

Statistical Image Separation of Multiple Simultaneously Excited FMRI Slices Using a Single Coil

Daniel B. Rowe, Ph.D. Professor of Computational Sciences Department of Mathematics, Statistics, and Computer Science

Adjunct Professor Department of Biophysics

Adjunct Professor Department of EE and CS

JSM August 14, 2014

Introduction

FMRI takes a nontrivial amount of time to measure an image.

Within slice techniques such as SENSE¹ and GRAPPA² have been developed to decrease image measurement time.

Recent work^{3,4} has demonstrated that SENSE and GRAPPA unfolded aliased images yield long range spatial correlation.

Multiband image aliasing has recently been developed but preliminary results⁵ indicate high correlation between slices.

Here the SPECS model is presented to separate aliased multiband images without induced between slice correlation.

Image Aliasing

A single complex-valued summed image is measured

In each voxel

 $a_{R} + ia_{I} = (\beta_{R1} + i\beta_{I1}) + (\beta_{R2} + i\beta_{I2}) + (\varepsilon_{R} + i\varepsilon_{I})$

Image Aliasing

A single complex-valued summed image is measured

$$\begin{aligned} a_{R} + ia_{I} &= (\beta_{1R} + \beta_{2R}) + i(\beta_{1I} + \beta_{2I}) + (\varepsilon_{R} + i\varepsilon_{I}) \\ & \begin{pmatrix} a_{R} \\ a_{I} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} \beta_{1R} \\ \beta_{2R} \\ \beta_{1I} \\ 2 \times 4 \end{pmatrix} + \begin{pmatrix} \varepsilon_{R} \\ \varepsilon_{I} \end{pmatrix} \longrightarrow \quad a = X_{A}\beta + \varepsilon \\ a_{I} &= X_{A}\beta + \varepsilon \\ 2 \times 1 & \text{Aliasing matrix} \\ \text{Aliased image} & 4 \times 1 \\ \text{True un-aliased images} \end{aligned}$$

Want $\hat{\beta} = (X_A X_A)^{-1} X_A a$, but *X* has 2 equations & 4 unknowns. The matrix $X_A X_A$ is not square, invertible or of full rank

JSM August 14, 2014

Image Un-Aliasing

Full Calibration Reference Images

 $egin{aligned} &
u_{Rj} = \mu_{R1} + \eta_{Rj} \ &
u_{Ij} = \mu_{I1} + \eta_{Ij} \end{aligned}$

JSM August 14, 2014

Image Un-Aliasing

Incorporate artificially aliased mean calibration values by:

Acquired
aliased
voxel
Artificially
aliased

$$x_{R}$$

 a_{I}
 $C\overline{v}_{R}$
 a_{I}
 $a_{I} \approx 4 \times 1$
 $a_{I} \approx 4 \times 4$
 $a_{I} \approx 4 \times 4$

With the invertible matrix *X* we can un-alias via: $\hat{\beta} = X^{-1}a$.

Image Un-Aliasing Statistics

We can obtain the statistical properties of the unaliased images. Using the average of all the calibration images:

$$E\begin{bmatrix}\hat{\beta}_{1R}\\\hat{\beta}_{2R}\\\hat{\beta}_{2R}\\\hat{\beta}_{1I}\\\hat{\beta}_{1I}\\\hat{\beta}_{1I}\end{bmatrix} = X^{-1}E\begin{bmatrix}a_{R}\\C\overline{\nu}_{R}\\a_{I}\\C\overline{\nu}_{I}\end{bmatrix} = \begin{bmatrix}\frac{1}{2}(\beta_{1R} + \mu_{1R}) + \frac{1}{2}(\beta_{2R} - \mu_{2R})\\\frac{1}{2}(\beta_{2R} + \mu_{2R}) + \frac{1}{2}(\beta_{1R} - \mu_{1R})\\\frac{1}{2}(\beta_{1I} + \mu_{1I}) + \frac{1}{2}(\beta_{2I} - \mu_{2I})\\\frac{1}{2}(\beta_{2I} + \mu_{2I}) + \frac{1}{2}(\beta_{1I} - \mu_{1I})\end{bmatrix}$$
$$\operatorname{cov}(\hat{\beta}) = X^{-1}\operatorname{cov}(a)(X^{-1})' = \frac{\sigma^{2}}{4}I_{2}\otimes\begin{pmatrix}1&1\\1&1\end{pmatrix}$$

perfectly correlated reals perfectly correlated imaginaries

Image Un-Aliasing Statistics

We can obtain the statistical properties of the unaliased images. If we average 2 calibration images for each separated image:

$$E\begin{bmatrix}\hat{\beta}_{1R}\\\hat{\beta}_{2R}\\\hat{\beta}_{2R}\\\hat{\beta}_{1I}\\\hat{\beta}_{1I}\\\hat{\beta}_{1I}\end{bmatrix} = X^{-1}E\begin{bmatrix}a_{R}\\C\overline{\nu}_{R}\\a_{I}\\C\overline{\nu}_{I}\end{bmatrix} = \begin{bmatrix}\frac{1}{2}(\beta_{1R} + \mu_{1R}) + \frac{1}{2}(\beta_{2R} - \mu_{2R})\\\frac{1}{2}(\beta_{2R} + \mu_{2R}) + \frac{1}{2}(\beta_{1R} - \mu_{1R})\\\frac{1}{2}(\beta_{1I} + \mu_{1I}) + \frac{1}{2}(\beta_{2I} - \mu_{2I})\\\frac{1}{2}(\beta_{2I} + \mu_{2I}) + \frac{1}{2}(\beta_{1I} - \mu_{1I})\end{bmatrix}$$

$$\operatorname{cov}(\hat{\beta}) = X^{-1} \operatorname{cov}(a)(X^{-1})' = \frac{\sigma^2}{4} I_4$$

perfectly uncorrelated reals perfectly uncorrelated imaginaries

JSM August 14, 2014 Using mean if two calibration images.

Image Un-Aliasing Simulation

- 128 × 128 3D brain phantom with 8 slices
- Packets of adjacent slices aliased in k-space with A=2,4,8
- $N(0,\sqrt{128}\times128)$ noise added to 500 *k*-space arrays in each slice

Hadamard coefficients, C, used in SPECS reconstruction

JSM August 14, 2014 True images. Noise added so SNR=50.

DB Rowe Un-Aliased Results: Using All Calibration Images

Magnitude² correlations about center voxel

1	0.9388	1	0.9338	1	0.9382	1	0.9333
0.9388	1	0.9338	1	0.9382	1	0.9333	1

JSM August 14, 2014 Note correlations close to 1 Bad

DB Rowe Un-Aliased Results: Bootstrapping Approach

Magnitude² correlations about center voxel

1	0.0160	1	-0.0369	1	-0.0393	1	-0.0736
0.0160	1	-0.0369	1	-0.0393	1	-0.0736	1

JSM August 14, 2014 Note correlations close to 0 ... Good.

Summary

Introduced 1 coil 2 slice image acquisition.

Images were acquired A=2 times as fast.

No correlation was induced between voxels in the A=2 slices.

This technique can be applied to *A*>2 slices.

Higher acceleration factors A have been achieved.

Additional results at eposter 14 in CC-Exhibit Hall B2.

Thank You!

This work is joint with: Dr. Iain P. Bruce, Duke Dr. Andrew S. Nencka, MCW Dr. James S. Hyde, MCW Dr. Andrez Jesmanowicz, MCW

References

- 1) Pruessman et al.: MRM 42:952-962, 1999.
- 2) Griswold et al.: MRM 47:1202-1210, 2002.
- 3) Bruce et al.: MRI 29(9):1267-1287, 2011.
- 4) Bruce & Rowe: IEEE-TMI 33(2):495-503, 2014.
- 5) Rowe et al.: Proc ISMRM 20:123, 2013.