

A Bayesian Approach to SENSE Image Reconstruction in FMRI

Daniel B. Rowe Program in Computational Sciences Department of Mathematics, Statistics, and Computer Science Marquette University

NIHR21 NS087450

July 31, 2017

Outline Introduction

Full Sampled (k-Space) Reconstruction

Data fully sampled and whole images are reconstructed from single channel and multi-channel data.

Sub Sampled (k-Space) Reconstruction

Multi-channel data subsampled and aliased images are reconstructed. Need to be unaliased and combined.

Bayesian Reconstruction

Prior distributions on coil sensitivities and voxel values then estimated *a posteriori*. Similar to Bayesian factor analysis.

Discussion

Estimated latent variable parameters and reconstructed images.

Introduction

In fMRI and MRI, voxel values re NOT measured by the machine, the measurements taken by the machine are an array of complex-valued spatial frequencies.

This array of complex-valued spatial frequencies needs to be reconstructed into an image for us to see, analyze, and interpret.

The array of complex-valued spatial frequencies are reconstructed into an image via the inverse Fourier transform.

Lets briefly remind ourselves what the FT and IFT are.

Single Coil Acquisition

Coil measures *k*-space.

Unaccelerated Acquisition (*A*=1).

(FOV=240 mm) $(n_x = n_y = 96, \Delta x = \Delta y = 2.5 \text{ mm})$

We inverse Fourier transform spatial freqs to generate image.

Real

(FOV=240 mm) $(n_x = n_y = 96, \Delta x = \Delta y = 2.5 \text{ mm})$

We inverse Fourier transform spatial freqs to generate image.

(FOV=240 mm) $(n_x = n_y = 96, \Delta x = \Delta y = 2.5 \text{ mm})$

We inverse Fourier transform spatial freqs to generate image.

(FOV=240 mm) $(n_x = n_y = 96, \Delta x = \Delta y = 2.5 \text{ mm})$

We inverse Fourier transform spatial freqs to generate image.

Full Reconstruction

Multi-Coil Acquisition

Each coil measures *k*-space.

Coil 3

N_C=4, *A*=1

Coil local-non uniform sensitivity.

Full Reconstruction

Multi-Coil Acquisition

kv kv kv kx kx kx kx kx kx

Each coil measures *k*-space.

Coil Sensitivities

N_C=4, *A*=1

Coil local-non uniform sensitivity.

Full Reconstruction

Multi-Coil Acquisition

Each coil measures *k*-space.

$$a_4 = S_4 v$$

D.B. Rowe

N_C=4, *A*=1

Full Reconstruction Multi-Coil SENSE

 $a_{1}=S_{1}v+\varepsilon_{1}$ $a_{2}=S_{2}v+\varepsilon_{2}$ $a_{3}=S_{3}v+\varepsilon_{3}$ $a_{4}=S_{4}v+\varepsilon_{4}$ $N_{c}=4$ $a=Sv+\varepsilon$

a observed *S* and *v* unobserved

Ad-hoc estimate of *S*, then $\hat{v} = (S'S)^{-1}S'a$

But the goal is to get images faster!

Coil local-non uniform sensitivity.

Sub Reconstruction Multi-Coil Acquisition

Each coil measures *k*-space.

N_C=4, *A*=3

Coil local-non uniform sensitivity.

Sub Reconstruction

Multi-Coil Acquisition

Each coil measures *k*-space.

N_C=4, *A*=3

Sub Reconstruction Multi-Coil SENSE

 $a_{1} = S_{11}v_{1} + S_{12}v_{2} + S_{13}v_{3} + \varepsilon_{1}$ $a_{2} = S_{21}v_{1} + S_{22}v_{2} + S_{23}v_{3} + \varepsilon_{2}$ $a_{3} = S_{31}v_{1} + S_{43}v_{2} + S_{33}v_{3} + \varepsilon_{3}$ $a_{4} = S_{41}v_{1} + S_{42}v_{2} + S_{43}v_{3} + \varepsilon_{4}$ $a = Sv + \varepsilon$

a observed aliased *S* and *v* unobserved

Ad-hoc estimate of *S*, then $\hat{v} = (\underline{S'S})^{-1} \underline{S'a}$ in not generally pos def The goal is to get images fast!

Latent variable model similar to Bayesian factor analysis, but ...have complex-valued variables

 $a_C = S_C v_C + \varepsilon_C$

 a_C observed aliased S_C unobserved sensitivities v_C unobserved voxel values

$$a_{C} = a_{R} + ia_{I}$$

$$S_{C} = S_{R} + iS_{I}$$

$$v_{C} = v_{R} + iv_{I}$$

$$\varepsilon_{C} = \varepsilon_{R} + i\varepsilon_{I}$$

• S11 • S12 $+S_{42}v_{2}+$ Coil 1 • S42 S_{22} • • SA: S₂₃• Coil 3 • S₃₂ • S33 +Szava

Rowe. Multivariate Bayesian Statistics. CRC Press. 2003.

Complex-valued representation

 $a_{C} = S_{C} v_{C} + \varepsilon_{C}$ _{Nc×1 Nc×AA×1 Nc×1}

Real-valued isomorphism representation

$$\begin{bmatrix} a_{R} \\ a_{I} \end{bmatrix} = \begin{bmatrix} S_{R} & -S_{I} \\ S_{I} & S_{R} \end{bmatrix} \begin{bmatrix} v_{R} \\ v_{I} \end{bmatrix} + \begin{bmatrix} \varepsilon_{R} \\ \varepsilon_{I} \end{bmatrix}$$

 $a = S_{2Nc \times 1} v_{2Nc \times 2A} + \varepsilon_{2Nc \times 1}$

a observed aliased*S* unobserved sensitivities*v* unobserved voxel values

$$a_{C} = a_{R} + ia_{I}$$

$$S_{C} = S_{R} + iS_{I}$$

$$v_{C} = v_{R} + iv_{I}$$

$$\varepsilon_{C} = \varepsilon_{R} + i\varepsilon_{I}$$

Bayesian Reconstruction Multi-Coil SENSE

Isomorphism Model

$$a = S_{2Nc \times 1} v_{2Nc \times 2A} + \varepsilon_{2Nc \times 1} + \varepsilon_{2Nc \times 1}$$

Likelihood

$$\varepsilon \sim N(0, \sigma^2 I)$$

$$p(a \mid S, v, \sigma^2) \propto (\sigma^2)^{-\frac{2N_c}{2}} \exp\left[-\frac{1}{2\sigma^2}(a - Sv)'(a - Sv)\right]$$

a observed aliased*S* unobserved sensitivities*v* unobserved voxel values

Isomorphism Model

$$a = S_{2Nc \times 1} v_{2Nc \times 2A} + \varepsilon_{2Nc \times 1}$$

Priors

D.B. Rowe

Priors

$$p(S \mid \sigma^{2}) \propto (\sigma^{2})^{-\frac{2N_{C}A}{2}} \exp\left[-\frac{g_{S}}{2\sigma^{2}}tr(S - S_{0})'(S - S_{0})\right]^{2N_{C} \times 1} \begin{bmatrix}\varepsilon_{R}\\\varepsilon_{I}\end{bmatrix}$$

$$p(v \mid \sigma^{2}) \propto (\sigma^{2})^{-\frac{2N_{C}A}{2}} \exp\left[-\frac{g_{v}}{2\sigma^{2}}(v - v_{0})'(v - v_{0})\right]$$

$$p(\sigma^{2}) \propto (\sigma^{2})^{-\frac{d}{2}-1} \exp\left[-\frac{q}{2\sigma^{2}}\right] \qquad a \text{ observed aliased}$$

$$S \text{ unobserved sensitivities}$$

$$v \text{ unobserved voxel values}$$

 $a = \begin{bmatrix} a_R \\ a_I \end{bmatrix}$

 $v = \begin{bmatrix} v_R \\ v_I \end{bmatrix}$

 $S = \begin{bmatrix} S_R & -S_I \\ S_I & S_R \end{bmatrix}$ $2Nc \times 2A \begin{bmatrix} S_I & S_R \end{bmatrix}$

Isomorphism Model

 $a = S_{2Nc \times 1} v_{2Nc \times 2A} + \varepsilon_{2Nc \times 1}$

Posterior

$$p(S, v, \sigma^2 \mid a) \propto p(S \mid \sigma^2) p(v \mid \sigma^2) p(\sigma^2) p(a \mid S, v, \sigma^2)$$

Modes for ICM

$$\hat{S} = (g_{s}S_{0} + av')(g_{s}I + v'v)^{-1}$$

$$\hat{v} = (g_{v}I + S'S)^{-1}(g_{v}v_{0} + S'a)$$

$$\hat{\sigma}^{2} = \frac{[(a - Sv)'(a - Sv) + g_{v}(v - v_{0})'(v - v_{0}) + dq}{+g_{s}tr(S - S_{0})(S - S_{0})]/[2(2N_{c} + 2A + d + 2N_{c}A + 1)]}$$

Hyperparameter Assessment

 $p(S \mid \sigma^2): g_S, S_0$ $p(v \mid \sigma^2): g_v, v_0$ $p(\sigma^2): d, q$

Measure *m* full data multi coil sensitivity weighted images.

Before we perform fMRI experiment. Calibration images.

m full data calibration images

Non-Task

Hyperparameter Assessment

n full data experimental images
Task
For Analysis

m full data calibration images

True Slice Image

m full data calibration images

True Slice Coil Sensitivities

m full data calibration images

True Slice Coil Images

Bayesian Reconstru $a_{4R} = S_{4R}v_R - S_{4I}v_I a_{4I} = S_{4R}v_R + S_{4I}v_I a_{1R} = S_{1R}v_R - S_{1I}v_I a_{1I} = S_{1R}v_R + S_{1I}v_R + S_{1$

m full data calibration images

 $a_{3R} = S_{3R} v_R - S_{3I} v_I a_{3I} = S_{3R} v_R + S_{3I} v_I a_{2R} = S_{2R} v_R - S_{2I} v_I a_{2I} = S_{2R} v_R + S_{2I} v_R + S_$

Add *N*(0,1) noise to *R* and *I* and average

m

 $p(S \mid \sigma^2): g_S, S_0$

Bayesian Reconstruction Multi-Coil SENSE

Hyperparameter Assessment

average

$$v_{0M} = \left[a_{R1}^2 + a_{1I}^2 + a_{2R}^2 + a_{2I}^2 + a_{3R}^2 + a_{3I}^2 + a_{4R}^2 + a_{4I}^2\right]^{1/2}$$

Hyperparameter Assessment

 $p(S \mid \sigma^2): g_S, S_0$

Actually weighted RSOS with scaled normal plus constant.

Hyperparameter Assessment

 $p(S \mid \sigma^2): g_S, S_0$

Divide each averaged image by RSOS for Sensitivities

Hyperparameter Assessment

 $p(S \mid \sigma^2): g_S, S_0$

Divide each averaged image by RSOS for Sensitivities

$$S_0$$

$$g_{s} = 0.1$$

Hyperparameter Assessment

 $p(S \mid \sigma^2): g_S, S_0$

Divide each averaged image by RSOS for Sensitivities

$$S_0$$

$$g_{s} = 0.1$$

Hyperparameter Assessment

Have S_0 , assess v_0 from $a = S_0 \quad v \quad + \epsilon$ $2Nc \times 1 \quad 2Nc \times 2 \quad 2 \times 1 \quad 2Nc \times 1$

$$v_0 = (S'_0 S_0)^{-1} S' a$$
 $g_v = 0.1$

 2×1

D.B. Rowe

$$p(v \mid \sigma^2): g_v, v_0$$

31

Hyperparameter Assessment

Also generated a mask from voxels >.1 max RSOS. And zeroed out voxel prior mean v_0 outside brain.

Hyperparameter Assessment

 $p(\sigma^2):d,q$

Calculated the average real and imaginary voxel sample variances from the calibration images

and averaged to obtain single s_v^2 .

Assessed a prior df d=10, then $q = 2ds_v^2$.

q = 20.01

Bayesian Reconstruction

n sub sampled data fMRI images

True Slice Coil Images

Bayesian Reconstruction

n sub sampled data fMRI images

True Slice Coil Images

Bayesian Reconstruction

n sub sampled data fMRI images

True Slice Coil Images

N_C=4, *A*=3

n sub sampled data fMRI images

n sub sampled data fMRI images

Observed aliased slice coil images

Real

Coil 4

Imaginary

N_C=4, *A*=3

Bayesian Reconstruction

n sub sampled data fMRI images

Prior Hyperparameters

$$S_0$$

$$g_s = 0.1$$

$$g_{v} = 0.1$$

 v_0

 $p(S \mid \sigma^{2}): g_{S}, S_{0}$ $p(v \mid \sigma^{2}): g_{v}, v_{0}$ $p(\sigma^{2}): d, q$

d=10 $q=2ds_v^2$

D.B. Rowe

N_C=4, *A*=3

n sub sampled data fMRI images

Unaliased (Estimated) MAP Image (Parameters).

D.B. Rowe

 \hat{v}

n sub sampled data fMRI images

Unaliased (Estimated) MAP Image (Parameters).

N_C=4, *A*=3

 \hat{v}

Magnitude

Phase

D.B. Rowe Can now discarded phase ½ of YOUR data.

Discussion

Voxel values are not measured by the machine.

It is important to obtain data in raw measured form.

Subsampled data reconstruction a statistical problem.

This area is still the wild west with many opportunities.

Lots of competition in statistical modeling after reconstructed into images. Freely downloadable data.

Thank You!

Looking for New PhD Students! Daniel.Rowe@Marquette.Edu