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Introduction

In MRI/fMRI, (non)Fourier “image reconstruction” results in complex
valued proton spin densities that make up our voxel time course
observations.

The complex part of the proton spin density is a result of phase
imperfections due to magnetic field inhomogeneities.

Nearly all fMRI studies obtain a statistical measure of functional
“activation” based on magnitude image time courses.
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Introduction

However, it is the real and imaginary parts of the original signal that
are measured with normally distributed error, and not the magnitude.

A more accurate model should use the correct distributional
specification.

A model is presented that uses the original complex form of the data
and not the magnitude.

The result is the correct distribution and twice as many quantities
to estimate the model parameters which results in improved power

for low SNR.

Focus on a single axial slice.
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Complex Single Time Images

(a) real image (b) imaginary image
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Magnitude/Phase Single Time Images

(d) phase image

(¢) magnitude image
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Complex Time Course Images

In fMRI we observe a series of complex images over time.
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Magnitude Time Course Images

And not a series of real magnitude images. Phase not used.
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Complex Time Course Model

In a voxel, the complex valued quantity measured over time is

Pmt = (pRt+77Rt) +i(/0[t+77[t), t=1,..,n

pmt = complex voxel measurement at time ¢

pRrt = true real part of voxel measurement at time ¢
N+ = noise real part voxel measurement at time ¢

pr; = imaginary part voxel measurement at time ¢

17; = noise imaginary part voxel measurement at time ¢

(renr) ~ N (0,%), = oD,

The distributional specification is on the real and imaginary parts
of the image and not on the magnitude.
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Magnitude Time Course Model

The typical method to compute activations is to use the magnitude

DO —

2
|pmt| = [ﬂRtJrnRt )+ (pre+np)?|T, t=1,..,n
Yt

that is Rician distributed and approximately normal for a large
signal to noise ratio (relatively small error variance).

The phase which may contain information is not used.

PIt + Nt
PRt T MRt

Or = tan 1
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Magnitude Time Course Model: Assumptions

The magnitude, does not have a normal distribution.
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Magnitude Time Course Model: Assumptions

Data justification. Histogram of no signal, noise only outside voxels.

x 10* Outer brain histogram
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Magnitude Time Course Model: Assumptions

Data justification. Histogram of no signal, noise only outside voxels.

X 10* Outer brain histogram
T T T
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Complex Time Course Model

A complex phase model was introduced that includes a phase
imperfection 6 in which at time ¢, the measured proton spin density
Is given by

pmt = (prcos@ 4+ npre) +i(prsind + npy)

PRt = ptcost
prt = pesind

(nRta 77[?5)/ ~ N<Oa 2)7 2= 02]2-

This model which includes a phase error is an accurate representation
of the true physical process that generates the data.
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Complex Time Course Model: Assumptions

Data justification. Phase and correlation of no signal noise only
outside voxels.

150

100 -

1 1 1
0.4 06 0.8 1

|
0 32 64 96 128 160 192 224 256

Constant Phase R-1 Uncorrelated
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Complex Time Course Model: Assumptions

Data justification. Phase and correlation of no signal noise only
outside voxels.

150
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1 1 1
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Constant Phase R-1 Uncorrelated
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Complex Time Course Model: Assumptions

Data justification. Histogram of no signal noise only outside voxels.

4
x10

| ;
-0.25 -0.2 -0.15

Outside histogram Complex Sequence
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Magnitude Time Course Model

The magnitude model from the complex phase model
]

_ | I
omtl = [(prcos@+npy)? + (prsin + npy)?

DO —

p% T W%{t -+ n%t) + 2pt(npcos @ + nppsin )

Yt

pr |1 +2

Do —

(npcos@ + nyysinf) N (n%%t + n%t)

2
_ pt p;
or+e, t=1....n

Q

et = nprcosl +nppsind ~ N(0,07).

Vi+tu~1l+u/2,

ul < 1.
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Time Course Model

In fMRI, we take repeated measurements over time while a subject
is performing a task.

We know the timing of the task, tap fingers for 16 seconds, rest
for 16 seconds, and repeat several times.

a

o.s

o.e

o.a

o.=

o

—o.=

—o.a

—o.s

—o.s

L\\\\\\\\\\

—a

0

16 == as sa s0 Y=Y 1a1z= 1=s a1aa 160 176 19= zos =2=a =zao0 256

In each voxel, compute a measure of association between observed
time course and a preassigned reference function that characterizes
the experimental paradigm (Bandettini et al., 1993; Cox et al., 1995).
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Magnitude Time Course Model

Linear multiple regression model individually for each voxel

pt =230 = 0o+ Brxir + -+ - + Byxar.

Yp = :Céﬁ—I—et, t=1,....n

Also written as

y = X o] + €
nx1l nx(@+1) (¢g+1)x1 nxl

and € ~ N(0,02®), P is the temporal correlation matrix
usually & = I,,.
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Magnitude Time Course Model

The magnitude activation likelihood is given by

(y—XB) (y—X3)
202

9 _n, 9 _n

p(ylB, 0%, X) = (2m) " 2(07) Ze

We want to see if the observed time course has a component related
to the reference function.

HQ: Cﬁ:’yVSHli Cﬁ#v

I.e. Is the coefficient for the reference function zero.

C = (Oa"'aoa 1)1 ﬁ/ — (ﬁOaﬁla"'aﬁQ)v Y = 0



Rowe, MCW

Magnitude Time Course Model

By maximizing the likelihood under the unconstrained alternative

= (X’ )1X’y,
A2=l(y Xﬁ) (v-x3) .

@
|

By maximizing the likelihood under the constrained null hypotheses

\DB 4 (X/X)_lC/[C(X/X)_lC/]_l
= Ho-9) (1)

O
|

DO

V=1, - (X'X)"ldox’x)" e e
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Magnitude Model

By maximizing the likelihood under constrained null and
unconstrained alternative hypotheses the GLR statistic is

(2= oo - (CB =) [CXX) ' CH(Ch — )
rno?/(n—q—1)

This magnitude model uses n quantities to estimate the q + 2

parameters being the ¢ + 1 regression coefficients, the 1 variance.
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Magnitude Model

For example with ¢ = 2, X = (ey, cn,mn), Hy: B9 = 0 can be
evaluated with C' = (0,0,1), v = 0, and any of the test statistics

t = 32

T~ tp—2-1
(W33né?/(n—2-1)]2
F = 0 ~ F
Wasno?/(n—2—1) Ln—2-1
Y2 = nlog (62/62) ~ X%

Where W3 is (3,3) element of W = (X' X)L,
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Complex Time Course Model

The previous complex model

pmt = (prcosO 4+ npr) +i(prsind + 1)

can be written as

(?/Rt> _ (pt0089> N (W%t)
YIt ptsin 0 NIt

where again (nps, n7) ~ N (0,%), & = o°I5.
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Complex Time Course Model

A non-linear multiple regression model can be introduced in which

pr =48 = By + Bir1 + - - - + Byxgr

as in the magnitude model then written in terms of matrices as

B (3 cos
¥y = ( ) 6SIH(9 '
2nx 1 2nx2(qg+1) 2(q+ 2n x 1
where y = (v, y7)" and 7 = (g, 07y)" ~ N(O, Y@ o)

Y =02y, d = I,
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VEC

YR  YI
YRrR1 YI
YRrs YIS
YrR9  YI9

YR16 YI16

YR241 Y1241

YR248 Y1248
YR249 Y1249

YR256 Y1256

]2@

16

241

248
249

256

phase

cos 60
sin 0

Bo
51
52

+vec

NrR NI
NRrR1 NIl
NR8 118
NrR9 119

NR16  TII16

TIR241 MI241

TTR248 111248
TIR249 7111249

TIR256 11256
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Complex Time Course Model

The non-linear multiple regression model

B X 0 (3 cos b N
¥y = 0 X Bsind g
2nx 1 2nx2(qg+1) 2(¢g+1)x1 2nx1

y=r v} n= 0, 1h) ~NO,S®®), T =0l and ® = I,.

The likelihood is
p(y|B3, 0,02, X) = (20) " (02) " Fe 2?

== (5 G = (%) )]



Rowe, MCW

Complex Time Course Model

Just as in the magnitude model, we want to see if the observed time
course has a component related to the reference function.

HQ: Cﬁ:’yVSHli Cﬁ#v

I.e. Is the coefficient for the reference function zero.

C = (Oa"'aoa 1)1 ﬁ/ — (ﬁOaﬁla"'aﬁQ)v Y= 0
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Complex Time Course Model

By maximizing the likelihood under the unconstrained alternative

| i 26, (X ]
) = —tan ! ﬁR( )/

2 BR(X'X)Br — BH(X'X)0r
3= BRCOSHJrﬁ]sm@,

— R R _/ — R R -
52 _ 1 y— X 0 @COS(? y— X 0 @COS(?
2n 0 X Bsind 0 X Bsind
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Complex Time Course Model

By maximizing the likelihood under the constrained null hypotheses

) = ltan_1 26}%}11()(/{()6[ -
2 BRV(X'X)pr — BV (X'X)Br |
3 = U[Bpcos + Brsin b +(X'X)"ldox' X)) ey,
o L1 /(X0 BCOS(? / (X0 ﬁ:cosé
T (O X)(Bsin@)] [y (O X)(ﬁsin@)]

V=1, - (X'X)"ldox’x)" e e
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Complex Time Course Model

The way this is formulated, we have to worry about phase angles.
An alternative formulation is to let &y = cosf and a9 = sin b

_ (X0 a1 2 2

y= v} n= 0, 1h) ~NO,S®®), T =0l and ® = I,.

With this formulation, it can be seen that this is a reduced rank
regression model (Reinsel, 1998).
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Complex Time Course Model

By maximizing the likelihood under the unconstrained alternative

a1 = @'(X’X)@R/[(?/(X'X)?R)Z + @/(X'X)?[)Q]W
Gy = B(X'X)B/[(B/(X'X)BR)* + (B/(X'X)3p)*)H

B = a18R + anfr,

S 1] rxoN[as\| [ [xo\[aBd)
T <OX><5425>_ 7/ (OX><5425>_

BAR = (X'X)"'X'yp,
Br = (X' X)Xy .
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Complex Time Course Model

By maximizing the likelihood under the constrained null hypotheses

ap = 5:/<X/X)5:R/[(?/<X/X)?R)2 + @/(X/X)AB[)Q]W
Gy = B/(X'X)B/[(B(X'X)Bp)* + (B/(X'X) )"

B =V(@fp+afy)  +(X'X)TICOX'X)TIC

o 1 (xo0N[@b\]'[ (X 0\ [aps
’ 2n[y <OX><0725>] [y <OX><0725>]

V=1, (X'X)Idex' X)) e
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Complex Time Course Model

GLR statistic is
\_ Pyl 6% X, Hy)
p(y|B, 6%, X, Hy)

- ()

—2log A = 2nlog (62/62) .

or

This complex model uses all the 2n observations to estimate
the ¢ + 3 parameters being the ¢ + 1 regression coefficients,

the 1 variance, and the 1 phase error or trigonometric coefficient.
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Real fMRI Experiment

Imaging Parameters:
1.5T GE Signa

5 axial slices of 128x128
96 acq.-2.0833mm?

128 recon.-1.5625mm?
FOV =20cm
TR=1000ms

TE=47ms

FA=90°

Task:

Bilateral finger tapping
Block design

16 off + 8x(16on+160ff);
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Time Course Models

Compare the two models for testing Hy : (3o = 0.
(=2, X =(en,cn,rpn), C =1(0,0,1), v =0)

Xar = nlog (03,/073,) ~ X
X% = 2nlog (6%/(3%) ~ X%

Both X% distributed for large samples!
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Real fMRI-Magnitude H1 Estimated

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

e
i | 8
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
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Real fMRI-Magnitude HO Estimated

8 8

16 16

24 24

32 32

40 40

48 48

56 56

64 64

72 72

80 80

88 88

96 96

104 104
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112

120 120
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8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
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Real fMRI-Complex H1 Estlmated

o 1 o R =

o H E. . " ' =
PR e R P ST % 128
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 =/ 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
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Real fMRI-Complex H1 Estimated

128 128
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
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Real fMRI-Complex HO Estimated

128
16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
A I Py 5 I

2
120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
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Real fMRI-Magnitude/Complex H1 Estimated [

0.05
8 8
16 16 10.04
24 24
40.03
32 32
40 40 0.02
48 48
56 56 0.01
64 64
0
72 72
80 80 -0.01
88 88
-0.02
96 96
104 104 ~0.03
112 112
120 120 -0.04
128 128
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 -0.05

These coefficients are not visually that different.
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Real fMRI-Magnitude/Complex —2log(A) Maps

{as
16 16 440
32 32 135
48 48 130

425
64 64

80 80
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16 32 48 64 80 96 112 128 16 32 48 64 80 96 112 128

These voxel statistics are ~ X%!
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Real fMRI-Magnitude/Complex —2log()\) Maps

145
16 16 140
32 32 135
48 48 130
. i 425
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80 80
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5% Unadjusted Threshold
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Real fMRI-Magnitude/Complex —2log()\) Maps

145
16 16 140
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5% Bonferroni Threshold
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Real fMRI-Magnitude/Complex —2log()\) Maps

145
16 16 140
32 32 135
48 48 130
. i 425

64 64

80 80

96

96

112 112

128 128

16 32 48 64 80 96 112 128 16 32 48 64 80 96 112 128

5% FDR Threshold
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Simulation

In each voxel, simulate complex valued time courses like real data.

= (6o + Bzt + Poxar) oy + npyl
+i[(By + Bre1 + Bowor)ay + npyl

From a real dataset, fitted complex model, took 5 and & C
from a “highly activated” voxel. &;{'s and a9's from whole image.

Created complex data where the coefficients in each voxel were the
first two elements of 3. Effect to noise ratio ENR = 35/ .

Created four 7 x 7 square ROl's, ENR =1,1/2,1/4,1/8,
B9 = 0 outside ROI's.

Added normal noise N (0, 67,). Varied SNR = /0.
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5% Unadjusted

Activation

45
+40
35
30
+25

80 96 112 128

64

112 128

96

128
128

80 96 112
96 112

80

64
64

48
48

16

M: SNR = 1

16

C: Sl\slzR =1

16
32
64
80
96

©
<

112
128
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Activation: 5% Bonferroni

445

140

135

430

425

445

H40

135

430

425

112

96 112 128

C:SNR=75



Rowe, MCW

FDR

5%

Activation

45
+40
35
430
25

80 96 112 128

64

112 128

96

48 64 80 96 112 128

48

16

M: SNR = 1

16

C: Sl\slzR =1

64
80
96
112
128
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Simulation

Repeated simulation 1000 times.

For each thresholding method, the power in, or relative frequency over the

1000 simulated images with which each voxel was detected as active, was
recorded.

5% Unadjusted, 5% FDR, and 5% Bonferroni thresholds.
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Power: 5% Unadjusted

112

128
80 96 112 12

M: SNR = 1 M:SNR = 2.5

112

64 80 96 112

C: SNR = 2.5

C: SNR = 1
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Power: 5% Bonferroni
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Power Differences: 5% Unadjusted

128

SNR = 7.5

128

" SNR=10

0 96 112 1

4 80 96 112 128 -10

SNR = 30
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Bonferroni

5%

Power Differences

48 64 80 96 112 128 16 32 48 64 80 96 112 128

32

SNR = 2.5

48 64 80 96 112 128

32

SNR =1

48 64 80 96 112 128

32

SNR = 30

16

32

48

64

80

96

112

128

48 64 80 96 112 128

32

SNR = 10

48 64 80 96 112 128

32

SNR = 7.5
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FDR

5%

Power Differences

SNR = 2.5 SNR =5

1

SNR

SNR = 10 SNR = 30

SNR = 7.5



Rowe, MCW

Power versus SNR: Complex (blue) and magnitude (red)
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Discussion

A complex data fMRI activation model was presented .
Complex and magnitude models activation compared on real data.
Complex and magnitude models power compared on simulated data.

For a given ENR the complex model power constant irrespective
of SNR while the magnitude model power decreases.

For smaller SNR's, the complex activation model demonstrated
better power

The complex model more useful as SNR decreases with voxel size.



