Statistical Image Separation of Multiple Simultaneously Excited FMRI Slices Using a Single Coil

Daniel B. Rowe, Ph.D.
Professor of Computational Sciences
Department of Mathematics, Statistics, and Computer Science

Introduction

FMRI takes a nontrivial amount of time to measure an image.
Within slice techniques such as SENSE ${ }^{1}$ and GRAPPA ${ }^{2}$ have been developed to decrease image measurement time.

Recent work ${ }^{3,4}$ has demonstrated that SENSE and GRAPPA unfolded aliased images yield long range spatial correlation.

Multiband image aliasing has recently been developed but preliminary results ${ }^{5}$ indicate high correlation between slices.

Here the SPECS model is presented to separate aliased multiband images without induced between slice correlation.

Image Aliasing

A single complex-valued summed image is measured

In each voxel

$$
a_{R}+i a_{I}=\left(\beta_{R 1}+i \beta_{I 1}\right)+\left(\beta_{R 2}+i \beta_{I 2}\right)+\left(\varepsilon_{R}+i \varepsilon_{I}\right)
$$

Image Aliasing

A single complex-valued summed image is measured

$$
a_{R}+i a_{I}=\left(\beta_{1 R}+\beta_{2 R}\right)+i\left(\beta_{1 I}+\beta_{2 I}\right)+\left(\varepsilon_{R}+i \varepsilon_{I}\right)
$$

$$
\begin{aligned}
& \binom{a_{R}}{a_{I}}=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\beta_{1 R} \\
\beta_{2 R} \\
\beta_{1 I} \\
\beta_{2 I}
\end{array}\right)+\underset{\substack{\left(\begin{array}{c}
\varepsilon_{R} \\
\varepsilon_{I}
\end{array}\right)}}{\left(\begin{array}{c}
\varepsilon_{2} \\
2 \times 1
\end{array}\right.} \rightarrow a=X_{A} \beta+\varepsilon \\
& \begin{array}{c}
\text { Error }
\end{array} \\
& \text { A Aliasing matrix } \begin{array}{c}
4 \times 1 \\
\text { iased image }
\end{array} \text { True un-aliased images }
\end{aligned}
$$

Want $\hat{\beta}=\left(X_{A}{ }^{\prime} X_{A}\right)^{-1} X_{A}{ }^{\prime} a$, but X has 2 equations \& 4 unknowns. The matrix $X_{A}{ }^{\prime} X_{A}$ is not square, invertible or of full rank

Image Un-Aliasing

Full Calibration Reference Images

$$
\begin{aligned}
& v_{R j}=\mu_{R 1}+\eta_{R j} \\
& v_{I j}=\mu_{I 1}+\eta_{I j}
\end{aligned}
$$

Slice 1

$\mu_{1 R}, \mu_{1 I}$ True

Slice 2
$\mu_{\text {True }}^{\mu_{2 R}}, \mu_{2 I}$

Average

Image Un-Aliasing

Incorporate artificially aliased mean calibration values by:
Acquired
aliased
voxel
Artificially,
aliased
voxel
\leftarrow
$=\left(\begin{array}{cc}X_{A} & 0 \\ C & 0 \\ 0 & X_{A} \\ 0 & C\end{array}\right)\left(\begin{array}{c}\beta_{1 R} \\ \beta_{2 R} \\ \beta_{1 I} \\ \beta_{1 I}\end{array}\right)+\left(\begin{array}{c}\varepsilon_{R} \\ \eta_{R} \\ \varepsilon_{I} \\ \eta_{I}\end{array}\right)$
$=\underset{4 \times 4}{X} \underset{4 \times 1}{\beta}+\underset{4 \times 1}{\varepsilon}$

With the invertible matrix X we can un-alias via: $\hat{\beta}=X^{-1} a$.

Image Un-Aliasing Statistics

We can obtain the statistical properties of the unaliased images.
Using the average of all the calibration images:
$E\left[\begin{array}{c}\hat{\beta}_{1 R} \\ \hat{\beta}_{2 R} \\ \hat{\beta}_{1 I} \\ \hat{\beta}_{1 I}\end{array}\right]=X^{-1} E\left[\begin{array}{c}a_{R} \\ C \bar{v}_{R} \\ a_{I} \\ C \bar{v}_{I}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2}\left(\beta_{1 R}+\mu_{1 R}\right)+\frac{1}{2}\left(\beta_{2 R}-\mu_{2 R}\right) \\ \frac{1}{2}\left(\beta_{2 R}+\mu_{2 R}\right)+\frac{1}{2}\left(\beta_{1 R}-\mu_{1 R}\right) \\ \frac{1}{2}\left(\beta_{1 I}+\mu_{1 I}\right)+\frac{1}{2}\left(\beta_{2 I}-\mu_{2 I}\right) \\ \frac{1}{2}\left(\beta_{2 I}+\mu_{2 I}\right)+\frac{1}{2}\left(\beta_{1 I}-\mu_{1 I}\right)\end{array}\right]$
$\operatorname{cov}(\hat{\beta})=X^{-1} \operatorname{cov}(a)\left(X^{-1}\right)^{\prime}=\frac{\sigma^{2}}{4} I_{2} \otimes\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
perfectly correlated reals
perfectly correlated imaginaries

Image Un-Aliasing Statistics

We can obtain the statistical properties of the unaliased images.
If we average 2 calibration images for each separated image:
$E\left[\begin{array}{c}\hat{\beta}_{1 R} \\ \hat{\beta}_{2 R} \\ \hat{\beta}_{1 I} \\ \hat{\beta}_{1 I}\end{array}\right]=X^{-1} E\left[\begin{array}{c}a_{R} \\ C \bar{v}_{R} \\ a_{I} \\ C \bar{v}_{I}\end{array}\right]=\left[\begin{array}{l}\frac{1}{2}\left(\beta_{1 R}+\mu_{1 R}\right)+\frac{1}{2}\left(\beta_{2 R}-\mu_{2 R}\right) \\ \frac{1}{2}\left(\beta_{2 R}+\mu_{2 R}\right)+\frac{1}{2}\left(\beta_{1 R}-\mu_{1 R}\right) \\ \frac{1}{2}\left(\beta_{1 I}+\mu_{1 I}\right)+\frac{1}{2}\left(\beta_{2 I}-\mu_{2 I}\right) \\ \frac{1}{2}\left(\beta_{2 I}+\mu_{2 I}\right)+\frac{1}{2}\left(\beta_{1 I}-\mu_{1 I}\right)\end{array}\right]$

$$
\operatorname{cov}(\hat{\beta})=X^{-1} \operatorname{cov}(a)\left(X^{-1}\right)^{\prime}=\frac{\sigma^{2}}{4} I_{4}
$$

perfectly uncorrelated reals perfectly uncorrelated imaginaries

Image Un-Aliasing Simulation

 128×128 3D brain phantom with 8 slicesPackets of adjacent slices aliased in k-space with $A=2,4,8$ $N(0, \sqrt{128 \times 128})$ noise added to $500 k$-space arrays in each slice Hadamard coefficients, C, used in SPECS reconstruction

True images. Noise added so SNR=50.
$\underline{A=2}$

Slice 2

Packet 2

Slice 4
Slice 3
維数

Packet 3
Packet 4

Slice $7 \quad$ Slice 8

Magnitude ${ }^{2}$ correlations about center voxel

1	0.9388
0.9388	1

1	0.9338
0.9338	1

1	0.9382
0.9382	1

1	0.9333
0.9333	1

$\underline{A=2}$

Slice 4
Slice 3

Packet 2
Packet 3

Packet 4

Slice 7
Slice 8

Magnitude ${ }^{2}$ correlations about center voxel

1	0.0160
0.0160	1

1	-0.0369
-0.0369	1

1	-0.0393
-0.0393	1

1	-0.0736
-0.0736	1

Summary

Introduced 1 coil 2 slice image acquisition.
Images were acquired $A=2$ times as fast.
No correlation was induced between voxels in the $A=2$ slices.
This technique can be applied to $A>2$ slices.
Higher acceleration factors A have been achieved.
Additional results at eposter 14 in CC-Exhibit Hall B2.

Thank You!

This work is joint with: Dr. lain P. Bruce, Duke Dr. Andrew S. Nencka, MCW Dr. James S. Hyde, MCW Dr. Andrez Jesmanowicz, MCW

References

1) Pruessman et al.: MRM 42:952-962, 1999.
2) Griswold et al.: MRM 47:1202-1210, 2002.
3) Bruce et al.: MRI 29(9):1267-1287, 2011.
4) Bruce \& Rowe: IEEE-TMI 33(2):495-503, 2014.
5) Rowe et al.: Proc ISMRM 20:123, 2013.
