu_{Rt}, \sigma^2)$ and $y_{It} \sim N(\mu_{It}, \sigma^2)$

where $\mu_{Rt} = \rho_t \cos(\theta_t)$ and $\mu_{It} = \rho_t \cos(\theta_t)$.

So the joint distribution of (y_{Rt}, y_{It}) is

$$p(y_{Rt}, y_{It}) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(y_{Rt} - \mu_{Rt})^2 + (y_{It} - \mu_{It})^2\right]\right\}.$$

Bivariate normal with phase coupled means.

 $\mu_{Rt} = \rho_t \sin \theta_t$ $\mu_{It} = \rho_t \cos \theta_t$

Get $p(m_t)$ from $p(y_{Rt}, y_{It})$.

Convert from (y_{Rt}, y_{It}) to (m_t, φ_t) .

$$p(y_{Rt}, y_{It}) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(y_{Rt} - \rho_t \cos\theta_t)^2 + (y_{It} - \rho_t \sin\theta_t)^2\right]\right\}$$

$$p(m_t, \varphi_t) = \frac{m_t}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[m_t^2 + \rho_t^2 - 2m_t\rho_t\cos(\varphi_t - \theta_t)\right]\right\}$$

$$p(m_t) = \frac{m_t}{\sigma^2} \exp\left\{-\frac{m_t^2 + \rho_t^2}{2\sigma^2}\right\} I_0\left(\frac{\rho_t m_t}{\sigma^2}\right)$$

Rice,S.O., Bell Syst. Tech. 23:282, 1944. Gudbjartsson, Patz. MRM 34:910–914, 1995. Rowe and Logan: NIMG, 23:1078-1092, 2004. zeroth order modified Bessel function of first kind

$$\frac{1}{2\pi}\int_{\varphi_t=-\pi}^{\pi} e^{\frac{\rho_t m_t}{\sigma^2}\cos(\varphi_t-\theta_t)} d\varphi_t$$

The Rice distribution for varying $SNR = \rho_t / \sigma^2$.

Ricean Distribution 0.6 $p(m_t) = \frac{m_t}{\sigma^2} \exp\left\{-\frac{m_t^2 + \rho_t^2}{2\sigma^2}\right\} I_0\left(\frac{\rho_t m_t}{\sigma^2}\right)$ $p(m_t)$ 0.5 0.4 0.3 0.2 0.1 5 6 7 2 3 8 9 10 11 í٥ 1 4 m_t/σ

The magnitude, does not have a normal distribution!

Ricean Distribution!

The Rice & Normal distributions for varying $SNR = \rho_t / \sigma^2$.

The magnitude, does not have a normal distribution!

Ricean Distribution!

Ricean \rightarrow Normal as the SNR \uparrow

The high SNR normality of m_t can be seen as

$$m_{t} = \left[(y_{Rt})^{2} + (y_{It})^{2} \right]^{1/2}$$

$$= \left[(\rho_{t} \cos \theta_{t} + \eta_{Rt})^{2} + (\rho_{t} \sin \theta_{t} + \eta_{It})^{2} \right]^{1/2}$$

$$= \left[\rho_{t}^{2} + (\eta_{Rt}^{2} + \eta_{It}^{2}) + 2\rho_{t} (\eta_{Rt} \cos \theta_{t} + \eta_{It} \sin \theta_{t}) \right]^{1/2}$$

$$= \rho_{t} \left[1 + 2 \frac{(\eta_{Rt} \cos \theta_{t} + \eta_{It} \sin \theta_{t})}{\rho_{t}} + \frac{(\eta_{Rt}^{2} + \eta_{It}^{2})}{\rho_{t}^{2}} \right]$$

 $\approx \rho_t + \varepsilon_t \qquad \text{where} \quad \varepsilon_t = 2\eta_{Rt} \cos \theta_t + 2\eta_{It} \sin \theta_t$ $\varepsilon_t \sim N(0, 2\sigma^2)$ $\sqrt{1 + u^2} \approx 1 + u/2, \ |u| \ll 1$

This opens up the opportunity for complex-valued analysis!

 y_I

Complex-valued activation and/or Complex-valued correlation?

Magnitude and Phase or equivalently Real and Imaginary

Some voxels have a lengthening & rotation with task!

This opens up the opportunity for complex-valued analysis!

Complex-valued activation and/or Complex-valued correlation?

Magnitude and Phase or equivalently Real and Imaginary

Lengthening & Rotation with task!

This opens up the opportunity for complex-valued analysis!

There is biological information in the phase!

Magnitude Image

Phase Image

There is biological information in the phase!

Magnitude Image

"SWI" Anatomical Image

There is biological information in the phase!

4. short cortical artery

5. cortical vein

- 1. pial artery6. subpial zone2. long cortical artery7. precapillary vessels3. middle cortical artery8. superficial capillary zone
 - 9. middle capillary zone 10. deep capillary zone

Figure (right) Duvernoy et al. Brain Res Bull 7:519-579, 1981. Data (right) Yamaguchi et al. Int J Microcirc Clin Exp 1992.

D.B. Rowe ¹Menon: MRM, 47:1-9, 2002., ²Nencka, Rowe: NIMG, 177-88, 2007.

There is biological information in the phase!

7. precapillary vessels

9. middle capillary zone

10. deep capillary zone

- 1. pial artery 2. long cortical artery
- 3. middle cortical artery
- 4. short cortical artery
- 5. cortical vein

Figure (left) Reina-de la Torre et al.: The Anatomical Record, 1998. Figure (right) Duvernoy et al. Brain Res Bull 7:519-579, 1981. Data (right) Yamaguchi et al. Int J Microcirc Clin Exp 1992.

¹Menon: MRM, 47:1-9, 2002., ²Nencka, Rowe: NIMG, 177-88, 2007. **D.B.** Rowe

There is biological information in the phase!

There is biological information in the phase!

Bodurka et al.: JMR, 1999.

Chow et al.: NIMG, 2006.

Phase contains other magnetic field change info: respiration, motion!

Results

Magnitude-only (MO) model (large SNR normal approximation)

$$p(m_t) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(m_t - \rho_t)^2\right]\right\}$$

$$P(m_t) = \frac{m_t}{\sigma^2} \exp\left\{-\frac{m_t^2 + \rho_t^2}{2\sigma^2}\right\} I_0\left(\frac{\rho_t m_t}{\sigma^2}\right)$$

Complex-valued with a constant phase (CP).

$$p(y_{Rt}, y_{It}) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(y_{Rt} - \rho_t \cos\theta)^2 + (y_{It} - \rho_t \sin\theta)^2\right]\right\}$$

$$\rho_{t} = \beta_{0} + \beta_{1} x_{1t} + \dots + \beta_{q_{1}} x_{q_{1}t}$$

Results

Magnitude-only (MO) model (large SNR normal approximation)

Complex-valued with a constant phase (CP).

$$p(y_{Rt}, y_{It}) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(y_{Rt} - \rho_t \cos\theta)^2 + (y_{It} - \rho_t \sin\theta)^2\right]\right\}$$
$$\rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{q_1} x_{q_1t}$$

CP

Results Activations in Human Data

MO/UP

CP

Bilateral finger Tapping

5% FDR Threshold

CP activation has greater specificity than MO activation.

Rowe and Logan: NIMG, 23:1078-1092, 2004.

Rowe: NIMG, 25:1310-1324, 2005b.

Results

Power Analysis

Nencka and Rowe, NIMG, 37, 177-188, 2007.

Biases against downstream voxels!

 $CNR = \beta_{ref} / \sigma$ *TRPC*= γ_{ref}

University of Georgia

Rowe and Logan: NIMG, 23:1078-1092, 2004.

Rowe: NIMG, 25:1310-1324, 2005b.

D.B. Rowe

TRPC (degrees)

Results Activations in Human Data

Venogram

MO/UP

CP More localized activation.

Magnitude CNR Not high enough to overcome phase change bias

⁶² ⁰⁴ _{CNR} ⁶⁶ ⁶⁸ TE=45.3 Nencka, Paulson, Rowe: ISMRM, 16:2338, 2008. FA=77°

3T GE Signa LXRH male5 axial slicesFlashing checkerboard 4Hz96×96Block designFOV =24 cm20s off + 8×(16s on+16s off)TR=2000 msTE=45.3 ms

Results

Magnitude-only (MO) model (large SNR normal approximation)

$$p(m_t) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(m_t - \rho_t)^2\right]\right\}$$

VS.
$$\rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{q_1} x_{q_1t}$$

Complex-valued magnitude and/or phase (MP).

$$p(y_{Rt}, y_{It}) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(y_{Rt} - \rho_t \cos\theta_t)^2 + (y_{It} - \rho_t \sin\theta_t)^2\right]\right\}$$
$$\rho_t = \beta_0 + \beta_1 x_{1t} + \dots + \beta_{q_1} x_{q_1t}$$
$$\theta_t = \gamma_0 + \gamma_1 u_{1t} + \dots + \gamma_{q_2} u_{q_2t}$$

University of Georgia

Hernandez-Garcia, Vazquez, Rowe, MRM 62:1597-1608, 2009.

University of Georgia

Results

Presented at 2005 JSM

Information in the phase.

Results

<u>3.0T GE LX</u>

20s off+16×(8 s on 8 s off), 276 TRs 12 axial slices, 96 × 96, FOV = 24 cm TH = 2.5 mm, TR = 1 s, TE = 34.6 ms FA = 45°, BW = 125 kHz, ES = .708 ms

20s off+16×(8 s on 8 s off), 276 TRs 10 axial slices, 96 × 96, FOV = 24 cm TH = 2.5 mm, TR = 1 s, TE = 42.8 ms FA = 45°, BW = 125 kHz, ES = .768 ms

20s off+16×(8 s on 8 s off), 276 TRs 10 axial slices, 96 × 96, FOV = 24 cm, TH = 2.5 mm, TR = 1 s, TE = 42.8 ms FA = 45° , BW = 125 kHz, ES = . 768 ms

20s off+10×(8 s on 8 s off), 180 TRs 9 axial slices, 64×64 , FOV = 24 cm TH = 3.8 mm, TR = 1 s, TE = 26.0 ms FA = 45°, BW = 125 kHz, ES = .680 ms

Results

Group analysis. Not just single subject effect!

D.B. Rowe

Arja, et al.: Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks. NIMG 3149-3160, 2010.

Shed light on part of the **black box**!

University of Georgia

Results

DeTeCT Model

$$y_{t_{DT}} = M_{t} \left(\cos \theta + i \sin \theta \right) + (\eta_{R_{t}} + i \eta_{I_{t}}).$$

$$M_{t} = \left[M_{t-1} \exp \left(-\frac{TR}{T_{1}} \right) \cos(\phi) + M_{0} \left(1 - \exp \left(-\frac{TR}{T_{1}} \right) \right) \right] \sin(\phi) \exp \left(-\frac{TE_{t}}{T_{2}} + \delta z_{t} \right) + x_{1_{t}}' \beta_{1}$$

$$p(y_{Rt}, y_{It}) = \frac{1}{2\pi\sigma^{2}} \exp \left\{ -\frac{1}{2\sigma^{2}} \left[(y_{Rt} - \rho_{t} \cos \theta_{t})^{2} + (y_{It} - \rho_{t} \sin \theta_{t})^{2} \right] \right\}$$

 δ : differential signal change β_1 : coefficient for a time trend

TE: temporally varying echo time z_t : reference function

$$\sigma^{2}\left(M_{0}, T_{1}, T_{2}^{*}, \delta, \beta, \theta \middle| y_{R_{t}}, y_{I_{t}}, TR, \phi, TE_{t}, z_{t}\right) = \frac{1}{2n} \sum_{t=1}^{n} \left[\left(y_{R_{t}} - M_{t} \cos \theta \right)^{2} + \left(y_{I_{t}} - M_{t} \sin \theta \right)^{2} \right].$$

$$Z_{C} = sign(\hat{\delta}) \sqrt{2n \log(\tilde{\sigma}^{2} / \hat{\sigma}^{2})}.$$

Karaman, Bruce, Rowe: Magn. Reson. Imaging, 32:9-27, 2014.

Results

Estimated M_0 , T_1 , and T_2^* using the nonlinear least squares estimation and activation maps (5% Bonferroni FWE):

Care needs to be taken when we obtain data.

We should get data in its originally measured form.

We should do any required processing ourselves.

Our models should incorporate processing.

We should use all of the data (magnitude and phase).

It's been 13 years since I started this.

TITLE:	A COMPLEX WAY TO COMPUTE MRI ACTIVATION
SPEAKER:	Daniel B. Rowe Department of Biophysics Medical College of Wisconsin
TIME:	4:00 P.M.
DATE:	Wednesday, November 19, 2003
ROOM:	1221 CSSC

ABSTRACT:

In functional magnetic resonance imaging, Fourier "image reconstruction" results in complex valued proton spin densities that make up our voxel time course observations. The complex part of the proton spin density is a result of phase errors due to magnetic field inhomogeneities. Nearly all fMRI studies obtain a statistical measure of functional "activation" based on magnitude image time courses. However, it is the real and imaginary parts of the original signal that are measured with (normally distributed) error, and not the magnitude. The two error specifications are equivalent for "large" signal to noise ratios. The image information is contained in both the real and imaginary parts or in the magnitude and phase. A more accurate model should use the correct distributional specification and all the information contained in the data. A model is presented that uses the original complex form of the data and not the magnitude. By doing this, there are approximately twice as many quantities used to estimate the model parameters which results in improved power.

The GE scanner produces a P-file.

Name		Туре	Date modified	Size	
P02048.7		7 File	6/24/2005 8:43 AM	52,328 KB	
P52224.7		7 File	6/24/2005 7:13 AM	52,328 KB	
:					
P28160.7		7 File	1/3/2013 1:25 PM	272,847 KB	
P26112.7		7 File	1/3/2013 1:24 PM	272,847 KB	
•					
P07680.7	7 File		11/3/2015 2:40 PM	1,87	5,118 KB
P08704.7	7 File		11/3/2015 2:35 PM	1,25	0,130 KB
P09216.7	7 File		11/3/2015 2:40 PM	240	0,534 KB
P10240.7	7 File	11/3/2015 2:39 PM 14,9		14,999	9,866 KB
P11264.7	7 File		11/3/2015 2:40 PM	290,626 KB	
P12800.7	7 File		11/3/2015 2:39 PM	26	6,79 <mark>4 K</mark> B
P07168.7	7 File		11/3/2015 2:40 PM	1,73	0,890 KB

Thank You!

Special thanks to former and current PhD students: Dr. Andrew S. Nencka, Medical College of Wisconsin Dr. Andrew D. Hahn, University of Wisconsin-Madison Dr. Iain P. Bruce, Duke University Dr. M. Muge Karaman, University if Illinois-Chicago Ms. Mary C. Kociuba, Marquette University Mr. Kevin K. Liu, Marquette University