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1. Control/Label Images 
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ASL images come in Control/Label pairs with task. 

 

 

 

 
 

 

These pairs are often subtracted with the task 

effect modeled and significance determined.                                                                     . 
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1. Control/Label Images 
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Magnetic Resonance Images are generally  

 

complex-valued when reconstructed, but converted  

 

to magnitude and phase images with the phase  

 

generally discarded. 
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1. Control/Label Images 
GRE-EPI nonASL  
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1. Control/Label Images 
GRE-EPI nonASL  
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2. GLM Statistical Modeling - Magnitude 
 

The unsubtracted magnitude data at time t  

 

can be described as 

 

where the yt’s are the observed data, the β’s are 

 

the regression coefficients, the xj’s are the regressors, 

 

and εt is assumed to be normally distributed with  

 

mean zero and variance σ2.  
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2. GLM Statistical Modeling - Magnitude 
 

The unsubtracted magnitude data can be described as 

 

                        where   

 

y is a n×1 vector of the data  

 

X is an n×q matrix of regressors, 

 

β is a q×1 vector of regression coefficients and 

 

ε is an n×1 vector of error.  
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2. GLM Statistical Modeling - Magnitude  
 

 

 

 

 

X:  

9 D.B. Rowe 

OHBM 2014 

Base Image 

BOLD Effects 

ASL at rest 

ASL during activation 

Hernandez-Garcia et al. 2009. Xʹ 



 

2. GLM Statistical Modeling - Magnitude  
 

With the  specification of Gaussian errors, and that the data 

 

have been prewhitened or low frequency drift sufficiently  

 

modeled using additional regressors, the regression  

 

coefficients are estimated as                              . 
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Mumford et al, 2006. 
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2. GLM Statistical Modeling - Magnitude  
 

Statistically speaking, the mean and standard error of the 

 

regression coefficients are                   and  

 

where                       . 

 

Statistical significance of the jth regressor is determined with 

 

 

 

where Wjj is the jth diagonal element of W. 
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2. GLM Statistical Modeling - Complex 
 

The unsubtracted complex data at time t can be described as 

 

 

 

 

 

yR and yI  are measurements for the real and imaginary parts 

  

εR and εI are error terms for the real and imaginary parts 

 

ρ and θ are the population magnitude and phase. 
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2. GLM Statistical Modeling - Complex 
 

The unsubtracted complex data at time t can be described as 

 

 

 

 

 

 

 

and thus task related magnitude and/or phase changes in 

complex data can be determined from βj and γj. 
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3. GLM Statistical Modeling - Complex 
 

The unsubtracted complex data can be described as 

 

                                         where   

 

yR and yI are n×1 vectors of the real and imaginary data  

 

X is an n×q matrix of regressors (same as magnitude), 

 

β is a q×1 vector of regression coefficients and 

 

εR and εI are n×1 vectors of real/imaginary errors.  
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3. GLM Statistical Modeling  
 

Statistical significance for task related magnitude 

 

and/or phase activation can be determined via a likelihood  

 

ratio statistic of null (tilde) and alternative (hat) variances 

 

 

 

 which has a large sample chi-square distribution. 
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4. ASL Activation Results  
 

Parameters: 

3.0 T Signa LX Excite scanner 

PCASL SE-Spiral Sequence 

TR=4 s, TE=15 ms, SLTH=7 mm, FOV=24 cm, 64×64 

 

Task: 

8 Hz flashing checkerboard: 6×(50 s rest,50 s active) 

 

Processing:  

complex data quadratic detrended and ideal filtering of  

first four frequencies 
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Hernandez-Garcia et al. 2009. 



 

4. ASL Activation Results  
 

Three Data sets Acquired: 

 

Whole: without arterial suppression or postinversion delays 

 

Crush: With flow crushers 

 

PID: Postinversion delay of 1200 ms 

 

Activation was also computed from phase-only (PO) data 

in addition to magnitude-only (MO) data and  

complex-valued (CV) data. 
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Hernandez-Garcia et al. 2009. 
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Hernandez-Garcia  

et al. 2009. 

4. ASL Activation Results  

Crush PID Whole 

a) b) c) 

d) e) f) 

g) h) i) 



 

4. ASL Activation Results  
 

MO activation in all three sets of data a)-c).  

 

PO activation was detected in whole data d)  

but not in the crush and PID cases d) and e). 

Indicative that activation-induced perfusion changes are 

accompanied by changes in the phase difference between 

tagged and control images. 

 

CV activation is clear in the whole and PID data i) and h)  

but much reduced in the crush data g). 
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Hernandez-Garcia et al. 2009. 



 

5. Discussion  
 

ASL fMRI data can be successfully modeled using a GLM 

with data that is not first differenced.  

 

Magnitude-only and complex-valued models can be applied  

to ASL fMRI data and CV model can potentially yield 

additional physiological insights. 
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Hernandez-Garcia et al. 2009. 



 

 

Thank You! 
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