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Motivation

Want to increase image contrast by thresholding noise voxels.
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Motivation

To get an image like this one.
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Background

In MRI, measurements and images are complex-valued.

Thermal noise manifests as IID N(0,σ2) noise in the real and 

imaginary parts of the k-space measurements 
(Henkelman, 1985; Bernstein, 1989; Macovski, 1996). 

A linear relationship exists between complex-valued k-space 

measurement and complex-valued voxel measurements 

(Rowe, Nencka, & Hoffmann, 2007). 

From the above, the voxel measurements are also normally 

distributed (Henkelman, 1984; Bernstein, 1989).  
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Voxel measurements can be described as                                                                                       

[1]

yR and yI are measurements for the real and imaginary parts

εR and εI are error terms for the real and imaginary parts

ρ and θ are the population magnitude and phase. 

Objective is to separate voxels that are pure noise from those 

that contain signal and noise using both magnitude and phase 

(Pandia, Ciulla, & Haacke, 2008).  
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PDF of the voxel’s real and imaginary observation (yR,yI) is

[2]

PDF of the voxel’s magnitude and phase observation (m,φ) is

[3]

We would like to determine if the observed magnitude and 

phase in a voxel are signal or if they are noise. 
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Methods

Voxel measurements (m1,φ1),…,(mn,φn)  yield the likelihood

.     [4]

A formal statistic can be derived and a statistical hypothesis 

test performed on the population magnitude and phase.

H0: ρ=0, θ=0, σ2>0

vs.

H1: ρ>0, θ≠0, σ2>0

JSM 2008                                                                                                                   Rowe, MCW

 2 2

2
11

2 2

1
( , , ) 2 exp

2

2 cos( )

n n
n

i i

ii

i i i i

L m Q

Q m m

   


   





   
   

  

     



 H0 True H0 False 

Reject H0 Type I 

Error 

(α) 

Correct 

Decision 

(1- α) 

Do Not 

Reject H0 

Correct 

Decision 

(1-β) 

Type II 

Error 

(β) 

Table 1: Four outcomes from a hypothesis test. 

 



Under constrained H0: ρ=0, θ=0, σ2>0 the MLEs are

[5]

Under unconstrained H1: ρ>0, θ≠0, σ2>0 the MLEs are

[6]

and      are the means of the reals and imaginaries. 
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Insert estimates back into the likelihoods and take the ratio.

[7]

λ is asymptotically χ2 distributed with df=2 in this case.

Algebra can be performed, F = 1-λ1/n, to arrive at

[8]

The probability distribution of this statistic needs to be found. 
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The steps through the logic for the derivation of the distribution 

for the numerator and the denominator of the F statistic are 

shown below under H0.

Numerator χ2 Term                          Denominator χ2 Term
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Since the numerator x1 ~ χ2 (2) and denominator x2 ~ χ2 (2n) 

should  be F distributed under H0 with 2 and 2n df!

However, this is not true in this case!

These two χ2 statistics must be independent for this to be true.

The correlation between these two statistics can be derived. 
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Since these are χ2 distributed: E(x1)=2, E(x2)=2n, 

var(x1)=4, var(x2)=4n, cov(x1, x2)=E(x1·x2)-E(x1)E(x2)

[9]

The correlation between x1 and x2 is 1/√n .
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This correlation tends to zero in large samples and the F

statistic becomes F distributed. F critical values can be used.

However, critical values for small n can be achieved by way of 

Monte Carlo simulation. 

For a given level of significance (Type I error rate α), we 

reject H0 (do not threshold voxel) if the test statistic F is larger 

than the critical value Fα(2,2n) and 

do not reject (threshold voxel) if F is smaller than the critical 

value  Fα(2,2n). 
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To examine the convergence, 106 simulated data sets created 

under H0 (ρ=0 and θ=0) for n=5, 10, 25, 50, 100, and 250. 

IID N(0, σ2=1) variates generated for reals and imaginaries.

Regardless of the sample size n, x1 and x2 are χ2 distributed.

The correlation between the numerator and denominator χ2

statistics is 1/√n. 

For each sample size n, the F statistic was computed for each 

of the data sets. 

CDFs are made for each sample size and compared to F CDF.
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Figure 1: CDF from Monte Carlo simulation (dashed) and F distribution (solid)

for n =5 (red), 10 (orange), 25 (yellow), 50 (green), 100 (blue), 250 (violet).

Note disparity 

between the MC and 

the asymptotic F CDF.

It takes a large n for 

disparity to decrease.

Therefore for small n, 

MC critical values 

need to be used.

5
10

50

100

250

5
10

250

25 25

100

50



Will be using the test statistic denoted by F for n=5. 

The Type I error rate was examined in Figure 1 for n=5.

To examine the Type II error rate, generated 106 data sets for 

n=5 under H1 (ρ≠0 and θ≠0) with ρ=(0,1,2,3,5) & θ=0°. 

IID N(0,σ2=1) variates generated for reals and imaginaries.

Histograms for the106 data sets when ρ=0 and ρ=2. 
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α =.05  

critical value

H0 ρ=0 true

Figure 2: Histogram when H0 is true and when H1 is true. 

H1 ρ=2 true

F
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Figure 3: ROC curves from Monte Carlo simulation for ρ=(0,1,2,3,5) and θ=0°.

Slide vertical line L-R. 

Find β for given α. 

Plot of α vs. β called 

ROC curve (Haacke et 

al., 1999). 

Curve for each (ρ,θ) 

combination.



For more accurate CVs in the upper tail of F statistic 5×107

data sets were generated under H0, F statistic computed for 

each set and a histogram of these F statistics made. 
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Figure 4: Histogram of F statistic for 5×107 data sets under H0 for critical values.

n=5



F statistics were ordered and percentiles determined. 

For example, the .95×(5×107)th largest value is 95th percentile.

Critical values will be used for thresholding the magnitude and 

phase of voxels. 

Additional critical values can reliably be interpolated.
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  n=5 

α .05 .01 .01 .001 .0001 .00001 .05/256/256 .05/512/384 .05/512/512 

  Fα 2.6355 3.4189 4.1104 4.4992 4.7162 4.8445 4.8617 4.8858 4.8874 

n=9 

α .05 .01 .001 .0001 .00001 .00001 .05/256/256 .05/512/384 .05/512/512 

  Fα 2.8102 3.9377 5.1991 6.1512 6.8678 7.3911 7.5627 7.7051 7.7575 

Table 2: Critical F statistic values for n=5 and n=9. 

 



We would like to have n repeated images. 

Have high-resolution anatomical images where replicates are 

rarely available. 

Use observed r and φ values in each voxel with 4 neighbors 

(n=5) to estimate each voxel’s ρ and θ then compute F statistic. 

Minor local F statistics correlation does not affect global image 

threshold as previous reports suggest (Logan & Rowe, 2004).

F statistic map is thresholded with the critical values in Table 2.

A 0/1 mask from thresholded F map applied to r and φ images.
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Results

Data: 

Susceptibility weighted imaging (SWI) (Haacke et al., 2004)

MRI data is used to test the noise removal procedure in 

magnitude and phase. 

SWI leg data was collected on a 3T Siemens Trio: 

in-plane resolution of 512 x 384 (0.5 x 0.5 mm2), 

TR/TE= 20/10 msec, 

flip angle (FA) = 15o, 

FOV = 256 mm x 192 mm 

(Haacke et al., 1999).
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Figure 5a: Observed Magnitudes Figure 5b: Observed Phases

Images were cropped to show vertical voxels 160 to 360 of 512 

and horizontal voxels 100 to 350 of 384
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Recall Ho simulation

Ho voxels

H1 voxels

Figure 5c: Computed F’s

Figure 5d: Histogram of Computed F’s
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Figure 6a: Thresholded Observed  

Magnitudes.

Figure 6b: Thresholded Observed 

Phases.

α=0.05 or Fcrit = 2.6355
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Figure 7a: Thresholded Observed  

Magnitudes.

Figure 7b: Thresholded Observed 

Phases.

α=0.0001 or Fcrit = 4.7162
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Figure 8a: Thresholded Observed  

Magnitudes.

Figure 8b: Thresholded Observed 

Phases.

α= .05/512/384 or Fcrit = 4.8858



Discussion

A magnitude and phase statistical thresholding procedure 

based upon a likelihood ratio test was presented. 

It was shown through Monte Carlo simulation that that this 

method operates according to its theoretical statistical 

properties in terms of both false positives and false negatives.

This thresholding method was successfully applied to real 

human SWI data and shown to increase image contrast. 
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