Utilizing Induced Voxel Correlation in fMRI Analysis

Daniel B. Rowe, Ph.D.

Joint with Andrew S. Nencka

Associate Professor Computational Sciences Program Department of Mathematics, Statistics, and Computer Science

Adjunct Associate Professor Department of Biophysics

August 3, 2011

OUTLINE 1. Reconstruction-Preprocessing

- 2. Induced Correlation
- **3. Utilizing Induced Correlation**
- 4. Results
- **5.** Discussion

Reconstruction: 1D FT

 $(n=256, \Delta t=2 \text{ s})$

Reconstruction: 1D FT $(n=256, \Delta t=2 \text{ s})$ $(\Omega_R + i \Omega_I)$ $\times (y_R + i y_I) = (f_R + i f_I)$ 32 64 64 96 128 128 128 160 160 192 64 128 192 256 256 .25 64 128 sum $10\cos(2\pi 0/512t)$ $3sin(2\pi 8/512t)$ $\cos(2\pi 32/512t)$ $sin(2\pi 4/512t)$ There are lines at the frequency locations.

Real part (image) represents constituent cosine frequencies. Imaginary part (image) represents constituent sine frequencies. Intensity of the lines represents amplitude of that frequency. 4

(FOV=192 mm) $(n_x=n_y=96, \Delta x=\Delta y=2 \text{ mm})$

sum

Reconstruction: 2D FT

 $[\]sin(2\pi 24/96y)$

 $\cos(2\pi 4/96x + 2\pi 4/96y)$

(FOV=192 mm) **Reconstruction: 2D FT** $(n_x=n_y=96, \Delta x=\Delta y=2 mm)$ $(\overline{\Omega}_{yR}+i \overline{\Omega}_{yI}) \times (V_R+i V_I) \times (\overline{\Omega}_{xR}+i \overline{\Omega}_{xI})^T = (F_R+i F_I)$

Spatial Frequencies

Reconstruction: 2D IFT

 $(\Omega_{yR} + i \Omega_{yI}) \quad \times \quad (F_R + i F_I) \quad \times \quad (\Omega_{xR} + i \Omega_{xI})^T = (V_R + i V_I)$

Spatial Frequencies

Reconstruction: 2D IFT Isomorphism

Rowe, Nencka, Hoffmann: JNSM, 159:361-369, 2007.

Nencka, Hahn, Rowe: JNSM, 181:268-82, 2009.

8 12

19

23

Reconstruction: Processing Image

$$v = O_I \times \Omega_a \times O_k \times f$$

These operators are:

 $\Omega_a = \Omega$ adjusted for ΔB and for T_2^* .

 $O_I = I_2 \otimes S_m \iff$

Image smoothing

Nencka, Hahn, Rowe: JNSM, 181:268-282, 2009.

Induced Correlation: Mean and Covariance If $E(f)=f_0$, then for *Of*, $E(Of)=Of_0$.

If $cov(f) = \Gamma$, then for *Of*, $cov(Of) = O\Gamma O^T$.

This means that with $v = O_I \Omega_a O_k f$. $E(v) = O_I \Omega_a O_k f_0$ $\operatorname{cov}(v) = (O_I \Omega_a O_k) \Gamma(O_k^T \Omega_a^T O_I^T) = \sum_{2p \times 2p} \operatorname{spatial Covariance} \operatorname{cor}(v) = R_{\Sigma} \operatorname{spatial Correlation}$ So even if $\Gamma = \sigma_k^2 I$, it is not necessarily true that $\Sigma = \sigma_I^2 I$!

This has H_0 fMRI noise and fcMRI connectivity implications!

Nencka, Hahn, Rowe: JNSM, 181:268-282, 2009.

13

Induced Correlation: Matrix to Image

Rowe $f(t) = \iint \rho(x, y) e^{-t/T_2^*(x, y)} e^{-i\gamma\Delta B(x, y)t} e^{-i2\pi(k_x x + k_y y)} dxdy$ Induced Correlation: Simulation Parameters $\rho(x, y) \qquad T_2^*(x, y) \qquad \Delta B_\theta(x, y)$

> 0.08 0.07 0.06 0.05

0.04 0.03

).02

H≠I

0.5

16 over scan lines

BW=250 kHz $\Delta t = 4 \ \mu$ s EES=0.96 ms TE=50.0 ms

 $\mathcal{A} \neq I$

Nencka, Hahn, Rowe: JNSM, 181:268-282, 2009.

Induced Correlation: SENSE Multi Coil Combine

$$y = O_{I} P_{u} U P_{S}P_{C} (I_{n} \otimes \Omega_{a}O_{k}) f$$
where
$$O_{I} = (f_{1}, ..., f_{n})' \text{ are coil } k\text{-space}$$

$$O_{k} \text{ is } k\text{-space preprocessing}$$

$$\Omega_{a} \text{ is adj. inverse Fourier matrix} \Omega_{a} = \Omega \qquad \begin{array}{c} \text{adjusted for } \Delta B \\ \text{and for } T_{2}^{*} \end{array}$$

$$U \quad \text{SENSE unfolding matrix}$$

$$O_{I} \text{ is image space preprocessing}$$

$$M = O_{I} = I_{2} \otimes S_{m}$$

Induced Correlation: SENSE Multi Coil Combine Statistical Expectation and Covariance.

If $E(f)=f_0$, then for Mf, $E(Mf)=Mf_0$.

If $cov(f) = \Gamma$, then for Mf, $cov(Mf) = M\Gamma M'$.

This means that with y = Of,

 $E(y) = Of_0 \text{ and } cov(y) = O\Gamma O' = \sum_{2p \times 2p}$ $\Rightarrow cor(v) = D_{\Sigma}^{-1/2} \Sigma D_{\Sigma}^{-1/2}$

So even if $\Gamma = \sigma^2 I$, it is not necessarily true that $\Sigma = \sigma^2 I$! This has H_0 fMRI noise and fcMRI connectivity implications!

Correlations induced about the center voxel.

Induced Correlation: SENSE Multi Coil Combine

 $N_X = 96$ $N_Y = 96$ n = 4 A = 3FWHM=3

Functional connectivity implications

TH=0.01

Nencka, Rowe: In Progress.

Induced Correlation: Extend to Time Series

Nencka, Rowe: In Progress.

Induced Correlation: Extend to Time Series

(dyn ΔB_0 , Δx , Δt , freq filt)

 $y = T \cdot P \cdot IRK \cdot f$

Induced Correlation: Mean and Covariance

If $E(f)=f_0$, then for $E(Of)=Of_0$. If $\operatorname{cov}(f)=\Gamma$, then for $\operatorname{cov}(Of)=O\Gamma O^T$. This means that with $y = \underline{TPIRKf}$. $E(y) = TPIRKf_0$ $\operatorname{cov}(y) = (TPIRK)\Gamma(K^TR^TI^TP^TT^T) = \sum_{2np\times 2np}$ $\operatorname{cor}(y) = R_{\Sigma}$ $\operatorname{Spatio-Temporal Correlation}$

So even if $\Gamma = \sigma_k^2 I$, it is not necessarily true that $\Sigma = \sigma_I^2 I$!

This has H_0 fMRI noise and fcMRI connectivity implications!

O = TPIRK

800×800

Nencka, Rowe: In Progress.

Nencka, Rowe: In Progress.

Nencka, Rowe: In Progress.

Utilizing Induced Correlation:

and the magnitude² covariance is

$$\delta_{j} = tr(\Sigma_{j}) + \mu'_{j}\mu_{j}$$

$$\Lambda_{jj} = 2tr(\Sigma'_{j}\Sigma_{j}) + 4\mu'_{j}\Sigma_{j}\mu_{j} ,$$

$$\Lambda_{jk} = 2tr(\Sigma'_{jk}\Sigma_{jk}) + 4\mu'_{j}\Sigma_{jk}\mu_{k} ,$$

Utilizing Induced Correlation:

Complex-Valued

$$C_{j} = \begin{pmatrix} \cos \theta_{j1} & 0 \\ & \ddots & \\ 0 & \cos \theta_{jn} \end{pmatrix} S_{j} = \begin{pmatrix} \sin \theta_{j1} & 0 \\ & \ddots & \\ 0 & \sin \theta_{jn} \end{pmatrix}$$

$$\begin{pmatrix} y_{jR} \\ y_{jI} \end{pmatrix} = \begin{pmatrix} C_j X \beta_j \\ S_j X \beta_j \end{pmatrix} + \begin{pmatrix} \eta_{jR} \\ \eta_{jI} \end{pmatrix}$$

Compute activation individually for each voxel.

Magnitude-Only (assuming high SNR)

$$m_j = X \beta_j + \varepsilon_j,$$

Compute activation individually for each voxel.

Can form larger spatio-tempporal model.

Nencka, Hahn, Rowe: JNSM, 181:268-282, 2009.

$$\eta_j \sim N(0, \Sigma_j)$$

,

Incorporate Induced Covariance \downarrow $\mathcal{E}_{i} \sim N(0, \Lambda_{i})$

Utilizing Induced Correlation: Complex fMRI The fMRI data is truly complex-valued images and voxel time series, $y_t = y_{Rt} + iy_{It}$. \uparrow given voxel at time t

225-

t=1

 y_{It}

2157

Imaginary

Real

 y_{Rt}

Utilizing Induced Correlation: Magnitude-Only fMRI Complex-valued images to magnitude and phase images and time series, $y_t = m_t \exp[i\varphi_t]$. Polar Coordinates Magnitude-Phase n given voxel at time t Phase discarded! (in nearly all fMRI) $\frac{1}{2}$ of numbers are discarded (and processed) **Biological information** in phase through space! And also through time. t=1Magnitude Phase m. φ_t

MO

PO

MP

Results: Independent

20s off+16×(8 s on 8 s off), 276 TRs 12 axial slices, 96 × 96, FOV = 24 cm TH = 2.5 mm, TR = 1 s, TE = 34.6 ms FA = 45° , BW = 125 kHz, ES = .708 ms

20s off+16×(8 s on 8 s off), 276 TRs 10 axial slices, 96 × 96, FOV = 24 cm TH = 2.5 mm, TR = 1 s, TE = 42.8 ms FA = 45°, BW = 125 kHz, ES = .768 ms

20s off+16×(8 s on 8 s off), 276 TRs 10 axial slices, 96 × 96, FOV = 24 cm, TH = 2.5 mm, TR = 1 s, TE = 42.8 ms FA = 45°, BW = 125 kHz, ES = . 768 ms

20s off+10×(8 s on 8 s off), 180 TRs 9 axial slices, 64×64 , FOV = 24 cm TH = 3.8 mm, TR = 1 s, TE = 26.0 ms FA = 45°, BW = 125 kHz, ES = .680 ms

Rowe: NIMG, 25:1310-1324, 2005. Rowe: MRM, to appear, 2009. Hahn, Nencka, Rowe: NIMG, 742-752, 2009. Hahn, Nencka, Rowe: HBM, Online, 2011.

Discussion:

When DATA ANLYSTS preprocess RESEARCHERS data,

THEY change the mean and covariance structure.

Many preprocessing operations have been shown

to modify or induce a correlation.

WE need to utilize this correlation in OUR analysis model!

Thank You

Acknowledgements:

Marquette University Iain P. Bruce, M.S. M. Muge Karaman, M.S.

Medical College of Wisconsin Andrew S. Nencka, Ph.D Andrew D. Hahn, Ph.D.