Utilizing Induced Voxel Correlation in fMRI Analysis

Daniel B. Rowe, Ph.D.

Joint with Andrew S. Nencka
Associate Professor Computational Sciences Program

Department of Mathematics,
Statistics, and Computer Science

Adjunct Associate Professor
Department of Biophysics

OUTLINE

1. Reconstruction-Preprocessing
2. Induced Correlation
3. Utilizing Induced Correlation
4. Results

5. Discussion

Reconstruction: 1D FT
 $$
(n=256, \Delta t=2 \mathrm{~s})
$$

$3 \sin (2 \pi 8 / 512 t)$

$\sin (2 \pi 4 / 512 t)$

sum

$\cos (2 \pi 32 / 512 t)$

Reconstruction: 1D FT

$$
\left(\bar{\Omega}_{R}+i \bar{\Omega}_{I}\right)
$$

$$
\times\left(y_{R}+i y_{I}\right)=\left(f_{R}+i f_{I}\right)
$$

$$
(n=256, \Delta t=2 \mathrm{~s})
$$

There are lines at the frequency locations. Real part (image) represents constituent cosine frequencies. Imaginary part (image) represents constituent sine frequencies. Intensity of the lines represents amplitude of that frequency.

$$
(\mathrm{FOV}=192 \mathrm{~mm})
$$

Reconstruction: 2D FT
\square
$10 \cos (2 \pi 0 / 96 x)$

$\sin (2 \pi 24 / 96 y)$

$1.5 \cos (2 \pi 8 / 96 x)$

$\cos (2 \pi 4 / 96 x+2 \pi 4 / 96 y)$

sum

$$
(\mathrm{FOV}=192 \mathrm{~mm})
$$

Reconstruction: 2D FT

$$
\left(n_{x}=n_{y}=96, \Delta x=\Delta y=2 \mathrm{~mm}\right)
$$

$\left(\bar{\Omega}_{y R}+i \bar{\Omega}_{y I}\right) \quad \times \quad\left(V_{R}+i V_{I}\right)$
\times
$\times\left(\bar{\Omega}_{x R}+i \bar{\Omega}_{x I}\right)^{T}=\left(F_{R}+i F_{I}\right)$

sum

$$
(\mathrm{FOV}=192 \mathrm{~mm})
$$

$$
\left(n_{x}=n_{y}=96, \Delta x=\Delta y=2 \mathrm{~mm}\right)
$$

$$
\left(\Omega_{y R}+i \Omega_{y I}\right) \times\left(F_{R}+i F_{I}\right) / \times\left(\Omega_{x R}+i \Omega_{x I}\right)^{T}=\left(V_{R}+i V_{I}\right)
$$

$+i$

$+i$

$=$
$+i$

Reconstruction: 2D IFT

$$
\left(\Omega_{y R}+i \Omega_{y l}\right) \times\left(F_{R}+i F_{I}\right) \quad \times\left(\Omega_{x R}+i \Omega_{x l}\right)^{T}=\left(V_{R}+i V_{I}\right)
$$

Spatial Frequencies

Reconstruction: 2D IFT Isomorphism

Reconstruction: Processing Image

$$
v=O_{I} \times
$$

$\Omega_{a} \longleftarrow_{\text {adiusted }}$

$$
\times \overbrace{\substack{\text { } \\ k \text {-space } \\ \text { processing }}} \times
$$

Reconstruction: Processing Image

$$
v=O_{I} \times \Omega_{a} \times O_{k} \times f
$$

These operators are:

$$
\begin{aligned}
& f=P_{C} \mathcal{R} C \mathcal{F}
\end{aligned}
$$

$$
\begin{aligned}
& O_{k}=\mathcal{A} \mathcal{Z} \mathcal{H} \underbrace{P_{\text {row }}^{-1} \Omega_{\text {row }}^{-1} \Phi \Omega_{\text {row }} P_{R}}_{R}
\end{aligned}
$$

$\Omega_{a}=\Omega$ adjusted for ΔB and for T_{2}^{*}.
$O_{I}=I_{2} \otimes S_{m} \longleftarrow$ Image smooting

Rowe

Induced Correlation: Mean and Covariance

If $E(f)=f_{0}$, then for $O f, E(O f)=O f_{0}$.
If $\operatorname{cov}(f)=\Gamma$, then for $O f, \operatorname{cov}(O f)=O \Gamma O^{T}$.
This means that with $v=O_{I} \Omega_{a} O_{k} f$.

$$
E(v)=O_{I} \Omega_{a} O_{k} f_{0}
$$

$\operatorname{cov}(v)=\left(O_{I} \Omega_{a} O_{k}\right) \Gamma\left(O_{k}^{T} \Omega_{a}^{T} O_{I}^{T}\right)=\sum_{2 p \times 2 p} \longleftarrow$ spaital Covaizance
$\operatorname{cor}(\nu)=R_{\Sigma} \longleftarrow$ spailia Conelation
So even if $\Gamma=\sigma_{k}^{2} I$, it is not necessarily true that $\Sigma=\sigma_{I}^{2} I$!
This has $H_{0} \mathrm{fMRI}$ noise and fcMRI connectivity implications!

Induced Correlation: Matrix to Image

Rowe

$$
f(t)=\iint \rho(x, y) e^{-t / T_{2}^{*}(x, y)} e^{-i \gamma \Delta B(x, y) t} e^{-i 2 \pi\left(k_{x} x+k_{y} y\right)} d x d y
$$

Induced Correlation: Simulation Parameters

$\mathcal{A} \neq \mathrm{I}$

$\mathcal{H} \neq \mathrm{I}$
16 over scan lines
$\mathrm{BW}=250 \mathrm{kHz}$
$\Delta t=4 \mu \mathrm{~s}$
EES=0.96 ms
TE=50.0 ms

FWHM=3 pixels

Rowe

Induced Correlation: SENSE Multi Coil Combine

$$
y=\underbrace{O_{I} \quad P_{u}} \quad U P_{S} P_{C} \quad\left(I_{n} \otimes \Omega_{a} O_{k}\right) f
$$

where
k-space vector
O
$f=\left(f_{1}, \ldots, f_{n}\right)^{\prime}$ are coil k-space
O_{k} is k-space preprocessing

$$
O_{k}=\mathcal{A} \mathcal{Z} \mathcal{H} \underbrace{P_{R}^{-1} \Omega_{\text {row }}^{-1} \Phi \Omega_{\text {row }} P_{R}}
$$

Ω_{a} is adj. inverse Fourier matrix $\Omega_{a}=\Omega \begin{aligned} & \text { adjusted for } \\ & \text { and for } T_{2}^{*}\end{aligned}$
P_{u}, P_{s}, P_{c}, permutation matrices
$O_{I}=I_{2} \otimes S_{m}$
U SENSE unfolding matrix
Image smoothing
O_{I} is image space preprocessing

Rowe

Induced Correlation: SENSE Multi Coil Combine

 Statistical Expectation and Covariance.If $E(f)=f_{0}$, then for $M f, E(M f)=M f_{0}$.
If $\operatorname{cov}(f)=\Gamma$, then for $M f, \operatorname{cov}(M f)=M \Gamma M^{\prime}$.
This means that with $y=O f$,

$$
\begin{aligned}
& E(y)=O f_{0} \quad \text { and } \quad \operatorname{cov}(y)=O \Gamma O^{\prime}=\Sigma_{2, v \Sigma \nu} \\
& \rightarrow \operatorname{cor}(v)=D_{\Sigma}^{-1 / 2} \Sigma D_{\Sigma}^{-1 / 2}
\end{aligned}
$$

So even if $\Gamma=\sigma^{2} I$, it is not necessarily true that $\Sigma=\sigma^{2} I$!
This has $H_{0} \mathrm{fMRI}$ noise and fcMRI connectivity implications!

Induced Correlation: SENSE Multi Coil Combine

Functional connectivity implications

Induced Correlation: Extend to Time Series
Reconstruction of n images described as:

Induced Correlation: Extend to Time Series

imaginary

Rowe

Induced Correlation: Extend to Time Series

$$
\begin{aligned}
& \text { (dyn } \Delta \mathrm{B}_{0}, \Delta x, \Delta t \text {, freq filt) } \\
& y=T \cdot P \cdot I R K \cdot f \\
& \text { voxel } 1 \text { temporal processing }
\end{aligned}
$$

Rowe

Induced Correlation: Mean and Covariance

If $E(f)=f_{0}$, then for $E(O f)=O f_{0}$.
If $\operatorname{cov}(f)=\Gamma$, then for $\operatorname{cov}(O f)=O Г O^{T}$.
This means that with $y=T P I R K f$.
$E(y)=T P I R K f_{0}$
O
Spatio-Temporal Covariance
HUGE
$\operatorname{cov}(y)=(T P I R K) \Gamma\left(K^{T} R^{T} I^{T} P^{T} T^{T}\right)=\Sigma$
$2 n p \times 2 n p$
$\operatorname{Cor}(\mathcal{Y})=R_{\Sigma} \longleftarrow$ Spatio-Temporal Correlation
So even if $\Gamma=\sigma_{k}^{2} I$, it is not necessarily true that $\Sigma=\sigma_{I}^{2} I$!
This has $H_{0} \mathrm{fMRI}$ noise and fcMRI connectivity implications!

$$
O=T P I R K
$$

Induced Correlation: Example 5×5 image 8 TRs 2 slices

No Operations T_{2} * Decay

Apodization, \mathcal{A}

Timing Correction Temporal Filtering All Operations

$$
\sum_{800 \times 800}=O O^{T} \rightarrow R_{800 \times 800}
$$

ΔB_{n} Error
Temporal Fliering Timing Correction Motion Correction All Operations

Rowe

$$
\sum_{100 \times 100}=O I O^{T} \rightarrow R_{\substack{100 \times 100}}
$$

Induced Correlation: Example 5×5 image 8 TRs 2 slices

No Operations
Apodization, \mathcal{A}
ΔB_{0} Error

T,* Decay
Temporal Filtering Timing Correction Motion Correction A

Rowe

$$
\underset{16 \times 16}{ }=O I O^{T} \rightarrow \underset{16 \times 16}{R_{T}}
$$

Induced Correlation: Example 5×5 image 8 TRs 2 slices
No Operations
$\mathrm{T}_{2} *$ Decay Apodization, \mathcal{A}
$\Delta \mathrm{B}_{0}$ Error

Rowe

Utilizing Induced Correlation:

Since for all voxels $\underset{2 m p \times 2 m p}{ }=\left(\begin{array}{c|cc}\Sigma_{1} & & \Sigma_{j k} \\ & \ddots & \\ \Sigma_{j k}^{\prime} & & \Sigma_{p}\end{array}\right) \Rightarrow \Sigma_{j}=\left(\begin{array}{cc}\Sigma_{j R} & \Sigma_{j R I} \\ \Sigma_{j R I}^{\prime} & \Sigma_{j I}\end{array}\right)$
and the magnitude ${ }^{2}$ covariance is

$$
\begin{array}{rlll}
\delta_{j} & = & \operatorname{tr}\left(\Sigma_{j}\right)+\mu_{j}^{\prime} \mu_{j} \\
\Lambda_{j j} & = & 2 \operatorname{tr}\left(\Sigma_{j}^{\prime} \Sigma_{j}\right)+4 \mu_{j}^{\prime} \Sigma_{j} \mu_{j} \\
\Lambda_{j k} & = & 2 \operatorname{tr}\left(\Sigma_{j k}^{\prime} \Sigma_{j k}\right)+4 \mu_{j}^{\prime} \Sigma_{j k} \mu_{k}
\end{array},
$$

Rowe

Utilizing Induced Correlation:

Complex-Valued

$$
C_{j}=\left(\begin{array}{ccc}
\cos \theta_{j 1} & & 0 \\
& \ddots & \\
0 & & \cos \theta_{j n}
\end{array}\right) S_{j}=\left(\begin{array}{ccc}
\sin \theta_{j 1} & & 0 \\
& \ddots & \\
0 & & \sin \theta_{j n}
\end{array}\right)
$$

$\binom{y_{j R}}{y_{j I}}=\binom{C_{j} X \beta_{j}}{S_{j} X \beta_{j}}+\binom{\eta_{j R}}{\eta_{j I}}$

$$
\eta_{j} \sim N(0,{\underset{\uparrow}{j}})
$$

Compute activation individually for each voxel.
Magnitude-Only (assuming high SNR)

$$
m_{j}=X \beta_{j}+\varepsilon_{j}
$$

Incorporate Induced Covariance

$$
\varepsilon_{j} \sim N\left(0, \Lambda_{j}\right)
$$

Can form larger spatio-tempporal model.

Utilizing Induced Correlation: Complex fMRI

The fMRI data is truly complex-valued images and voxel time series, $y_{t}=y_{R t}+i y_{I t}$.

Utilizing Induced Correlation: Magnitude-Only fMRI

Complex-valued images to magnitude and phase images and time series, $y_{t}=m_{t} \exp \left[i \varphi_{t}\right]$.

Polar Coordinates Magnitude-Phase

Phase discarded!
(in nearly all fMRI)

$1 / 2$ of numbers

are discarded
(and processed)
Biological information
in phase through space!
And also through time.

Utilizing Induced Correlation: Magnitude-Only fMRI

Complex-valued images to magnitude and phase images and
time series, $y_{t}=m_{t} \exp \left[i \varphi_{t}\right]$.

Magnitude-Only
m_{t}

Biological information
in phase through space!
And also through time.

Results: Independent

20s off $+16 \times$ (8 s on 8 s off), 276 TRs 12 axial slices, $96 \times 96, F O V=24 \mathrm{~cm}$ $\mathrm{TH}=2.5 \mathrm{~mm}, \mathrm{TR}=1 \mathrm{~s}, \mathrm{TE}=34.6 \mathrm{~ms}$ $\mathrm{FA}=45^{\circ}, \mathrm{BW}=125 \mathrm{kHz}, \mathrm{ES}=.708 \mathrm{~ms}$

20s off $+16 \times(8 \mathrm{~s}$ on 8 s off), 276 TRs 10 axial slices, $96 \times 96, F O V=24 \mathrm{~cm}$ $\mathrm{TH}=2.5 \mathrm{~mm}, \mathrm{TR}=1 \mathrm{~s}, \mathrm{TE}=42.8 \mathrm{~ms}$ $F A=45^{\circ}, B W=125 \mathrm{kHz}, E S=.768 \mathrm{~ms}$

20s off $+16 \times(8 \mathrm{~s}$ on 8 s off), 276 TRs 10 axial slices, 96×96, FOV $=24 \mathrm{~cm}$, $\mathrm{TH}=2.5 \mathrm{~mm}, \mathrm{TR}=1 \mathrm{~s}, \mathrm{TE}=42.8 \mathrm{~ms}$ $F A=45^{\circ}, B W=125 \mathrm{kHz}, E S=.768 \mathrm{~ms}$

20s off $+10 \times$ (8 s on 8 s off), 180 TRs 9 axial slices, 64×64, FOV $=24 \mathrm{~cm}$ $\mathrm{TH}=3.8 \mathrm{~mm}, \mathrm{TR}=1 \mathrm{~s}, \mathrm{TE}=26.0 \mathrm{~ms}$ $\mathrm{FA}=45^{\circ}, \mathrm{BW}=125 \mathrm{kHz}, \mathrm{ES}=.680 \mathrm{~ms}$

Discussion:

When DATA ANLYSTS preprocess RESEARCHERS data,
THEY change the mean and covariance structure.
Many preprocessing operations have been shown
to modify or induce a correlation.
WE need to utilize this correlation in OUR analysis model!

Thank You

Acknowledgements:

Marquette University
lain P. Bruce, M.S.
M. Muge Karaman, M.S.

Medical College of Wisconsin
Andrew S. Nencka, Ph.D
Andrew D. Hahn, Ph.D.

