

Statistical Image Reconstruction of Two Simultaneously Excited FMRI Slices

(With A Single Coil)

Daniel B. Rowe, Ph.D.

Associate Professor Department of Mathematics, Statistics, and Computer Science

Adjunct Associate Professor Department of Biophysics

Supported by NIH EB000215 and EB007827.

July 30, 2012

Outline:

- 1. Two Slice Encoding with a Single-Channel Coil
- 2. The Jesmanowicz Magnitude-Only Approach
- 3. The Rowe Complex-Valued Approach
- 4. Statistical Properties
- 5. Results
- 6. Discussion

1. Two Slice Encoding with a Single-Channel Coil

1. Two Slice Encoding with a Single-Channel Coil In each voxel: $(y_R + iy_I) = (\rho_1 \cos \theta_1 + i\rho_1 \sin \theta_1)$

$$\begin{pmatrix} y_{R} \\ y_{I} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \rho_{1} \cos \theta_{1} \\ \rho_{1} \sin \theta_{1} \\ \rho_{2} \cos \theta_{2} \\ \rho_{2} \sin \theta_{2} \end{pmatrix} \begin{pmatrix} \varepsilon_{R} + i\varepsilon_{I} \end{pmatrix} + \begin{pmatrix} \varepsilon_{R} \\ \varepsilon_{I} \end{pmatrix} + \begin{pmatrix}$$

(2 linear equations and 4 unknowns)

1. Two Slice Encoding with a Single-Channel Coil

The goal is to estimate (unalias) the two images

 $\hat{\beta} = (X'X)^{-1}X'y$

However, we have 2 equations and 4 unknowns and X'X is not square or invertible or of full rank.

Two Approaches:

Previous: Jesmanowicz magnitude-only reconstruction **Current:** Rowe complex-valued reconstruction

2. The Jesmanowicz Magnitude-Only Approach

 $\begin{aligned} & \left(\begin{array}{c} y_{R} \\ y_{I} \end{array} \right) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \rho_{1} \cos \theta_{1} \\ \rho_{1} \sin \theta_{1} \\ \rho_{2} \cos \theta_{2} \\ \rho_{2} \sin \theta_{2} \end{pmatrix} + \begin{pmatrix} \varepsilon_{R} \\ \varepsilon_{I} \end{pmatrix} \\ & \begin{pmatrix} y_{R} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \rho_{1} \cos \theta_{1} \\ \rho_{1} \sin \theta_{1} \\ \rho_{2} \cos \theta_{2} \\ \rho_{2} \sin \theta_{2} \end{pmatrix} + \begin{pmatrix} \varepsilon_{R} \\ \varepsilon_{I} \\ 0 \\ 0 \end{pmatrix} \\ & \swarrow \end{aligned}$ Aliased Image $\begin{pmatrix} \hat{\rho}_1 \\ \hat{\rho}_2 \end{pmatrix} = \frac{1}{\sin(\hat{\theta}_1 - \hat{\theta}_2)} \begin{pmatrix} -\sin\hat{\theta}_2 & +\cos\hat{\theta}_2 \\ +\sin\hat{\theta}_1 & -\cos\hat{\theta}_1 \end{pmatrix} \begin{pmatrix} y_R \\ y_I \end{pmatrix} \quad \text{where } \hat{\theta}_1, \hat{\theta}_2 \text{ are phase estimates} \\ \hat{\theta}_1 - \hat{\theta}_2 \neq k\pi, \ k = 0, \pm 1, \dots$

> Jesmanowicz, Li, Hyde: ISMRM,2009. Islam, Glover: ISMRM, 2012.

D.B. Rowe, Ph.D.

Need phase estimates!

2. The Jesmanowicz Magnitude-Only Approach

Utilizing complete images called "Reference Images."

$$\begin{pmatrix} y_{R1t} \\ y_{I1t} \\ y_{R2t} \\ y_{I2t} \end{pmatrix} = \begin{pmatrix} S_1 \cos \phi_1 \\ S_1 \sin \phi_1 \\ S_2 \cos \phi_2 \\ S_2 \sin \phi_2 \end{pmatrix} + \begin{pmatrix} \eta_{R1t} \\ \eta_{I1t} \\ \eta_{R2t} \\ \eta_{R2t} \\ \eta_{I2t} \end{pmatrix}, \qquad \begin{pmatrix} \eta_{R1t} \\ \eta_{I1t} \\ \eta_{R2t} \\ \eta_{R2t} \\ \eta_{I2t} \end{pmatrix} \sim N(0, \sigma^2 I_4)$$
$$t = 1, ..., m$$
$$\begin{pmatrix} \overline{y}_{R1} \\ \overline{y}_{R1} \\ \overline{y}_{R2} \\ \overline{y}_{I2} \end{pmatrix} \sim N\begin{pmatrix} S_1 \cos \phi_1 \\ S_1 \sin \phi_1 \\ S_2 \cos \phi_2 \\ S_2 \sin \phi_2 \end{pmatrix}, \quad \begin{pmatrix} \sigma^2 \\ m \\ I_4 \end{pmatrix} \qquad \text{acquire } m \text{ full unaliased images in a prescan}$$

2. The Jesmanowicz Magnitude-Only Approach

Utilizing complete images called "Reference Images."

$$\begin{pmatrix} \hat{\rho}_1 \\ \hat{\rho}_2 \end{pmatrix} = \frac{1}{\sin(\overline{\phi}_1 - \overline{\phi}_2)} \begin{pmatrix} -\sin\overline{\phi}_2 & +\cos\overline{\phi}_2 \\ +\sin\overline{\phi}_1 & -\cos\overline{\phi}_1 \end{pmatrix} \begin{pmatrix} y_R \\ y_I \end{pmatrix} \qquad \begin{array}{l} j = 1, 2 \\ \overline{r}_j = (\overline{y}_{Rj}^2 + \overline{y}_{Ij}^2)^{1/2} \\ \overline{\phi}_i = \operatorname{atan}(\overline{y}_{Ii} / \overline{y}_{Ri}) \end{array}$$

3. The Rowe Complex-Valued Approach

$$\begin{pmatrix} y_{R} \\ y_{I} \\ v_{R} \\ v_{I} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} \rho_{1} \cos \theta_{1} \\ \rho_{1} \sin \theta_{1} \\ \rho_{2} \cos \theta_{2} \\ \rho_{2} \sin \theta_{2} \end{pmatrix} + \begin{pmatrix} \varepsilon_{R} \\ \varepsilon_{I} \\ 0 \\ 0 \end{pmatrix} \qquad y = X\beta + \varepsilon$$

$$\begin{pmatrix} v_{R} \\ v_{I} \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} \overline{y}_{R1} \\ \overline{y}_{I1} \\ \overline{y}_{R2} \\ \overline{y}_{I2} \end{pmatrix}$$

$$\begin{pmatrix} v_{R} \\ v_{I} \end{pmatrix} \sim N \left(\begin{pmatrix} S_{1} \cos \phi_{1} - S_{2} \cos \phi_{2} \\ S_{1} \sin \phi_{1} - S_{2} \sin \phi_{2} \end{pmatrix}, \frac{2\sigma^{2}}{m} I_{2} \end{pmatrix}$$

3. The Rowe Complex-Valued Approach

$$\begin{pmatrix} \hat{\rho}_{1} \cos \hat{\theta}_{1} \\ \hat{\rho}_{1} \sin \hat{\theta}_{1} \\ \hat{\rho}_{2} \cos \hat{\theta}_{2} \\ \hat{\rho}_{2} \sin \hat{\theta}_{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} y_{R} \\ y_{I} \\ v_{R} \\ v_{I} \end{pmatrix}$$

$$\begin{pmatrix} \hat{\rho}_{1} \cos \hat{\theta}_{1} \\ \hat{\rho}_{1} \sin \hat{\theta}_{1} \\ \hat{\rho}_{2} \cos \hat{\theta}_{2} \\ \hat{\rho}_{2} \sin \hat{\theta}_{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} y_{R} \\ y_{I} \\ v_{R} \\ v_{I} \end{pmatrix}$$

$$\hat{\beta} = X^{-1}y$$

4. Statistical Properties of the Approaches

Jesmanowicz Magnitude-Only

$$\begin{pmatrix} \hat{\rho}_1 \\ \hat{\rho}_2 \end{pmatrix} = \frac{1}{\sin(\overline{\phi}_1 - \overline{\phi}_2)} \begin{pmatrix} -\sin\overline{\phi}_2 & +\cos\overline{\phi}_2 \\ +\sin\overline{\phi}_1 & -\cos\overline{\phi}_1 \end{pmatrix} \begin{pmatrix} y_R \\ y_I \end{pmatrix}$$

$$(y_{R}, y_{I}) \sim N((\rho_{1} \cos \theta_{1} + \rho_{2} \cos \theta_{2}, \rho_{1} \sin \theta_{1} + \rho_{2} \sin \theta_{2})', \sigma^{2}I_{2})$$

$$(\overline{y}_{R1}, \overline{y}_{I1}, \overline{y}_{R2}, \overline{y}_{I2}) \sim N((S_{1} \cos \phi_{1}, S_{1} \sin \phi_{1}, S_{2} \cos \phi_{2}, S_{2} \sin \phi_{2})', \frac{\sigma^{2}}{m}I_{4})$$

$$f_{\overline{\Phi}_{1}, \overline{\Phi}_{1}}(\overline{\phi}_{1}, \overline{\phi}_{2} | \overline{r}_{1} = 1, \overline{r}_{2} = 1) = f(\overline{r}_{1}, \overline{\phi}_{1}, \overline{r}_{2}, \overline{\phi}_{2}) / f(\overline{r}_{1} = 1, \overline{r}_{2} = 1)$$

$$(\overline{\phi}_{1}, \overline{\phi}_{2} | \overline{r}_{1} = 1, \overline{r}_{2} = 1) \sim VM(\kappa_{1} = mS_{1} / \sigma^{2}) \cdot VM(\kappa_{2} = mS_{2} / \sigma^{2})$$

4. Statistical Properties of the Approaches Jesmanowicz Magnitude-Only

$$\begin{split} &(\bar{\phi}_{1},\bar{\phi}_{2} \mid \bar{r}_{1}=1,\bar{r}_{2}=1) \sim VM(\kappa_{1}=mS_{1}/\sigma^{2}) \cdot VM(\kappa_{2}=mS_{2}/\sigma^{2}) \\ &\begin{pmatrix}y_{R}\\y_{I}\end{pmatrix} \sim N\left(\begin{pmatrix}\rho_{1}\cos\theta_{1}+\rho_{2}\cos\theta_{2}\\\rho_{1}\sin\theta_{1}+\rho_{2}\sin\theta_{2}\end{pmatrix},\sigma^{2}I_{2}\right) \\ &\hat{\rho}_{1} = \frac{-\sin\bar{\phi}_{2}}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}y_{R} + \frac{\cos\bar{\phi}_{2}}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}y_{I}, \hat{\rho}_{2} = \frac{\sin\bar{\phi}_{1}}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}y_{R} - \frac{\cos\bar{\phi}_{1}}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}y_{I} \\ E(XY) = E(X)E(Y) + \cos(XY)^{7} \quad 0 \\ E(\hat{\rho}_{1}) = \rho_{1}E_{\bar{\Phi}_{1},\bar{\Phi}_{1}}\left(\frac{\sin(\theta_{1}-\bar{\phi}_{2})}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}\right) + \rho_{2}E_{\bar{\Phi}_{1},\bar{\Phi}_{1}}\left(\frac{\sin(\theta_{2}-\bar{\phi}_{2})}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}\right) \\ E(\hat{\rho}_{2}) = \rho_{2}E_{\bar{\Phi}_{1},\bar{\Phi}_{1}}\left(\frac{\sin(\bar{\phi}_{1}-\theta_{2})}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}\right) + \rho_{1}E_{\bar{\Phi}_{1},\bar{\Phi}_{1}}\left(\frac{\sin(\bar{\phi}_{1}-\theta_{1})}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}\right) \end{split}$$

4. Statistical Properties of the Approaches

Jesmanowicz Magnitude-Only

$$E(\hat{\rho}_{1}) = \rho_{1}E_{\bar{\Phi}_{1},\bar{\Phi}_{1}}\left(\frac{\sin(\theta_{1}-\bar{\phi}_{2})}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}\right) + \rho_{2}E_{\bar{\Phi}_{1},\bar{\Phi}_{1}}\left(\frac{\sin(\theta_{2}-\bar{\phi}_{2})}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}\right)$$

$$E(\hat{\rho}_{2}) = \rho_{2}E_{\bar{\Phi}_{1},\bar{\Phi}_{1}}\left(\frac{\sin(\bar{\phi}_{1}-\theta_{2})}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}\right) + \rho_{1}E_{\bar{\Phi}_{1},\bar{\Phi}_{1}}\left(\frac{\sin(\bar{\phi}_{1}-\theta_{1})}{\sin(\bar{\phi}_{1}-\bar{\phi}_{2})}\right)$$
working on integrals

$$E(\hat{\rho}_1) \approx \rho_1 \frac{\sin(\theta_1 - \phi_2)}{\sin(\phi_1 - \phi_2)} + \rho_2 \frac{\sin(\theta_2 - \phi_2)}{\sin(\phi_1 - \phi_2)}$$
$$E(\hat{\rho}_2) \approx \rho_2 \frac{\sin(\phi_1 - \theta_2)}{\sin(\phi_1 - \phi_2)} + \rho_1 \frac{\sin(\phi_1 - \theta_1)}{\sin(\phi_1 - \phi_2)}$$

If $\phi_1 \approx \theta_1$ and $\phi_2 \approx \theta_2$, then $E(\hat{\rho}_1) \approx \rho_1$ and $E(\hat{\rho}_2) \approx \rho_2$.

4. Statistical Properties of the Approaches Rowe Complex-Valued

4. Statistical Properties of the Approaches Rowe Complex-Valued

$$E\begin{pmatrix} \hat{\rho}_{1}\cos\hat{\theta}_{1}\\ \hat{\rho}_{1}\sin\hat{\theta}_{1}\\ \hat{\rho}_{2}\cos\hat{\theta}_{2}\\ \hat{\rho}_{2}\sin\hat{\theta}_{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 1 & 0 & -1 & 0\\ 0 & 1 & 0 & -1 \end{pmatrix} E\begin{pmatrix} y_{R}\\ y_{I}\\ v_{R}\\ v_{I} \end{pmatrix}$$
$$E\begin{pmatrix} \hat{\rho}_{1}\cos\hat{\theta}_{1}\\ \hat{\rho}_{1}\sin\hat{\theta}_{1}\\ \hat{\rho}_{2}\cos\hat{\theta}_{2}\\ \hat{\rho}_{2}\sin\hat{\theta}_{2} \end{pmatrix} = \begin{bmatrix} \frac{1}{2}(\rho_{1}\cos\theta_{1}+S_{1}\cos\phi_{1}) + \frac{1}{2}(\rho_{2}\cos\theta_{2}-S_{2}\cos\phi_{2})\\ \frac{1}{2}(\rho_{1}\sin\theta_{1}+S_{1}\sin\phi_{1}) + \frac{1}{2}(\rho_{2}\sin\theta_{2}-S_{2}\sin\phi_{2})\\ \frac{1}{2}(\rho_{2}\cos\theta_{2}+S_{2}\cos\phi_{2}) + \frac{1}{2}(\rho_{1}\cos\theta_{1}-S_{1}\cos\phi_{1})\\ \frac{1}{2}(\rho_{2}\sin\theta_{2}+S_{2}\sin\phi_{2}) + \frac{1}{2}(\rho_{1}\sin\theta_{1}-S_{1}\sin\phi_{1}) \end{bmatrix}$$

4. Statistical Properties of the Approaches Rowe Complex-Valued

5. Results from the Approaches

Data 1: Sim Constant Magnitude and Constant Phase $\rho_1 = S_1 = 1, \rho_2 = S_2 = 1.5, \theta_1 = \phi_1 = \pi/2 - \pi/6, \theta_2 = \phi_2 = -\pi/6, m = 2, n = 720, \sigma = .01$

Data 2: Sim Average Experimental Images (not shown) Acquired 720 full volumes and averaged slices for $\rho_1 = S_1, \rho_2 = S_2, \theta_1 = \phi_1, \theta_2 = \phi_2, m = 2, n = 720, \sigma = .01$ **Data 2.5**: Did interr

Data 2.5: Did intermediate
added slices but simulated
phase.

Data 3: Sim/Exp Add Experimental Images pha

Acquired 720 full volumes and added slices to simulate aliasing, used first m=2 for reference images.

Data 4: Exp Data Magnitude and Phase

Acquired 20 aliased full images used m=2 for reference images then acquired n=720 aliased images.

5. Results from the Approaches

Data 1: Sim Constant Magnitude and Constant Phase

 $\rho_1 = S_1 = 1, \rho_2 = S_2 = 1.5, \theta_1 = \phi_1 = \pi/2 - \pi/6, \theta_2 = \phi_2 = -\pi/6, m = 2, n = 720, \sigma = .01$

5. Results from the Approaches Data 1: Sim Constant Magnitude and Constant Phase

Data 1: Reconstructed Image

Data 1: Reconstructed Means

Data 1: Reconstructed Expectations

Acquired full volumes, averaged, then added slices with noise.

5. Results from the Approaches slices **Data 2: Sim from Exp Magnitude and Phase Avg** $\rho_1 = S_1, \rho_2 = S_2, \theta_1 = \phi_1, \theta_2 = \phi_2, m = 2, n = 720, \sigma = .01$

5. Results from the Approaches Data 2: Sim Constant Magnitude and Constant Phase

Data 2: Reconstructed Image

Data 2: Reconstructed Means

Data 2: Reconstructed Expectations

Acquired full images

and added slices to 5. Results from the Approaches simulate aliasing. **Data 3: Sim/Exp Add Experimental Images** *m*=2, *n*=720 Magnitude GE 3.0 T 10 slices 0.5 TRs=720 TR=1000 ms TE=42.5 ms BW=208.3 kHz 72 72 FOV=24 cm SLTH=2.5 mm FA=90 degrees ase EESP=752 ms 96×96 k-space 28

5. Results from the Approaches Data 3: Sim/Exp Add Experimental Image

Data 3: Reconstructed Image

Data 3: Reconstructed Means

5. Results from the Approaches Acquired aliased images. **Data 4: Exp Data Magnitude and Phase** Aliased Image m=2, n=720**Reference Images Jesmanowicz M-O** $\begin{pmatrix} \hat{\rho}_1 \\ \hat{\rho}_2 \end{pmatrix} = X_J^{-1} \begin{pmatrix} y_R \\ y_L \end{pmatrix}$ Magnitude **Rowe C-V** $\hat{\rho}_1 \cos \hat{\theta}_1$ 24 y_R 24 72 24 $\begin{vmatrix} \hat{\rho}_{1} \sin \hat{\theta}_{1} \\ \hat{\rho}_{2} \cos \hat{\theta}_{2} \\ \hat{\rho}_{2} \sin \hat{\theta}_{2} \end{vmatrix} = X_{R}^{-1}$ \mathcal{Y}_{I} V_R Phase

Data 4: Reconstructed Image

Data 4: Reconstructed Means

6. Discussion

- Mathematical description of the 2 slice 1 coil aliasing process.
- Mathematical description of Jesmanowicz approach.
- Mathematical description of New Rowe approach.
- Expectation (of two-ish) and Covariance of one of aproaches.
- Results of the two different approaches.
- Caution: Two reconstructions may lead to correlated voxels!
- Apply to real human data.
- Generalize to more than 1 coil and higher accelerations.

Thank You!