

Separation of Several Aliased Images to Increase Volume Speed

Daniel B. Rowe, Ph.D.

Associate Professor Department of Mathematics, Statistics, and Computer Science

Adjunct Associate Professor Department of Biophysics

August 8, 2013

Outline:

- **1. Coil Arrays**
- 2. Simultaneous Multi-Slice
- 3. Image Separation
- 4. Simulation Results
- 5. Discussion

JSM 2013

1. Coil Arrays A 4 Channel Coil Array. Coils Sensitivity Decreases. Coil 1 Reception Sensitivity Decreases **7 IIOO** Coil 4 Coil 2 \leftarrow **Reception Sensitivity Decreases** Coil 3

1. Coil Arrays A 4 Channel Coil Array. Coils Sensitivity Decreases. Coil 1 **Reception Sensitivity Decreases** Coil 4 Coil 2 \leftarrow Reception Sensitivity Decreases Coil 3 Coil 3

JSM 2013

Each slice has a different width and depth profile.

1. Coil Arrays A 4 Channel Coil Array. Coils Sensitivity Decreases. Coil 1 Reception Sensitivity Decreases Coil 4 Coil 2 **Reception Sensitivity Decreases** Coil 3

1. Coil Arrays A 4 Channel Coil Array. Coils Sensitivity Decreases. Coil 1 Coil 1 Reception Sensitivity Decreases Coil 4 Coil 2 Slice 1 Slice 12 Coil 3

JSM 2013

1. Coil Arrays

A 4 Channel Coil Array and 12 Slices.

Coil 1 sees.

1. Coil Arrays

A 4 Channel Coil Array and 12 Slices.

Coil 1 sees.

1. Coil Arrays

A 4 Channel Coil Array and 12 Slices.

Coil 1 sees.

JSM 2013

1. Coil Arrays

A 4 channel Coil Array. In Slice 6, they Combine to get.

New techniques have been/are being developed to simultaneously encode, measure, and reconstruct packets of multiple slices. Three-Slices Encoded.

A 4 Channel Coil Array. 3 Slices Encoded of 12. Coil 1 Receives in Packet 2

A 4 Channel Coil Array. 3 Slices Encoded of 12. Coil 2 Receives in Packet 2

A 4 Channel Coil Array. 3 Slices Encoded of 12. Coil 3 Receives in Packet 2

A 4 Channel Coil Array. 3 Slices Encoded of 12. Coil 4 Receives in Packet 2

A 4 Channel Coil Array. 3 Slices Encoded of 12.

In each voxel of coil 1 for packet 2 (2,6,10):

 $(y_{1R} + iy_{1I}) = S_{1,2}(\rho_2 \cos \theta_2 + i\rho_2 \sin \theta_2) \leftarrow \text{True Slice 2}$ $= S_{1,2}(\rho_6 \cos \theta_6 + i\rho_6 \sin \theta_6) \leftarrow \text{True Slice 6}$

+

In each voxel of coil 2 for packet 2 (2,6,10):

 $(y_{2R} + iy_{2I}) = S_{2,2}(\rho_2 \cos \theta_2 + i\rho_2 \sin \theta_2) \leftarrow$ True Slice 2

+

In each voxel of coil 3 for packet 2 (2,6,10):

+

In each voxel of coil 4 for packet 2 (2,6,10):

In each voxel of coil 1 for packet 2 (2,6,10):

 $\begin{pmatrix} y_{1R} \\ y_{1I} \end{pmatrix} = \begin{pmatrix} S_{1,2} & S_{1,6} & S_{1,10} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{1,2} & S_{1,6} & S_{1,10} \end{pmatrix} \begin{pmatrix} \rho_2 \cos \theta_2 \\ \rho_6 \cos \theta_6 \\ \rho_{10} \cos \theta_{10} \\ \rho_2 \sin \theta_2 \\ \rho_6 \sin \theta_6 \\ \rho_{10} \sin \theta_{10} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1R} \\ \varepsilon_{1I} \end{pmatrix}$ Aliased Image Measurement Error Aliasing Matrix **True Unaliased Images** $y_1 = X_1$ $\beta + \varepsilon_1$ (2 linear equations and 6 unknowns)

In each voxel of coil 2 for packet 2 (2,6,10):

 $\begin{pmatrix} y_{2R} \\ y_{2I} \end{pmatrix} = \begin{pmatrix} S_{2,2} & S_{2,6} & S_{2,10} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{2,2} & S_{2,6} & S_{2,10} \end{pmatrix} \begin{pmatrix} \rho_2 \cos \theta_2 \\ \rho_6 \cos \theta_6 \\ \rho_{10} \cos \theta_{10} \\ \rho_2 \sin \theta_2 \\ \rho_6 \sin \theta_6 \\ \rho_{10} \sin \theta_{10} \end{pmatrix} + \begin{pmatrix} \varepsilon_{2R} \\ \varepsilon_{2I} \end{pmatrix}$ Measurement Error Aliased Image Aliasing Matrix **True Unaliased Images** $\beta + \varepsilon_{2}$ y₂ = X_{2}

(2 linear equations and 6 unknowns)

In each voxel of coil 3 for packet 2 (2,6,10):

 $\begin{pmatrix} y_{3R} \\ y_{3I} \end{pmatrix} = \begin{pmatrix} S_{3,2} & S_{3,6} & S_{3,10} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{3,2} & S_{3,6} & S_{3,10} \end{pmatrix} \begin{pmatrix} \rho_2 \cos \theta_2 \\ \rho_6 \cos \theta_6 \\ \rho_{10} \cos \theta_{10} \\ \rho_2 \sin \theta_2 \\ \rho_6 \sin \theta_6 \\ \rho_{10} \sin \theta_{10} \end{pmatrix} + \begin{pmatrix} \varepsilon_{3R} \\ \varepsilon_{3I} \end{pmatrix}$ Aliased Image Measurement Error Aliasing Matrix **True Unaliased Images** $y_3 = X_3$ $\beta + \varepsilon_2$

(2 linear equations and 6 unknowns)

In each voxel of coil 4 for packet 2 (2,6,10):

 $\begin{pmatrix} y_{4R} \\ y_{4I} \end{pmatrix} = \begin{pmatrix} S_{4,2} & S_{4,6} & S_{4,10} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{4,2} & S_{4,6} & S_{4,10} \end{pmatrix} \begin{pmatrix} \rho_2 \cos \theta_2 \\ \rho_6 \cos \theta_6 \\ \rho_{10} \cos \theta_{10} \\ \rho_2 \sin \theta_2 \\ \rho_6 \sin \theta_6 \\ \rho_{10} \sin \theta_{10} \end{pmatrix} + \begin{pmatrix} \varepsilon_{4R} \\ \varepsilon_{4I} \end{pmatrix}$ Aliased Image Measurement Error Aliasing Matrix **True Unaliased Images** $\beta + \varepsilon_{A}$ $y_4 = X_A$ (2 linear equations and 6 unknowns)

In the same voxel of the 4 coils for packet 2 (2,6,10):

D.B. Rowe, Ph.D.

29

2. Simultaneous Multi-Slice

In the same voxel of the 4 coils for packet 2 (2,6,10):

$$y_{A} = X_{A} \qquad \beta + \varepsilon_{A}$$
Aliased Image Aliasing Matrix True Unaliased Images Measurement Error
$$X_{A} \text{ is severely rank deficient. rank}(X_{A}) \ge 2 \qquad E(\varepsilon_{A}) = 0$$

$$Cov(\varepsilon_{A}) = \Psi$$
So can't invert X_{A} . or $X_{A} 'X_{A}$.
$$x_{A} = \begin{cases} s_{12} & s_{16} & s_{10} & 0 & 0 & 0 \\ s_{22} & s_{2.6} & s_{2.10} & 0 & 0 & 0 \\ s_{22} & s_{2.6} & s_{2.10} & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{12} & s_{1.6} & s_{1.0} \\ 0 & 0 & 0 & s_{22} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & s_{22} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & s_{22} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & s_{22} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & s_{22} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & s_{22} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & s_{22} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & s_{2.2} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & 0 & s_{2.2} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & s_{2.2} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & 0 & s_{2.2} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & 0 & s_{2.2} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & 0 & s_{2.2} & s_{2.6} & s_{2.10} \\ 0 & 0 & 0 & 0 & s_{2.2} & s_{2.6} & s_{2$$

Coil 1:

3. Image Separation

Full Calibration Images Acquired

Average

3. Image Separation

 $\overline{\delta}_{\scriptscriptstyle R2}$

 $\overline{\delta}_{I2}$

Coil 2:

 $\overline{\delta}_{\scriptscriptstyle R6}$

 $\overline{\delta}_{I6}$

D.B. Rowe, Ph.D.

3

3. Image Separation

 $\overline{\delta}_{R2}$ $\overline{\delta}_{I2}$

Full Calibration Images Acquired

Average

Coil 3:

Coil 4:

3. Image Separation

 $\overline{\delta}_{\scriptscriptstyle R2}$

JSM 2013

3. Image Separation magnitude of The coil sensitivities are obtained from $\stackrel{\downarrow}{m}$ full images.

Coil covariances are also obtained from the full scans.

D.B. Rowe, Ph.D.

3. Image Separation

Due to rank deficiency, add rows to X_A , y_A , and ε_A .

 $S = \begin{pmatrix} S_{1,2} & S_{1,6} & S_{1,10} \\ S_{2,2} & S_{2,6} & S_{2,10} \\ S_{3,2} & S_{3,6} & S_{3,10} \\ S_{4,2} & S_{4,6} & S_{4,10} \end{pmatrix}$

 $\overline{\delta}_{R}$ $\overline{\delta}_{I}$

3. Image Separation

Add constraints & artificially aliased data.

 $\begin{pmatrix} y_{AR} \\ y_{AI} \\ v_{AR} \\ v_{AI} \end{pmatrix} = \begin{pmatrix} S & 0 \\ 0 & S \\ C & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} \beta_R \\ \beta_I \end{pmatrix} + \begin{pmatrix} \varepsilon_{AR} \\ \varepsilon_{AI} \\ \eta_{AR} \\ \eta_{AR} \end{pmatrix} \quad \begin{pmatrix} v_{AR} \\ v_{AI} \end{pmatrix} = \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} \overline{\delta}_R \\ \overline{\delta}_I \end{pmatrix} \overset{R^2}{\underset{R^6}{\longrightarrow}}$ $y = X \quad \beta + \varepsilon$ $C = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -2 & 1 \end{pmatrix}$ Least squares image separation $\hat{\beta} = (X'\Psi^{-1}X)^{-1}X'\Psi^{-1}y \longleftarrow$ separated images

Extension of Rowe et al.: Proc. JSM 2012. Rowe et al. Proc. ISMRM, 2013

3. Image Separation

Mean and Covariance of separated image

 $\hat{\beta} = (X'\Psi^{-1}X)^{-1}X'\Psi^{-1}y \quad \longleftarrow \text{ separated images } \begin{array}{l} y = X\beta + \varepsilon \\ \text{can be computed.} \\ E(\varepsilon_A) = 0 \\ \operatorname{cov}(\varepsilon_A) = \Psi \end{array}$

If $E(\overline{\delta}) = \delta$ and $\operatorname{cov}(\overline{\delta}) = \Gamma$, then

 $E(\hat{\beta}) = \begin{pmatrix} (S'\Psi^{-1}S + C'C)^{-1}(S'\Psi^{-1}S\beta_R + C'C\delta_R) \\ (S'\Psi^{-1}S + C'C)^{-1}(S'\Psi^{-1}S\beta_I + C'C\delta_I) \end{pmatrix}$ $\operatorname{cov}(\hat{\beta}) = I_2 \otimes (S'\Psi^{-1}S + C'C)^{-1}(S'\Psi^{-1}S)(S'\Psi^{-1}S + C'C)^{-1}$

4. Results

Generated 50 simulated calibration images. First 5 deleted and remainder averaged for sensitivities and artificially aliased data.

Generated *n*=256 simulated aliased slice images. First 5 deleted, remaining separated.

Show calibration image used for separating. Show coil sensitivities used for separation. Show first separated and average separated. **JSM 2013**

JSM 2013

4. Results

A 4 Channel Coil Array. 3 Slices Encoded of 12.

A 4 Channel Coil Array. 3 Slices Encoded of 12.

5. Discussion

- Description of the N_A slice N_C coil aliasing process.
- New complex-valued multislice multicoil separation.
- Statistical properties of the CV multislice multicoil separation.
- Simulated data results described.
- Did not calculate from the simulated data, but as the theory implies, any subsampling yields correlated voxels.

Thank You!