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ABSTRACT OF THE DISSERTATION

Correlated Bayesian Factor Analysis

by

Daniel Bryant Rowe

Doctor of Philosophy, Graduate program in Applied Statistics

University of California, Riverside, December 1998

Professor, S. James Press, Chairman

Factor analysis is a method in multivariate statistical analysis that can help

scientists determine which variables to study in a field and their relationships. We

extend the Bayesian approach to factor analysis developed in 1989 by Press and

Shigemasu (henceforth PS89) and revised in 1997 to model correlated observation

vectors, factor score vectors, and factor loadings. Further, we place a prior distri-

bution on the number of factors and obtain posterior estimates.

Hitherto, factor analysis has only considered independent observation vectors.

Quite often as evidenced by the large literature in time series and multivariate

analysis, observation vectors are correlated. If correlation across observation vectors

exists and this correlation is not taken into account, then the covariance matrix that

is factor analyzed is improperly estimated.

Due to the number of parameters, a multivariate rejection sampling technique,

and the computation involved for carrying out Gibbs sampling, we consider some

covariance/correlation simplifications.
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In appendices, we outline parameter estimation methods, hyperparameter as-

sessment, correlation structure determination, and development for a general un-

known mean for the observations with a prior distribution placed on it and estimated

a posteriori with the other parameters.

Throughout, we will assume natural conjugate prior distributions for the un-

known but fixed parameters, their posterior distribution will be formed, conditional

posterior distributions will be found, and marginal posterior estimators will be cal-

culated using Gibbs sampling.

The advantage of this extension and the Press and Shigemasu Bayesian ap-

proach to factor analysis is that they allow prior information that is available to

formally be brought to bear, and at the same time, by incorporating proper prior

information eliminate the indeterminencies or identification-of-parameters problem

of classical factor analysis. There is no need for rotation of the factor loadings, the

factor loadings are automatically found.

In the simulation example where the observations were correlated, we found

that the correlated Bayesian factor analysis model determined the number of fac-

tors correctly and with a single parameter ρ performed better in estimating the

parameters as evidenced by several performance measures.

In an example involving plankton, we found five underlying factors. The

factors correspond to the four climate zones Tropical, Subtropical, Polar, Subpolar,

and the Gyre margin assemblege region which is what the original authors found in

their factor analysis.
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1 Introduction and Methodology

1.1 Introduction

In a discipline, scientists are attempting to discover the relationships among

variables. Knowledge in a discipline proceeds by determining which variables are

related and to what extent. Factor analysis is a method in multivariate statistical

analysis that can help determine which variables to study and their relationships. It

uses the correlations or covariances between a set of observed variables to describe

them in terms of a smaller set of unobservables. Factor analysis takes advantage

of the relationships or correlation pattern within a set of vector valued observable

random variables in order to describe them in terms of another set of vector valued

unobservable or latent random variables called factors that are of lower dimension.

There are two main reasons why one would perform a factor analysis. The

first is to explain the observed relationship among a set of observed variables in

terms of a smaller number of hypothetical variables or latent factors which underlie

the observations. This smaller number of variables can be used to find a meaningful

structure in the observed variables. This structure will aid in the interpretation and

explanation of the process that the has generated the observations.

The second reason one would carry out a factor analysis is for data reduction.

Since we represent our observed variables in terms of a smaller number of unobserved

or latent variables we reduce or minimize the number of variables in our analysis and

hence reduce storage requirements. By having a smaller number of factors (vectors of

smaller dimension) to work with that capture the essence of the observed variables,

we only are required to store this smaller number of factors. We can also use the
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smaller number of factors for further analysis to reduce computational requirements.

Since factor analysis is a method that takes advantage of relationships among

variables, we should model and take advantage of all possible relationships. Fac-

tor analysis has hitherto only taken advantage of the within observation vector

relationships. We will take advantage of the possible between observation vector re-

lationships as well by modeling a full covariance matrix for the observation vectors.

We will also take advantage of the possible relationships between the unobservable

factors by modeling a full covariance matrix for the factor vectors.

1.2 The Need for Correlation

The factor analysis model is based on the covariance matrix within the ob-

servation vectors. Previously, factor analysis models have assumed independence

among the observation vectors. The observation vectors are often correlated as

evidenced by the large literature in time series and multivariate analysis. If this cor-

relation is not taken into account, then estimates of factor structure are relatively

inefficient.

1.3 The Need for the Bayesian Approach

The use of the Bayesian approach to factor analysis bears directly on the

problem of inestimability of parameters. In the classical factor analysis model,

the parameters are inherently indeterminate. The parameters cannot be uniquely

determined from the likelihood alone. When differentiating the log likelihood with

respect to the unknown parameters and setting the resulting equations to zero, the
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system of equations for the parameters is not uniquely solvable in terms of the

observations.

Early factor analysis methods as we will see, imposed constraints on the pa-

rameters in order to obtain determinate estimates within an orthogonal rotation. In

PS89 the authors showed that these constraints are not necessary with the Bayesian

model. Bayesian methods with the incorporation of available proper prior informa-

tion eliminates the problem of indeterminacies.

When we attempt to account for correlation across the observation vectors,

many new parameters are introduced and the the problem of indeterminacies is

greatly increased. To remedy this, we use proper prior information and take advan-

tage of simplifications of the covariance structures to reduce the number of distinct

covariance terms.
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2 Literature Review

This section is a review of the factor analysis model and some methods for

estimating its parameters.

2.1 Factor Analysis Model

To explicate the factor analysis model we adopt a context in which each of

many subjects is asked a battery of questions. Let xi denote the p-vector of responses

of subject i to p questions; i = 1, . . . , N .

The model is

(xi|µ,Λ, fi,m) = µ + Λ fi + εi ,
(p× 1) (p× 1) (p×m) (m× 1) (p× 1)

(2.1.1)

where

µ = a p-dimensional unobserved population mean vector,

Λ = the p × m matrix of unobserved constants called the factor loading matrix

Λ = (λ′1, . . . , λ
′
p)
′,

fi = an m-dimensional vector of unobservable “common” factor scores for the ith

subject, and

εi = a p-dimensional vector of “specific” errors or disturbance terms of the ith

subject, on the p variables.
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Let xi ≡ (xji), j = 1, . . . , p; µ ≡ (µj), j = 1, . . . , p; εi ≡ (εji), j = 1, . . . , p;

and fi ≡ (fki), k = 1, . . . ,m.

The model partitions or separates the observed score xji into a population

mean µj, a “common” (to several questions) part fi, and “specific” (to the questions)

part εji.

(xji|µi, λj, fi,m) = µj + λ′j fi + εji (2.1.2)

assuming that var(εi) is diagonal.

The factor analysis model is used when we wish to identify the number and

the nature of the underlying factors responsible for covariation in the observables.

This is also when the score of an individual is more related to his own scores than

to the scores of other individuals. We wish to determine if there is an underlying set

of m unobservable variables that describe the relationship between the p observable

variables, where m < p.

We now consider the interpretation of the factor loading matrix. The covari-

ance between the observations and the factor scores is

cov(xi, fi) = E(xif
′
i)− E(xi)E(f ′i)

= E(µ+ Λfi)f
′
i

= E(Λfif
′
i)

= ΛE(fif
′
i)

5



= ΛR (2.1.3)

Under the orthogonal factor model, R = Im, and the factor loading matrix Λ

is interpreted as a matrix of covariances (correlations) between the p observed scores

and the m unobserved factors. The element in the jth row and the kth column is

the covariance (correlation) between the jth question and the kth factor score. Thus

a large element of Λ imply a strong relationship between the the corresponding

question and factor score.

There are certain model assumptions that will be presented later that detail

the rest of the model.

We can also write the model for all the observations in terms of matrices just

as in regression. If we join the observation vectors into a matrix, then we can write

the model as

(X|µ,Λ, F,m) = e⊗ µ′ + F Λ′ + E ,
(N × p) (N × p) (N ×m) (m× p) (N × p) (2.1.4)

where

X = an N × p matrix of observed responses, X ′ ≡ (x1, . . . , xN),

e = an N dimensional unit vector,

µ = a p-dimensional population mean vector,

F = an N ×m matrix of unobserved “common” factor scores, F ′ = (f1, . . . , fN),

Λ = a p×m matrix of unknown constants called the factor loadings,

E = an N × p matrix of “specific” errors or disturbance terms, E = (ε1, . . . , εN),

and
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⊗ denotes the direct or Kroneker product.

If we stack the observation vectors into a single vector which is Np× 1 then,

we can write the model as

(x|µ,Λ, f,m) = e⊗ µ + (IN ⊗ Λ) f + ε ,
(Np× 1) (Np× 1) (Np×Nm) (Nm× 1) (Np× 1)

(2.1.5)

where

x = an Np-dimensional vector of observed responses, x ≡ (x′1, . . . , x
′
N)′,

e = an N dimensional unit vector,

f = anNm-dimensional unobserved “common” factor score vector, f = (f ′1, . . . , f
′
N)′,

and

ε = an Np-dimensional “specific” error vector, ε = (ε′1, . . . , ε
′
N)′.

We will use all three representations of the model in equations 2.1.1, 2.1.4,

and 2.1.5.

There have been many approaches to estimating the values of µ, Λ, and the

fi’s. Early statistical factor analysis included maximum likelihood factor analysis

(Lawley, 1940). In Lawley’s model, the errors and the scores are assumed to be

independent and normally distributed. The joint distribution of the scores and the

observations is integrated with respect to the scores. Then maximum likelihood es-

timates are obtained for the loadings and the error covariance matrix. More recently

the EM algorithm for maximum likelihood factor analysis (Rubin and Thayer, 1982)

has been used. Again, independent normal distributions are assumed for the errors
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and factor scores. The scores are estimated in an E-step then the loadings and

disturbance error variances are estimated in an M-step. These two methods lead us

into the most recent methods.

Recently, Bayesian factor analysis methods have emerged (see Press & Shige-

masu, 1989/1997; Lee, 1994; Lee, & Press, 1998; Hayashi, 1997; and Rowe & Press,

1998;) in which proper natural conjugate prior distributions are assessed for the

unknown parameters Λ, the fi’s, and the covariance matrix Ψ. Bayesian posterior

estimates are then obtained. These Bayesian methods are conditional on the num-

ber of factors. There has also been work (Press and Shigemasu, 1994) in Bayesian

factor analysis in which the number of factors is an additional unknown parameter,

a prior distribution is assessed for it, and a Bayesian marginal posterior estimate is

obtained.

We will review the methods of maximum likelihood, EM, Press & Shigemasu

1989 (PS89), and Rowe & Press 1998 before presenting the new work developed in

this dissertation. We will also include in an appendix a simple extension of PS89

and RP98 that places a prior distribution on a general observation mean.
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2.2 Maximum Likelihood Factor Analysis

This is a review of the maximum likelihood factor analysis model (Lawley,

1940). We assume that the “specific” errors of the observations and the “common”

factor scores are independent and normally distributed, then marginalize with re-

spect to the scores, and maximize the resulting likelihood with respect to the load-

ings and the error or disturbance covariance matrix. We will make the following

model assumptions.

Assumptions of the Model

For i = 1, . . . , N :

(a) εi ∼ N(0,Ψ), where Ψ ≡ diag(ψ1, . . . , ψp) and ψj > 0, j = 1, . . . , p;

(b) (fi|m) ∼ N(0, R), m ≤ p, and R usually taken to be Im;

(c) εi and fi are independent.

From (a)–(c) above, we see that the observations given the mean, the factor

loadings, and the factor scores is normally distributed as expressed by

(xi|µ,Λ, fi,m) ∼ N(µ+ Λfi,Ψ),

the factor scores given their correlation matrix is normally distributed

(fi|R,m) ∼ N(0, R),

and the joint distribution of the factor scores with the observations is

p(fi, xi|µ,Λ, R,Ψ,m) ∝ e−
1
2

(fi−f̂i)′(R−1+Λ′Ψ−1Λ)−1(fi−f̂i)e−
1
2

(xi−µ)′(Ψ+ΛRΛ′)−1(xi−µ)

9



where

f̂i = (R−1 + Λ′Ψ−1Λ)−1Λ′Ψ−1(xi − µ).

In this method, we find the marginal density of the data to be

p(xi|µ,Λ, R,Ψ,m) =
∫
p(fi, xi|µ,Λ, R,Ψ) dfi

= (2π)−
p
2 |ΛRΛ′ + Ψ|−

1
2 e−

1
2

(xi−µ)′(ΛRΛ′+Ψ)−1(xi−µ)

For convenience, we will define the covariance matrix of this distribution to

be Σ thus, Σ = (ΛRΛ′ + Ψ) and the distribution of (xi|µ,Λ, R,Ψ,m) is

p(xi|µ,Λ, R,Ψ,m) = (2π)−
p
2 |Σ|−

1
2 e−

1
2

(xi−µ)′Σ−1(xi−µ).

That is, (xi|µ,Λ, R,Ψ,m) is normally distributed with mean µ and variance-

covariance matrix Σ = (ΛRΛ′ + Ψ). For simplicity, we will assume the orthogonal

factor model in which R = Im.

The likelihood function L of the observations is

L = p(x1, . . . , xN |µ,Λ,Ψ,m)

= (2π)−
Np
2 |Σ|−

N
2 e−

1
2

∑N

i=1
(xi−µ)′Σ−1(xi−µ)

= (2π)−
Np
2 |Σ|−

N
2 e−

1
2
trSΣ−1

(2.2.1)
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where

S =
1

N

N∑
i=1

(xi − µ)(xi − µ)′.

Maximizing the above likelihood with respect to µ yields µ̂ = x̄. We center

the variables about x̄ so that the variables will have a mean of zero. This eliminates

the need for a mean µ in the model.

As we stated earlier, in order to avoid indeterminacies, we must add the side

condition that Γ = Λ′Ψ−1Λ be a diagonal matrix. That is, without this condition,

there will be an infinite number of solutions each related to the other by an orthog-

onal rotation (see Press 1982, p.339). Neglecting the terms that do not include Σ,

the log likelihood is

LL = −N
2

(
log|Σ|+ trSΣ−1

)
.

but maximizing LL with respect to Λ and Ψ is equivalent to minimizing

LL∗ = − 2

N
LL∗ − log|S| − p

= trSΣ−1 + log|SΣ−1| − p.

Upon differentiating LL∗ with respect to Λ and Ψ, setting the result equal to

a zero matrix, and applying some algebra we arrive at

(S − Σ̂)Σ̂−1Λ̂ = 0 (2.2.2)
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and

Ψ̂ = diag(S − Λ̂Λ̂′). (2.2.3)

The above equations yield unique maximum likelihood estimators with the

imposed side condition but there is not a closed form analytic solution; thus, they

must be solved numerically.

To estimate the factor loadings, we can calculate the conditional distribution

p(fi|xi,Λ,Ψ,m) ∝ e−
1
2

(fi−f̂i)′(Im+Λ′Ψ−1Λ)(fi−f̂i)

where

f̂i = (Im + Λ′Ψ−1Λ)−1Λ′Ψ−1xi

and estimate the scores by f̂i conditional on the observations, the loadings, and the

error covariance matrix.
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2.3 EM Maximum Likelihood Factor Analysis

The assumptions of EM maximum likelihood (Rubin and Thayer, 1982) are the

same as those for maximum likelihood estimation in the previous section. The EM

algorithm is simply a convenient method of obtaining maximum likelihood estimates.

The algorithm consists of an E-step finding the expected value of the log likelihood

for the scores F given the observed data X, then an M-step maximizing the expected

log likelihood found in the E-step. This requires finding the expected value of the

sufficient statistics

Cxx =
N∑
i=1

xix
′
i

N
,

Cxf =
N∑
i=1

xif
′
i

N
,

Cff =
N∑
i=1

fif
′
i

N

over F given X. The conditional mean of the scores is

E(fi|xi,Ψ,Λ, R,m) = δxi

and the conditional covariance matrix of the scores is

V ar(fi|xi,Ψ,Λ, R,m) = ∆.

where

13



δ = (R−1 + Λ′Ψ−1Λ)−1Λ′Ψ−1,

∆ = (R−1 + Λ′Ψ−1Λ)−1. (2.3.1)

The conditional expectations of the sufficient statistics are

E(Cxx|X,Ψ,Λ, R,m) = Cxx,

E(Cxf |X,Ψ,Λ, R,m) = Cxxδ,

E(Cff |X,Ψ,Λ, R,m) = δCxxδ
′ + ∆.

Upon maximizing the expected log likelihood found in the E-step we get

Λ = (F ′F )−1F ′X

Ψ = diag

{
(X − FΛ′)′(X − FΛ′)

N

}
,

R =
F ′F

N
, (2.3.2)

if R is not taken to be the identity matrix.

We then start with initial values and cycle between (2.3.1) and (2.3.2) to

obtain maximum likelihood estimates.
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2.4 Bayesian Factor Analysis

The development of Bayesian factor analysis has been recent and brief. The

Press and Shigemasu model is so far the best and most recent (see Lee, 1994 &

Hyashi, 1997). Here is a description of the Bayesian factor analysis model of Press

and Shigemasu, 1989 (PS89). In section 2.5 we will present the conditional modal

estimation procedure of PS89, in section 2.6 we will present the LSO and Gibbs

estimation procedures of RP98, and in an appendix we will present an extended

Bayesian factor analysis model (EPS89 and ERP98) that places a prior distribution

on the general mean µ.

We will write the factor analysis model in the vector representation of equation

(2.1.5).

In PS89 an orthogonal model is assumed so R = Im. Again, the model is

(x|µ,Λ, f,m) = e⊗ µ + (IN ⊗ Λ) f + ε .
(Np× 1) (Np× 1) (Np×Nm) (Nm× 1) (Np× 1)

(2.4.1)

where the variables are as defined before.

The estimate of the mean µ will be the mean of the observations x̄ so to

simplify things, PS89 assume that the observations have been centered about their

sample mean resulting in a new mean of zero.

After the observations are centered about the sample mean the model becomes
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(x|Λ, f,m) = (IN ⊗ Λ) f + ε .
(Np× 1) (Np×Nm) (Nm× 1) (Np× 1)

(2.4.2)

Likelihood

To obtain the likelihood for the PS89 model it is assumed that

(1) εi ∼ N(0,Ψ),

where Ψ > 0 and E(Ψ) is diagonal to represent traditional beliefs of the model

containing “common” and “specific” factors. This is analogous to assumption (a)

of the maximum likelihood model but differs because here the assumption is that Ψ

is a full positive definite matrix diagonal on average, not strictly a diagonal matrix.

Writing ε = (ε′1, . . . , ε
′
N)′ we find that

ε ∼ N(0, IN ⊗Ψ)

and thus the distribution of the observations is

[(x|f,Λ,Ψ,m)− (IN ⊗ Λ)f ] ∼ N(0, IN ⊗Ψ)

which gives the likelihood for the observations as

p(x|f,Λ,Ψ,m) ∝ |IN ⊗Ψ|−
1
2 e−

1
2

[x−(IN⊗Λ)f ]′(IN⊗Ψ)−1[x−(IN⊗Λ)f ] (2.4.3)

where Ψ > 0 but diagonal on average. This likelihood for the observations can be

written as the following matrix normal distribution
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p(X|F,Λ,Ψ,m) ∝ |Ψ|−
N
2 e−

1
2
trΨ−1(X−FΛ′)′(X−FΛ′) Ψ > 0, (2.4.4)

where the observations are X ′ ≡ (x1, . . . , xN) and the factor scores are F ′ ≡

(f1, . . . , fN).

We will use p(·) generically to denote “density”; the p’s will be distinguished

by their arguments.

Prior Distributions

In PS89, generalized natural conjugate families of prior distributions for the

parameters are used. The factor loadings are assumed to depend on the disturbance

covariance matrix. The disturbance covariance matrix is assumed to be independent

of the factor scores. The factor scores are assumed to be independent of the factor

loadings and the disturbance covariance matrix. The joint prior distribution for the

parameters F , Λ, and Ψ is of the form:

p(F,Λ,Ψ|m) = p(Λ|Ψ,m)p(Ψ)p(F |m), (2.4.5)

where

p(Λ|Ψ,m) ∝ |Ψ|−
m
2 e−

1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′ , (2.4.6)

p(Ψ) ∝ |Ψ|−
ν
2 e−

1
2
trΨ−1B, ν > 2p, (2.4.7)

p(F |m) ∝ e−
1
2
trF ′F (2.4.8)
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with Ψ > 0, H > 0, and B > 0 a diagonal matrix (consequently E(Ψ) is diagonal).

Thus, Λ conditional on Ψ has elements which are jointly normally distributed, and

(Λ0, H) are hyperparameters to be assessed; Ψ−1 follows a Wishart distribution,

(ν,B) are hyperparameters to be assessed. The factor scores are independent and

normally distributed. Note that E(Ψ|B) is diagonal, to represent traditional views

of the factor model containing “common” and “specific” factors.

Note that if Λ′ ≡ (λ1, . . . , λp), λ ≡ vec(Λ′) = (λ′1, . . . , λ
′
p)
′, then var(λ|Ψ,m) =

Ψ ⊗H−1, var(λ|m) = (EΨ) ⊗H−1, and cov[(λi, λj)|Ψ,m] = ψijH
−1. Moreover, it

is assumed that H = n0I, for some preassigned scalar n0. These interpretations of

the hyperparameters simplify assessment.

Also note that they have assumed

(2) (fi|m) ∼ N(0, Im).

This is the same as assumption (b) in the maximum likelihood model where R = Im.

Writing the factor scores as f = (f ′1, . . . , f
′
N)′ we find that

(f |m) ∼ N(0, IN ⊗ Im)

and the density of the factor scores can be written as the matrix normal distribution

p(F |m).

Also note that PS89 have assumed that

(3) εi and fi are independent.
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This is the same as assumption (c) of the maximum likelihood model. This as-

sumption is evident from the likelihood and the prior distribution for the factor

scores.

Posterior

By Bayes’ rule, the posterior distribution for the unknown parameters of in-

terest is

p(F,Λ,Ψ|X,m) ∝ e−
1
2
trF ′F |Ψ|−

(N+m+ν)
2 e−

1
2
trΨ−1U (2.4.9)

where

U ≡ (X − FΛ′)′(X − FΛ′) + (Λ− Λ0)H(Λ− Λ0)′ +B.
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2.5 Conditional Modal Estimation, PS89

In PS89, conditional modal estimation is used. The marginal mode E(F |X) =

F̂ is computed, then the conditional mode E(Λ|F̂ , X) = Λ̂, and the modal value

Ψ̂mode given Λ̂, F̂ , and X is found. Equation (2.4.9) is integrated with respect to

the disturbance covariance matrix Ψ and the factor loadings Λ to obtain

p(F |X,m) ∝ e−
1
2
trF ′F |H + F ′F | γ−m−p2

|A+ (F − F̂ )′(IN −XW−1X ′)(F − F̂ )|N+m+ν−p−1
2

, (2.5.1)

where we define the following

F̂ ≡ (IN −XW−1X ′)−1XW−1Λ0H

= (IN −X(X ′X −W )−1X ′)XW−1Λ0H (2.5.2)

W ≡ X ′X +B + Λ0HΛ′0, (2.5.3)

A ≡ H − (Λ0H)′W−1Λ0H

−(XW−1Λ0H)′(IN −XW−1X ′)−1(XW−1Λ0H)

≡ H − (Λ0H)′W−1Λ0H

−(XW−1Λ0H)′(IN −X(X ′X −W )−1X ′)(XW−1Λ0H). (2.5.4)

When the sample size N is large, F ′F ≈ NIm, by the weak law of large

numbers. The two terms in the numerator can now be incorporated into the pro-

portionality constant and the marginal posterior density of F becomes
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p(F |X,m) ∝ 1

|A+ (F − F̂ )′(IN −XW−1X ′)(F − F̂ )| γ−m2
. (2.5.5)

This is the kernel of a matrix T-distribution. The large sample posterior mean

(and modal) estimator of F is E(F |X,m) = F̂ . We now estimate of Λ for given

F = F̂ .

The conditional distribution of Λ for given F is

p(Λ|F,X,m) ∝ 1

|RF + (Λ− ΛF )QF (Λ− ΛF )′|− γ2
, (2.5.6)

where

QF = H + F ′F,

RF = X ′X +B + Λ0HΛ′0 − (X ′F + Λ0H)Q−1
F (X ′F + Λ0H)′, (2.5.7)

ΛF = (X ′F + Λ0H)(H + F ′F )−1 (2.5.8)

γ = N +m+ ν − p− 1 (2.5.9)

That is (Λ|F,X) follows a matrix T-distribution. Their posterior conditional

mean (and modal) estimator of Λ is E(Λ|F̂ , X), or

Λ̂ = ΛF̂ = (X ′F̂ + Λ0H)(H + F̂ ′F̂ )−1. (2.5.10)
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The covariance matrix Ψ is estimated conditional upon (Λ, F ) = (Λ̂, F̂ ).

The conditional density of (Ψ|Λ̂, F̂ , X) is

p(Ψ|Λ̂, F̂ , X,m) ∝ e−
1
2
trΨ−1Û

|Ψ|
(N+m+ν)

2

, Ψ > 0 (2.5.11)

where

Û = (X − F̂ Λ̂′)′(X − F̂ Λ̂′) + (Λ̂− Λ0)H(Λ̂− Λ0)′ +B. (2.5.12)

The conditional posterior mean E(Ψ|Λ̂, F̂ , X,m) of p(Ψ|Λ̂, F̂ , X,m) is

Ψ̂ =
Û

N +m+ ν − 2p− 2
. (2.5.13)

It should be noted that the conditional mode of p(Ψ|Λ̂, F̂ , X,m) is not the

same as the conditional mean. The conditional mode is

Ψ̂mode =
Û

N +m+ ν
. (2.5.14)

The estimators (F̂ , Λ̂, Ψ̂mode) are conditional posterior modal estimators.
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2.6 Computer Intensive Methods of Estimation, RP98

As previously stated, in PS89 a large sample approximation is used to estimate

the factor scores. This large sample approximation can be avoided by using either

Gibbs sampling or what we call Lindley/Smith optimization, (Rowe and Press, 1998

henceforth RP98). For a brief description of Lindley/Smith optimization henceforth

LSO and Gibbs Sampling see appendix A.

Both Gibbs sampling and LSO require the posterior conditionals. Gibbs sam-

pling requires the conditionals for the generation of random samples while LSO

requires them for maximization by cycling through their modes. Rowe and Press

find that Gibbs sampling is a better estimation procedure than LSO because Gibbs

sampling through conditioning can yield both marginal point and interval estimates

while LSO can yield only conditional point and interval estimates.

Conditional Posterior Densities

We find that the conditional posterior density of the factor scores is

p(F |Λ,Ψ, X,m) ∝ p(F,Λ,Ψ)p(X|F,Λ,Ψ)

∝ p(F |m)p(Λ|Ψ)P (Ψ)p(X|F,Λ,Ψ)

∝ e−
1
2
trF ′F |Ψ|−

N
2 e−

1
2
trΨ−1(X−FΛ′)′(X−FΛ′)

∝ e−
1
2
trF ′F e−

1
2
tr(X−FΛ′)Ψ−1(X−FΛ′)′

which after some algebra can be written as
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p(F |Λ,Ψ, X,m) ∝ e−
1
2
tr(F−F̃ )(Im+Λ′Ψ−1Λ)(F−F̃ )′ (2.6.1)

where F̃ ≡ XΨ−1Λ(Im + Λ′Ψ−1Λ)−1.

That is, the factor scores given the factor loadings, the disturbance covariance

matrix, and the data is normally distributed.

The conditional posterior density of the factor loadings is

p(Λ|F,Ψ, X,m) ∝ p(F,Λ,Ψ)p(X|F,Λ,Ψ)

∝ p(Λ|Ψ,m)p(Ψ)p(F |m)p(X|F,Λ,Ψ,m)

∝ |Ψ|−
m
2 e−

1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′

· |Ψ|−
N
2 e−

1
2
trΨ−1(X−FΛ′)′(X−FΛ′)

∝ e−
1
2
trΨ−1[(Λ−Λ0)H(Λ−Λ0)′+(X−FΛ′)′(X−FΛ′)]

which after some algebra becomes

p(Λ|F,Ψ, X,m) ∝ e−
1
2
trΨ−1(Λ−Λ̃)(H+F ′F )(Λ−Λ̃)′ (2.6.2)

where

Λ̃ = (X ′F + Λ0H)(H + F ′F )−1.
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The conditional posterior density of the factor loadings given the factor scores,

the disturbance covariance matrix, and the data is normally distributed.

The conditional posterior density of the disturbance covariance matrix is

p(Ψ|F,Λ, X,m) ∝ p(Ψ)p(Λ|Ψ,m)p(F |m)p(X|F,Λ,Ψ,m)

∝ |Ψ|−
ν
2 e−

1
2
trΨ−1B|Ψ|−

m
2 e−

1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′

· |Ψ|−
N
2 e−

1
2
trΨ−1(X−FΛ′)′(X−FΛ′)

∝ |Ψ|−
(N+m+ν)

2 e−
1
2
trΨ−1U (2.6.3)

where

U = (X − FΛ′)(X − FΛ′)′ + (Λ− Λ0)H(Λ− Λ0)′ +B.

That is, the conditional density of the disturbance covariance matrix given

the factor scores, the factor loadings, and the data has an inverted Wishart density.

The modes of these conditional distributions are F̃ , Λ̃ (as defined above), and

Ψ̃ =
U

N +m+ ν
, (2.6.4)

respectively.
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Gibbs Sampling Estimation

For Gibbs estimation of the posterior, we start with initial values for F and

Ψ say F̄(0) and Ψ̄(0). Then cycle through

Λ̄(i+1) ≡ a random sample from p(Λ|F̄(i), Ψ̄(i), X)

Ψ̄(i+1) ≡ a random sample from p(Ψ|F̄(i), Λ̄(i+1), X)

F̄(i+1) ≡ a random sample from p(F |Λ̄(i+1), Ψ̄(i+1), X)

and we have (Λ̄(1), Ψ̄(1), F̄(1)), . . . , (Λ̄(s), Ψ̄(s), F̄(s)), (Λ̄(s+1), Ψ̄(s+1), F̄(s+1)), . . ., (Λ̄(s+t),

Ψ̄(s+t), F̄(s+t)). The first s random samples called the “burn in” are discarded and

the remaining t samples are kept. The means of the remaining random samples

F̄ =
1

t

t∑
k=1

F̄(s+k)

Λ̄ =
1

t

t∑
k=1

Λ̄(s+k)

Ψ̄ =
1

t

t∑
k=1

Ψ̄(s+k)

are the sampling based posterior marginal mean estimates of the parameters.

26



LSO Estimation

For the hill climbing LSO estimation of the parameters (see appendix A), we

start with an initial value for F̃ , say F̃(0) then cycle through

Λ̃(i+1) ≡ (X ′F̃(i) + Λ0H)(H + F̃ ′(i)F̃(i))
−1

Ψ̃(i+1) ≡
(X − F̃(i)Λ̃

′
(i+1))

′(X − F̃(i)Λ̃
′
(i+1)) + (Λ̃(i+1) − Λ0)H(Λ̃(i+1) − Λ0)′ +B

N +m+ ν

F̃(i+1) ≡ XΨ̃−1
(i+1)Λ̃(i+1)(Im + Λ̃′(i+1)Ψ̃

−1
(i+1)Λ̃(i+1))

−1.

until convergence is reached and we have the joint modal estimator for the unknown

parameters (F̃ , Λ̃, Ψ̃).
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3 Correlated Bayesian Factor Analysis Model

3.1 Introduction

The following is an extension of the PS89 model for Bayesian factor analysis.

In maximum likelihood factor analysis, the covariance matrix for the errors of the

observations is assumed to be diagonal while in the Bayesian factor analysis model of

PS89, it is assumed to be positive definite but diagonal on average. In both models,

the error vectors are assumed to be independent. We assume general covariance

matrices for the errors of the observations, the factor scores, and the factor loadings.

We still assume that the errors are diagonal on average to represent traditional beliefs

of “common” and “specific” factors.

The PS89 Bayesian factor analysis model is based on independence of obser-

vation vectors. If the observation vectors are not independent, and if the correlation

between the observations is not taken into account, then the covariance matrix that

is factor analyzed is improperly estimated.

As stated earlier, we use the Bayesian approach to factor analysis because the

classical factor analysis model is inherently indeterminate and Bayesian methods

with the incorporation of available proper prior information eliminates the problem

of indeterminacies. But once the observation vectors are permitted to be dependent,

more parameters are introduced.

We use proper prior information and take advantage of simplifications of the

covariance structures to reduce the number of distinct covariance terms. The moti-

vation for this is also because of the large number of distinct parameters that must
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be estimated and the computational requirements for all of the distinct parameters

are unrealistic.

In both maximum likelihood and PS89 although a mean is assumed for the

observations, its estimator is the mean of the observations, so for simplification, the

observations are assumed to be centered about their mean. We do the same, but in

an appendix include the development for placing a prior distribution on the fixed

but unknown observation mean and estimating it along with the other parameters.

In maximum likelihood factor analysis the factor scores can be assumed to be

correlated and in PS89 the factor scores are assumed to independent; both models

assume that the factor score vectors are independent while we assume that the both

the factor scores and the factor score vectors are correlated.

Also, the number of factors is assumed to be known in both maximum like-

lihood and in PS89 (although Press and Shigemasu have a development in which

the number of factors is unknown see Press and Shigemasu 1994). We assume the

number of factors to be unknown but fixed and place a prior distribution on it.
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3.2 Model

The factor analysis model is

(x|µ,m,Λ, f) = µ + (IN ⊗ Λ) f + ε ,
(Np× 1) (Np× 1) (Np×Nm) (Nm× 1) (Np× 1)

(3.2.1)

where

N = the number of subjects or observation vectors,

p = the number of variables measured on each subject or the dimension of the

observation vectors.

It is assumed that N is much larger than p.

x = an Np-dimensional vector of observed responses from the N subjects on p

variables, x ≡ (x′1, . . . , x
′
N)′,

µ = an Np-dimensional mean vector of the observed responses from the N subjects

on p variables, µ ≡ (µ′1, . . . , µ
′
N)′,

m = the number of factors, m ≤ p,

Λ = a matrix of factor loadings, Λ′ = (λ1, . . . , λp),

f = an Nm-dimensional vector of unobservable variables for the N subjects on m

factors called the factor score vector, f = (f ′1, . . . , f
′
N)′, and

ε = an Np-dimensional vector of the errors or disturbance terms for the observation

vector of the N subjects, on the p variables, ε = (ε′1, . . . , ε
′
N)′. The error vectors, εi’s

are correlated.
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3.3 Likelihood

Regarding the errors of the observations, we will assume that they are as

follows

(I) (ε|Ω) ∼ N(0,Ω),

where Ω > 0, and we assume that Ω is diagonal on average to represent traditional

views of the factor model containing “common” and “specific” factors. This is

analogous to assumption (a) in the maximum likelihood model and assumption (1)

in the PS89 Bayesian model. Recall that the maximum likelihood model assumes

that the disturbance covariance matrix Ψ is diagonal while the PS89 model assumes

that Ψ is a full general positive definite matrix and diagonal on average.

Thus from assumption (I) the distribution for the observations is

(x|µ,Ω,m,Λ, f) ∼ N (µ+ (IN ⊗ Λ)f,Ω) ,

and the likelihood for the observation vector is

p(x|µ,Ω,m, f,Λ) = (2π)−
Np
2 |Ω|−

1
2 e−

1
2

[x−µ−(IN⊗Λ)f ]′Ω−1[x−µ−(IN⊗Λ)f ], Ω > 0, (3.3.1)

where the covariance matrix is Ω = (Ωij), Ωij a p× p variance/covariance matrix.

As stated earlier, in order to keep from obfuscating the thrust of correlated

Bayesian factor analysis, we will assume that each of the observations have the

same mean µ, estimate it by the maximum likelihood estimate x̄, and center the
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observations about the sample mean. In an appendix, we include the development

for the general mean being a fixed but unknown parameter, place a prior distribution

on it, and estimate it a posteriori along with the other parameters.

The model and likelihood now becomes

(x|m,Λ, f) = (IN ⊗ Λ) f + ε ,
(Np× 1) (Np×Nm) (Nm× 1) (Np× 1)

(3.3.2)

and

p(x|Ω,m, f,Λ) = (2π)−
Np
2 |Ω|−

1
2 e−

1
2

[x−(IN⊗Λ)f ]′Ω−1[x−(IN⊗Λ)f ]. (3.3.3)

We wish to obtain posterior estimates of the unknown parameters Ω, m, f , and

Λ. Prior distributions will be assessed for the unknown parameters, their posterior

distribution will be formed, and posterior estimators will be computed.

3.4 Priors

We will use natural conjugate prior distributions to represent our uncertainty

about the parameters. We will assume that the joint prior distribution for the

unknown parameters is given by

p(Ω,m, f, λ) = p(Ω)p(m)p(f |m)p(λ|m), (3.4.1)

where
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p(Ω) = c(Np, ν)|Ω|−
ν
2 e−

1
2
trΩ−1A, Ω > 0, ν > 2Np, (3.4.2)

p(m) = a discrete distribution to be defined below (3.4.3)

p(f |m) = (2π)−
Nm
2 |Θ|−

1
2 e−

1
2
f ′Θ−1f , Θ > 0 (3.4.4)

p(λ|m) = (2π)−
pm
2 |∆|−

1
2 e−

1
2

(λ−λ0)′∆−1(λ−λ0), ∆ > 0, (3.4.5)

and c(Np, ν) is a constant depending only on Np and ν. Note that ν is more than

twice the product of the number of observations and their dimension.

We assume that a priori, the error disturbance covariance matrix is inverted

Wishart where the hyperparameter matrix A is diagonal so that E(Ω) is diagonal.

The factor scores and the factor loadings are assumed to be independent and nor-

mally distributed given the number of factors. The prior distribution for the number

of factors will be reserved for assessment by the researcher.

We will assume without loss of generality, that the variance for the factor

scores is unity so that Θ is a correlation matrix (see Press 1982 p. 331). Note that

Λ′ ≡ (λ1, . . . , λp), and we have written λ ≡ vec(Λ′) = (λ′1, . . . , λ
′
p)
′. (We will denote

vectors using lower case and matrices as upper case letters.) Also note that we have

made the following assumption regarding the distribution of the factor scores. We

assume

(II) (f |m) ∼ N(0,Θ),

this is analogous to assumption (b) in the maximum likelihood model and assump-

tion (2) in the PS89 Bayesian model. It differs from both in that we allow the factor

score vectors to be correlated. We also assume
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(III) (f |m) and (ε|Ω) are independent random vectors.

This is the identical to assumption (c) of the maximum likelihood model and as-

sumption (3) in the PS89 Bayesian model. This assumption is evident from the

likelihood and the prior distribution for the factor scores.

3.5 Posterior

By Bayes’ rule, the joint posterior distribution for the unknown parameters of

interest is given by

p(Ω,m, f, λ|x) ∝ p(Ω,m, f, λ)p(x|Ω,m, f,Λ)

∝ p(Ω)p(f |m)p(λ|m)p(m)p(x|Ω,m, f,Λ)

∝ |Ω|−
ν
2 e−

1
2
trΩ−1A(2π)−

Nm
2 |Θ|−

1
2 e−

1
2
f ′Θ−1f

· (2π)−
pm
2 |∆|−

1
2 e−

1
2

(λ−λ0)′∆−1(λ−λ0)

· p(m)|Ω|−
1
2 e−

1
2

[x−(IN⊗Λ)f ]′Ω−1[x−(IN⊗Λ)f ]

∝ p(m)(2π)−
(N+p)m

2 |Ω|−
(ν+1)

2 e−
1
2
trΩ−1A

· |Θ|−
1
2 e−

1
2
f ′Θ−1f |∆|−

1
2 e−

1
2

(λ−λ0)′∆−1(λ−λ0)

· e−
1
2

[x−(IN⊗Λ)f ]′Ω−1[x−(IN⊗Λ)f ] (3.5.1)

In the next section we will derive the posterior conditional distributions.

3.6 Conditional Posterior Densities

Here we find the posterior conditional densities needed for Gibbs sampling.
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We find that the conditional posterior density for the error covariance matrix is

p(Ω|m, f, λ, x) ∝ p(Ω,m, f, λ)p(x|Ω,m, f, λ)

∝ p(Ω)p(m)p(f |m)p(λ|m)p(x|Ω,m, f, λ)

∝ p(Ω)p(x|Ω,m, f, λ)

∝ |Ω|−
ν
2 e−

1
2
trΩ−1A

· |Ω|−
1
2 e−

1
2

[x−(IN⊗Λ)f ]′Ω−1[x−(IN⊗Λ)f ]

∝ |Ω|−
(ν+1)

2 e−
1
2
trΩ−1U (3.6.1)

where

U = [x− (IN ⊗ Λ)f ][x− (IN ⊗ Λ)f ]′ + A.

That is, the conditional posterior density of the error covariance matrix given

the number of factors, the factor scores, the factor loadings, and the data is an

inverted Wishart.

We find the conditional posterior density of the factor scores as follows

p(f |Ω,m, λ, x) ∝ p(Ω,m, f, λ)p(x|Ω,m, f, λ)

∝ p(Ω)p(m)p(f |m)p(λ|m)p(x|Ω,m, f, λ)

∝ p(f |m)p(x|Ω,m, f, λ)

∝ (2π)−
Nm
2 |Θ|−

1
2 e−

1
2
f ′Θ−1f
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· |Ω|−
1
2 e−

1
2

[x−(IN⊗Λ)f ]′Ω−1[x−(IN⊗Λ)f ]

∝ e−
1
2

(f−f̃)′[Θ−1+(IN⊗Λ)′Ω−1(IN⊗Λ)](f−f̃) (3.6.2)

where

f̃ =
[
Θ−1 + (IN ⊗ Λ)′Ω−1(IN ⊗ Λ)

]−1
(IN ⊗ Λ)′Ω−1x.

The factor scores given the error covariance matrix, the number of factors, the

factor loadings, and the data follows a normal distribution.

We find the conditional posterior density of the factor loadings as follows

p(λ|Ω,m, f, x) ∝ p(Ω,m, f, λ)p(x|Ω,m, f, λ)

∝ p(Ω)p(m)p(f |m)p(λ|m)p(x|Ω,m, f, λ)

∝ p(λ|m)p(x|Ω,m, f, λ)

∝ (2π)−
pm
2 |∆|−

1
2 e−

1
2

(λ−λ0)′∆−1(λ−λ0)

· |Ω|−
1
2 e−

1
2

[x−(IN⊗Λ)f ]′Ω−1[x−(IN⊗Λ)f ]

∝ e−
1
2
γ (3.6.3)

where

γ = (λ− λ0)′∆−1(λ− λ0) + [x− (IN ⊗ Λ)f ]′Ω−1[x− (IN ⊗ Λ)f ]

and
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λ = vec(Λ′).

The factor loadings given the error covariance matrix, the number of factors,

the factor scores, and the data does not follow a recognizable distribution. Thus,

random samples must be generated by a multivariate rejection sampling technique.

The conditional posterior density of the number of factors is

p(m|Ω, f, λ, x) ∝ p(Ω,m, f, λ)p(x|Ω,m, f, λ)

∝ p(Ω)p(m)p(f |m)p(λ|m)p(x|Ω,m, f, λ)

∝ p(m)p(f |m)p(λ|m)p(x|Ω,m, f, λ)

∝ p(m)(2π)−
(N+p)m

2 |Ω|−
1
2 e−

1
2

[x−(IN⊗Λ)f ]′Ω−1[x−(IN⊗Λ)f ]

· |Θ|−
1
2 e−

1
2
f ′Θ−1f |∆|−

1
2 e−

1
2

(λ−λ0)′∆−1(λ−λ0)

∝ p(m)(2π)−
(N+p)m

2 |Ω|−
1
2 |Θ|−

1
2 |∆|−

1
2 e−

1
2
τ (3.6.4)

where

τ = [x− (IN ⊗ Λ)f ]′Ω−1[x− (IN ⊗ Λ)f ] + f ′Θ−1f + (λ− λ0)′∆−1(λ− λ0)

and

λ = vec(Λ′).

This is not a recognizable distribution regardless of our choice of prior distri-

butions for the number of factors. This conditional posterior distribution depends
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on the number of factors in a complicated fashion. The dimension of several of the

matrices depends on the number of factors.

3.7 Gibbs Sampling Estimation

We will use Gibbs sampling for estimation of the parameters in (3.5.1) because

we can obtain marginal posterior point and interval estimates. We cannot use

conditional modal estimation or LSO. Conditional modal estimation requires the

posterior distribution to be integrated with respect to one of the parameters, which

cannot be done in a closed form. LSO requires the conditional posterior distributions

to be unimodal (to converge to a single mode) which is not always the case and LSO

does not yield marginal point and interval estimates.

For Gibbs estimation of the posterior, we start with initial values for Ω, m, f ,

and λ say Ω̄(0), m̄(0), f̄(0), and λ̄(0).

Then for a given number of factors m = m̄(i) cycle through

Ω̄(i+1) ≡ a random sample from p(Ω|f̄(i), λ̄(i), m̄(i), x)

f̄(i+1) ≡ a random sample from p(f |Ω̄(i+1), λ̄(i), m̄(i), x)

λ̄(i+1) ≡ a random sample from p(λ|Ω̄(i+1), f̄(i+1), m̄(i), x).

which is the Gibbs sampling algorithm.

For the given number of factors m = m̄(i) we have the sequence
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(λ̄(1), Ω̄(1), f̄(1))

...

(λ̄(s), Ω̄(s), f̄(s))

(λ̄(s+1), Ω̄(s+1), f̄(s+1))

...

(λ̄(s+t), Ω̄(s+t), f̄(s+t)).

The first s random samples called the “burn in” are discarded and the remain-

ing t samples are kept. The means of the remaining random samples

Ω̄ =
1

t

t∑
k=1

Ω̄(s+k) (3.7.1)

f̄ =
1

t

t∑
k=1

f̄(s+k) (3.7.2)

λ̄ =
1

t

t∑
k=1

λ̄(s+k) (3.7.3)

are the sampling based marginal posterior mean estimates of the parameters given

the number of factors m = m̄(i). We do this for each value of m, then find the value

of the number of factors m = m̄ that makes the posterior conditional distribution for

the number of factors p(m|Ω̄, f̄ , λ̄, x) a maximum given the corresponding estimates

of the other parameters. This is the same as finding the value for the number

of factors that gives the largest conditional posterior odds ratio. We will have

(m̄, Ω̄, f̄ , λ̄) as our posterior estimates of the unknown parameters where (Ω̄, f̄ , λ̄)

are the estimates conditional on m = m̄.
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It should be noted that in the posterior conditional distribution for the factor

loadings p(λ|Ω,m, f, x), the terms in the exponent do not combine nicely to form a

well known and recognizable distribution. Because of this, in order to draw a random

sample from the conditional posterior distribution for λ requires a multivariate re-

jection sampling technique (see Gilks and Wild, 1992). This is an extremely difficult

task, is very computer intensive, and is time consuming.
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4 Covariance Simplifications and Motivation

The above is a very general model which requires many parameters to be es-

timated, an extremely difficult multivariate rejection sampling technique, and enor-

mous storage requirements.

4.1 Covariance Simplifications

We simply the model by assuming structures for the covariance matrices of

the loadings, the observations, and the factor scores.

We will specify that

var(λ|Ψ) = ∆

= Ψ⊗H−1

where H is a covariance hyperparameter to be assessed. This specification, first

used in PS89 simplifies the covariance structure for the factor loadings. We will also

specify that the error covariance and factor score structures are either

Ω = Φ⊗Ψ, Φ > 0, Ψ > 0 (4.1.1a)

and

Θ = Φ⊗R, Φ > 0, R > 0 (4.1.1b)
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both separable covariance matrices where ⊗ denotes the Kroneker product, or

Ω =



Ψ Υ · · · Υ
Ψ

.. .
...
Υ
Ψ

 , Ψ > 0, Υ > 0 (4.1.2a)

and

Θ =



R P · · · P
R

. . .
...
P
R

 , R > 0, P > 0 (4.1.2b)

both matrices with intraclass covariance/correlation structure. Doing so not only

reduces the number of parameters that we must estimate and the enormous stor-

age requirement, but as we will see, the posterior conditional distribution for the

factor loadings is a nice recognizable distribution thus eliminating the need for a

multivariate rejection sampling technique.
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4.2 Covariance Motivation

Here we will present the two observation error covariance simplifications, along

with further simplifications. The number of distinct parameters for each is given

in Table 1 and the storage requirements are given in Table 2. In addition to the

reduction in the number of parameters, the computations are simpler. The Gibbs

sampling algorithm before simplification requires inversion, Cholesky factorization,

and determinants of very large matrices as well as a multivariate rejection sampling

technique for each iteration.

General Covariance Matrix

The full error covariance matrix for the observation vector is given by

Ω =



Ω11 Ω12 · · · Ω1N

Ω22

. . .
...

ΩN−1,N

ΩNN

 .

where the variance of observation vector i is given by the p× p matrix

var(xi|Ω,m, f, λ) = Ωii

and the covariance between observation vectors i and j is given by the p× p matrix

cov(xi, xj|Ω,m, f, λ) = Ωij.

43



Separable Covariance Matrix

If we can specify the following separable structure as our covariance matrix

for the observations

Ω ≡



φ11Ψ φ12Ψ · · · φ1NΨ
φ22Ψ

.. .
...

φNNΨ

 ,

that is, the variance of the observation vectors are related by a multiplicative con-

stant and given by the form

var(xi|Φ,Ψ,m, f, λ) = φiiΨ

and the covariance between any two observation vectors are related by a multiplica-

tive constant

cov(xi, xj|Φ,Ψ,m, f, λ) = φijΨ,

then as previously stated, the conditional posterior distribution for the factor load-

ings has a convenient mathematical form given our choice of prior distributions.

44



If we can further identify the existence of the same variance for all of the

observation vectors (homoscedasticity), then the covariance matrix becomes

Ω ≡



Ψ φ12Ψ · · · φ1NΨ
Ψ

.. .
...

Ψ

 .

If the φ′ijs depend only on a small number of parameters say ρ = (ρ1, . . . , ρK),

then the covariance matrix is

Ω ≡



Ψ φ12(ρ)Ψ · · · φ1N(ρ)Ψ
Ψ

.. .
...

Ψ



and the number of distinct parameters is further reduced. We will write the matrix

Ω as Φ⊗Ψ where we call Φ the between observation correlation matrix and Ψ the

within observation covariance matrix. For simplicity, we will assume that ρ is a

scalar. This could easily be extended.
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Matrix Intraclass Covariance Matrix

If we can specify the matrix intraclass covariance error structure

Ω =



Ψ Υ · · · Υ
Ψ

.. .
...
Υ
Ψ

 , Ψ > 0, Υ > 0. (4.2.1)

That is, the variance of any observation vector i is

var(xi|Ψ,Υ,m, f, λ) = Ψ

and the covariance between two observation vectors i and j is

cov(xi, xj|Ψ,Υ,m, f, λ) = Υ,

then we not only simplify the covariance structure and reduce the number of pa-

rameters that must be estimated, but as we will see, we will not need a multivariate

rejection sampling technique.

Ωii = Ψ Ωii = Ψ Ωii = Ψ Ωii = Ψ
Ωij Ωij = φijΨ Ωij = φijΨ Ωij = φij(ρ)Ψ Ωij = 0 Ωij = Υ

(N, p) Np(Np+1)
2

N(N+1)
2

N(N+1)
2
−N 1 + p(p+1)

2
p(p+1)

2
2p(p+1)

2

+p(p+1)
2

+p(p+1)
2

(100,10) 500,500 5,105 5,005 56 55 110
(48,15) 259,560 1,296 1,248 121 120 240
(50,12) 180,300 1,353 1,303 79 78 156
(55,10) 151,525 1,585 1,540 56 55 110

Table 1: Number of Distinct Parameters in the Covariance Matrix.

46



In addition to the enormous number of distinct parameters, we may be limited

by computer storage requirements. It is well known that 32 bits is used to represent

numbers in a computer in single precision, there are eight bits to a byte, and that

there are 1024 bytes in a megabyte. The formula for the number of megabytes to

store the distinct parameters in single precision is

Number of Megabytes = (Number of distinct parameters)

·
(

32 bits

distinct parameter

)(
1 byte

8 bit

)(
1 megabyte

1024 bytes

)

and the numbers are given in Table 2.

Ωii = Ψ Ωii = Ψ Ωii = Ψ Ωii = Ψ
(N,p) Ωij Ωij = φijΨ Ωij = φijΨ Ωij = φij(ρ)Ψ Ωij = 0 Ωij = Υ
(100,10) 1955.09 19.94 19.55 0.22 0.21 0.43
(48,15) 1013.91 5.06 4.88 0.47 0.47 0.94
(50,12) 704.30 5.29 5.09 0.31 0.30 0.61

Table 2: Number of Megabytes to Store Distinct Covariance Parameters.
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5 Separable Covariance Models

As stated earlier, if we can specify a separable covariance matrix for the ob-

servation vector x = (x′1, · · · , x′N), then var(x|Φ,Ψ,m, f,Λ) = Φ ⊗ Ψ. Separable

covariance structures are used very often, for example in time series analysis. With

a separable covariance matrix, the covariance between the ith and jth rows of X is

φijΨ, and the covariance between the ith and jth columns of X is ψijΦ where as

before X ′ = (x1, . . . , xN).

It is claimed that this covariance structure is equivalent to the assumption

of [weak or covariance] stationarity used for time series (Basilevsky 1994, p. 489).

We will call the matrix Φ the between observation covariance matrix and Ψ is the

within observation covariance matrix.

5.1 Separable Model

Likelihood

The likelihood function under separability (Ω = Φ⊗Ψ) is given by

p(x|Φ,Ψ,m, f,Λ) = (2π)−
Np
2 |Φ⊗Ψ|−

1
2 e−

1
2

[x−(IN⊗Λ)f ]′(Φ⊗Ψ)−1[x−(IN⊗Λ)f ] (5.1.1)

where the covariance matrix is given by
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Ω ≡ Φ⊗Ψ =



φ11Ψ φ12Ψ · · · φ1NΨ
φ22Ψ

.. .
...

φNNΨ

 (5.1.2)

and the matrices Φ,Ψ > 0 where E(Ψ) is diagonal. This likelihood for the observa-

tions can be simplified and rewritten as

p(X|Φ,Ψ,m, F,Λ) = (2π)−
Np
2 |Φ|−

p
2 |Ψ|−

N
2 e−

1
2
trΨ−1(X−FΛ′)′Φ−1(X−FΛ′). (5.1.3)

where X ′ ≡ (x1, . . . , xN), F ′ ≡ (f1, . . . , fN), and using the facts that for A > 0 an

n1 × n1 matrix and B > 0 an n2 × n2 matrix

|A⊗B|−
1
2 = |A|−

n2
2 |B|−

n1
2

and

vec′(u− v)′(A⊗B)−1vec(u− v) = trB−1(U − V )′A−1(U − V ).

where u = vec(U ′) and v = vec(V ′).

Prior distributions will be assessed for the unknown parameters (Ψ,Φ,m, F,Λ).

Priors

We will use the same generalized natural conjugate families of prior distribu-

tions for the parameters as in Section 3. The prior distributions are simplified from
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their previous form by the adoption of the separable covariances. The joint prior

distribution is given by

p(Φ,Ψ,m, F,Λ) = p(Ψ)p(Φ)p(m)p(F |Φ,m)p(Λ|Ψ,m) (5.1.4)

where

p(Ψ) = c(p, ν)|Ψ|−
ν
2 e−

1
2
trΨ−1B, (5.1.5)

p(F |Φ,m) = (2π)−
Nm
2 |R|−

N
2 |Φ|−

m
2 e−

1
2
trΦ−1FR−1F ′ , (5.1.6)

p(Λ|Ψ,m) = (2π)−
pm
2 |H−1|−

p
2 |Ψ|−

m
2 e−

1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′ , (5.1.7)

c(p, ν) is a constant that depends only on p and ν, and the hyperparameters ν, B,

Λ0, H, those for p(Φ) and p(m) are assessed as in appendix C. We assume that B

is diagonal and consequently E(Ψ) is diagonal to represent traditional views of the

model containing “common” and “specific” factors.

The prior distributions for the unknown parameters of interest are normal for

the factor scores, and the factor loadings while it is inverted Wishart for the error

disturbance covariance matrix.

We will discuss prior distributions for Φ later and the prior distribution for m

is a discrete distribution to be assessed by the researcher.

50



Posterior

By Bayes’ Rule, the joint posterior distribution for the unknown parameters

of interest is given by

p(Φ,Ψ,m, F,Λ|X) ∝ p(m)p(Φ)(2π)−
(N+p)m

2 |Φ|−
(p+m)

2 |H|
p
2 |Ψ|−

(N+m+ν)
2

· |R|−
N
2 e−

1
2
trΦ−1FR−1F ′e−

1
2
trΨ−1U (5.1.8)

where the posterior conditional mean is given by

U ≡ (X − FΛ′)′Φ−1(X − FΛ′) + (Λ− Λ0)H(Λ− Λ0)′ +B. (5.1.9)

In Section 5.2 we will consider the case where Φ is known (for example Φ = IN

for independent observations), derive the necessary posterior conditionals, and dis-

cuss parameter estimation by Gibbs sampling. In Section 5.3, we will consider the

case where Φ is a completely unknown general covariance matrix, derive the nec-

essary posterior conditionals, and discuss parameter estimation by Gibbs sampling.

In Section 5.4, we will consider the case where Φ is unknown, but structured so that

it depends on only one parameter ρ, derive the necessary posterior conditionals, and

discuss parameter estimation by Gibbs sampling.
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Conditional Posterior Densities

From the joint posterior distribution we can obtain the posterior conditional

distributions. The conditional posterior distribution of the disturbance covariance

matrix is

p(Ψ|Φ,m, F,Λ, X) ∝ p(Φ,Ψ,m, F,Λ)p(X|Φ,Ψ,m, F,Λ)

∝ p(Φ)p(Ψ)p(m)p(F |Φ,m)p(Λ|Ψ,m)

· p(X|Φ,Ψ,m, F,Λ)

∝ p(Ψ)p(Λ|Ψ,m)p(X|Φ,Ψ,m, F,Λ)

∝ |Ψ|−
ν
2 e−

1
2
trΨ−1B|Ψ|−

m
2 e−

1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′

· |Φ|−
p
2 |Ψ|−

N
2 e−

1
2
trΨ−1(X−FΛ′)′Φ−1(X−FΛ′)

∝ |Ψ|−
(N+m+ν)

2 e−
1
2
trΨ−1U (5.1.10)

where

U = (X − FΛ′)′Φ−1(X − FΛ′) + (Λ− Λ0)H(Λ− Λ0)′ +B. (5.1.11)

The distribution of the disturbance covariance matrix given the correlation

matrix, the number of factors, the factor scores, the factor loadings, and the data is

an inverted Wishart.
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The conditional posterior distribution for the factor scores is

p(F |Φ,Ψ,m,Λ, X) ∝ p(Φ,Ψ,m, F,Λ)p(X|Φ,Ψ,m, F,Λ)

∝ p(Φ)p(Ψ)p(m)p(F |Φ,m)p(Λ|Ψ,m)

· p(X|Φ,Ψ,m, F,Λ)

∝ p(F |Φ,m)p(X|Φ,Ψ,m, F,Λ)

∝ |Φ|−
m
2 |R|−

N
2 e−

1
2
trΦ−1FR−1F ′

· |Φ|−
p
2 |Ψ|−

N
2 e−

1
2
trΨ−1(X−FΛ′)′Φ−1(X−FΛ′)

∝ |Φ|−
(p+m)

2 |Ψ|−
N
2 |R|−

N
2 e−

1
2
trΦ−1[FR−1F ′+(X−FΛ′)Ψ−1(X−FΛ′)′]

which after some algebra can be written as

p(F |Φ,Ψ,m,Λ, X) ∝ e−
1
2
trΦ−1(F−F̃ )(R−1+Λ′Ψ−1Λ)(F−F̃ )′

where the posterior conditional mean is given by

F̃ = XΨ−1Λ(R−1 + Λ′Ψ−1Λ)−1.

The conditional posterior distribution for the factor scores given the correla-

tion matrix, the disturbance covariance matrix, the number of factors, the factor

loadings, and the data is normally distributed.
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The conditional posterior density for the factor scores is

p(Λ|Φ,Ψ,m, F,X) ∝ p(Φ,Ψ,m, F,Λ)p(X|Φ,Ψ,m, F,Λ)

∝ p(Φ)p(Ψ)p(m)p(F |Φ,m)p(Λ|Ψ,m)

· p(X|Φ,Ψ,m, F,Λ)

∝ p(Λ|Ψ,m)p(X|Φ,Ψ,m, F,Λ)

∝ |Ψ|−
m
2 e−

1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′

· |Φ|−
p
2 |Ψ|−

N
2 e−

1
2
trΨ−1(X−FΛ′)′Φ−1(X−FΛ′)

∝ e−
1
2
trΨ−1[(Λ−Λ0)H(Λ−Λ0)′+(X−FΛ′)′Φ−1(X−FΛ′)]

which after some algebra becomes

p(Λ|Φ,Ψ,m, F,X) ∝ e−
1
2
trΨ−1(Λ−Λ̃)(H+F ′Φ−1F )(Λ−Λ̃)′ (5.1.12)

where the posterior conditional mean is given by

Λ̃ = [X ′Φ−1F + Λ0H](H + F ′Φ−1F )−1.

The conditional distribution for the factor scores given the correlation matrix,

the disturbance covariance matrix, the number of factors, the factor scores, and the

data is normally distributed.

All of these conditional posterior densities are well known recognizable distri-

butions that do not require rejection sampling. Standard random variable generation

methods can be used.
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However, the conditional distribution for the number of factors is not tractable

and recognizable.

The conditional posterior distribution of the number of factors is

p(m|Φ,Ψ, F,Λ, X) ∝ p(X|Φ,Ψ,m, F,Λ)p(Φ,Ψ,m, F,Λ)

∝ p(X|Φ,Ψ,m, F,Λ)p(Φ)p(Ψ)p(F |Φ,m)p(Λ|Ψ,m)p(m)

∝ (2π)−
Np
2 |Φ|−

p
2 |Ψ|−

N
2 e−

1
2
trΨ−1(X−FΛ′)′Φ−1(X−FΛ′)

· p(Φ)|Ψ|−
ν
2 e−

1
2
trΨ−1B

· (2π)−
Nm
2 |R|−

N
2 |Φ|−

m
2 e−

1
2
trΦ−1FR−1F ′

· (2π)−
pm
2 |H−1|−

p
2 |Ψ|−

m
2 e−

1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′p(m)

∝ p(m)p(Φ)(2π)−
(N+p)m

2 |R|−
N
2 |H|

p
2

· |Φ|−
(p+m)

2 |Ψ|−
(N+m+ν)

2 e−
1
2
τ (5.1.13)

where

τ = trR−1F ′Φ−1F + trΨ−1U.

As previously stated, the conditional posterior density for the number of fac-

tors given the correlation matrix, the disturbance covariance matrix, the factor

scores, the factor loadings,and the data does not have a tractable and recognizable

form.

We do not need to generate random samples from the conditional posterior

55



distribution because we compute Gibbs sampling estimates for the parameters of

interest for a given number of factors. We do this for each of the possible numbers

of factors and compute the conditional posterior density of the number of factors

given these Gibbs sampling estimates. We select the number of factors to be that

value that maximizes the posterior conditional density. This is the same as selecting

the number of factors to be the value with the largest conditional posterior odds

ratio.
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5.2 Separable Model, Φ Known

In some instances, we know Φ, are able to assess Φ, or can estimate Φ using

previous data, so that

p(Φ) =

{
1, if Φ = Φ0

0, if Φ 6= Φ0,
(5.2.1)

a degenerate distribution. If the observation vectors were independent, then Φ0 =

IN .

For Gibbs sampling, we will need the conditional posterior distributions. When

the covariance matrix Φ is known to be Φ0, then the only change in posterior con-

ditional distributions for the parameters Ψ, m, F , and Λ is that Φ is now replaced

by Φ0.

Gibbs Sampling Estimation, Φ known

For Gibbs estimation of the posterior, we start with initial values for Ψ, m,

F , and Λ say Ψ̄(0), m̄(0), F̄(0), and Λ̄(0).

Then for m = m̄(i) cycle through

Ψ̄(i+1) ≡ a random sample from p(Ψ|m̄(i), F̄(i), Λ̄(i), X)

F̄(i+1) ≡ a random sample from p(F |Ψ̄(i+1), m̄(i), Λ̄(i), X)

Λ̄(i+1) ≡ a random sample from p(Λ|Ψ̄(i+1), m̄(i), F̄(i+1), X)
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and for m = m̄(i) we have the sequence

(Ψ̄(1), F̄(1), Λ̄(1))

...

(Ψ̄(s), F̄(s), Λ̄(s))

(Ψ̄(s+1), F̄(s+1), Λ̄(s+1))

...

(Ψ̄(s+t), F̄(s+t), Λ̄(s+t))

The first s random samples called the “burn in” are discarded and the remain-

ing t samples are kept. The means of the remaining random samples

Ψ̄ =
1

t

t∑
k=1

Ψ̄(s+k) (5.2.2)

F̄ =
1

t

t∑
k=1

F̄(s+k) (5.2.3)

Λ̄ =
1

t

t∑
k=1

Λ̄(s+k) (5.2.4)

are used as the posterior mean estimates of the parameters given m = m̄(i). We

do this for each value of m, then find the value of m = m̄ that makes the poste-

rior conditional for the number of factors p(m|Ψ̄, F̄ , Λ̄, X) a maximum given the

corresponding estimates of the other parameters. We will have (m̄, Ψ̄, F̄ , Λ̄) as our

posterior estimates of the unknown parameters where (Ψ̄, F̄ , Λ̄) are the estimates

conditional on m = m̄. It should be noted that LSO is possible when Φ is known

58



because all of the posterior conditional distributions are unimodal so we are sure

converge to the global maximum.
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5.3 Separable Model, Φ Unknown

In this section, we will consider the case when Φ is an unknown general covariance

matrix. When Φ is a general unknown matrix, the number of distinct parameters is

enormous so we only outline the procedure and do not carry it out or recommend

carrying it out due to its impracticality and computational restrictions.

Prior Distribution

When the covariance matrix between the observations Φ is a full general ma-

trix, we will assume that a priori that it has an inverted Wishart distribution. The

distribution for the between observation covariance matrix is given by

p(Φ) = c(N, η)|Φ|−
η
2 e−

1
2
trΦ−1D, Φ, D > 0, η > 2N. (5.3.1)

where Φ and D are positive definite matrices and c(N, η) is a constant depending

only on N and η. Also, D and η are hyperparameters to be assessed.

Posterior Distribution

Using the aforementioned likelihood and prior distributions along with Bayes’

Rule and some algebra the joint posterior is given by

p(Φ,Ψ,m, F,Λ|X) ∝ p(m)|Φ|−
(η+p+m)

2 e−
1
2
trΦ−1V (2π)−

(N+p)m
2 |H|

p
2 |Ψ|−

(N+m+ν)
2

· e−
1
2
trΨ−1[(Λ−Λ0)H(Λ−Λ0)′+B] (5.3.2)
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where

V ≡ (X − FΛ′)Ψ−1(X − FΛ′)′ + FR−1F ′ +D. (5.3.3)

The Conditional for Φ

From the posterior distribution we can obtain the posterior conditional distri-

bution for Φ.

p(Φ|F,Λ,Ψ,m,X) ∝ p(F,Λ,Φ,Ψ,m)p(X|F,Λ,Ψ,Φ,m)

∝ p(Φ)p(Ψ)p(m)p(Λ|Ψ,m)

· p(F |Φ,m)p(X|Ψ,Φ,m, F,Λ)

∝ p(Φ)p(F |Φ,m)p(X|Ψ,Φ,m, F,Λ)

∝ |Φ|−
(η+p+m)

2 e−
1
2
trΦ−1V (5.3.4)

where V is as previously defined.

The posterior conditional distribution for the across observation covariance

matrix Φ, the within covariance matrix Ψ, the number of factors m, the factor

scores F , and the factor loadings is inverted Wishart.

61



Gibbs Estimation, Φ Unknown

For Gibbs estimation of the posterior, we start with initial values for the

unknown parameters Φ, Ψ, m, and F say Φ̄(0), Ψ̄(0), m̄(0), and F̄(0).

Then for a given number of factors m = m̄(i) cycle through

Ψ̄(i+1) ≡ a random sample from p(Ψ|Φ̄(i), F̄(i), Λ̄(i), m̄(i), X)

F̄(i+1) ≡ a random sample from p(F |Φ̄(i), Ψ̄(i+1), Λ̄(i), m̄(i), X)

Λ̄(i+1) ≡ a random sample from p(Λ|Φ̄(i), Ψ̄(i+1), F̄(i+1), m̄(i), X)

Φ̄(i+1) ≡ a random sample from p(Φ|Ψ̄(i+1), F̄(i+1), Λ̄(i+1), m̄i, X)

and for the given number of factors m = m̄(i) we have the sequence

(Φ̄(1), Ψ̄(1), F̄(1), Λ̄(1))

...

(Φ̄(s), Ψ̄(s), F̄(s), Λ̄(s))

...

(Φ̄(s+t), Ψ̄(s+t), F̄(s+t), Λ̄(s+t))

The first s random samples called the “burn in” are discarded and the remain-

ing t samples are kept. We use the means of the remaining random samples
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F̄ =
1

t

t∑
k=1

F̄(s+k)

Λ̄ =
1

t

t∑
k=1

Λ̄(s+k)

Ψ̄ =
1

t

t∑
k=1

Ψ̄(s+k)

Φ̄ =
1

t

t∑
k=1

Φ̄(s+k)

as the sampling based marginal posterior mean estimates of the parameters given

the number of factors m = m̄(i). We do this for each value of the number of

factors m, then find the value of the number of factors m = m̄ that makes the

posterior conditional for the number of factors p(m|Φ̄, Ψ̄, F̄ , Λ̄, X) a maximum given

the corresponding estimates of the other parameters. This is the same as finding

the value for the number of factors that makes the posterior odds ratio a maximum.

We will have (m̄, Φ̄, Ψ̄, F̄ , Λ̄) as our posterior estimates of the unknown pa-

rameters where (Φ̄, Ψ̄, F̄ , Λ̄) are the estimates conditional on the given value for the

number of factors m = m̄.

It should be noted that LSO is also possible because all of the posterior con-

ditional distributions are unimodal and we are guaranteed to converge to a global

maximum.
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5.4 Separable Model, Homoscedastic Structured Φ

It is often the case that Φ is unknown but structured. When Φ is unknown,

the conditionals for Ψ, m, F , and Λ do not change from when Φ is known or

unknown and general. The structure of the covariance matrix Φ can be determined

using covariance determination techniques (see appendix B). Once the structure is

determined, we need to add the prior distributions for the unknown parameters in

Φ and calculate the posterior conditional distribution for the unknown parameters

in Φ. In this section, we will assume that the observations are homoscedastic and

consider Φ to be a structured correlation matrix that depends on a single parameter

ρ.

There are many possible structures that we are able to specify for Φ that

apply to a wide variety of situations. Given that we have homoscedasticity of the

observation vectors, then

Ω ≡ Φ⊗Ψ =



Ψ φ12Ψ · · · φ1NΨ
Ψ

.. .
...

Ψ



where Φ is a correlation matrix.

We may find that there is a structure in the correlation matrix Φ so that its

elements only depend on a single parameter ρ, then the covariance matrix becomes
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Ω ≡ Φ⊗Ψ =



Ψ φ12(ρ)Ψ · · · φ1N(ρ)Ψ
Ψ

.. .
...

Ψ

 .

Two well known examples of possible correlation structures for Φ are intraclass

and first order Markov. We will state these correlation structures and derive the

posterior conditionals for both of these correlations assuming a scaled beta prior

distribution.

Φ Represents an Intraclass Correlation

If we determine that the observations are correlated according to an intraclass

correlation. An intraclass correlation is used when we have a set of variables and we

believe that any two are related in the same way. Any two variables have the same

correlation. Then the between observation correlation matrix Φ is

Φ =



1 ρ ρ · · · ρ
1 ρ · · · ρ

. . .
...
ρ
1

 = (1− ρ)IN + ρee′, (5.4.1)

where e is a column vector of ones and − 1
N−1

< ρ < 1 to keep Φ > 0.
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Φ Represents a First Order Markov Correlation

We can assume that the observations are correlated according to a first order

Markov scheme (Press 1982, p.224). In a first order Markov scheme, we have ob-

servations that are related according to a V AR(1). If the subscript i indexes the

observations (for example time) then the error structure

εi = ρεi−1 + ui, (5.4.2)

where we must restrict ρ by |ρ| < 1 in order to keep a constant variance, and ui

is an error term with zero mean and constant variance. With this structure, the

between observation correlation matrix Φ is

Φ =


1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

...
...

...
...

ρN−1 ρN−2 · · · 1

 (5.4.3)

where 0 < |ρ| < 1.
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Prior distribution For ρ

If Φ is known except for one parameter as in the cases discussed earlier, then

we assess a prior distribution for the unknown parameter ρ, say p(ρ). For example,

we could assume that

−1 ≤ a < ρ < b ≤ 1

and assess the following scaled beta prior distribution

p(ρ) =
Γ(α + β)

Γ(α)Γ(β)

(
ρ+ a

b− a

)α−1 (
1− ρ+ a

b− a

)β−1

, (5.4.4)

where Γ(·) is the gamma function and α, β > 0 with mean given by

E(ρ) = (b− a)

(
α

α + β

)
− a. (5.4.5)

A scaled beta prior distribution can be used to capture a broad set of beliefs

regarding a variable with a fixed range of values. The hyperparameters α and β

have the interpretation that α+β−2 is the effective prior sample size, and a priori,

we believe that for every α − 1 times we believe ρ = b we believe there are β − 1

times ρ = a. If for example we expressed no prior beliefs about the value of the

parameter ρ then α = 1 and β = 1 can be used which corresponds to a vague or

uninformative prior distribution. The assessment of the hyperparameters α and β

are discussed in appendix C.
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The Conditional for ρ

Using the above mentioned likelihood and associated prior distributions for

the parameters of interest, the posterior conditional density for ρ is

p(ρ|Ψ,m, F,Λ, X) ∝ p(ρ,Ψ,m, F,Λ)p(X|ρ,Ψ,m, F,Λ)

∝ p(ρ)p(Ψ)p(m)p(F |Φ,m)p(Λ|Ψ,m)

· p(X|ρ,m, F,Λ,Ψ)

∝ p(F |Φ,m)p(ρ)p(X|ρ,m, F,Λ,Ψ)

∝ |Φ|−
m
2 |R|−

N
2 e−

1
2
trΦ−1FR−1F ′

·
(
ρ+ a

b− a

)α−1 (
1− ρ+ a

b− a

)β−1

· |Φ|−
p
2 |Ψ|−

N
2 e−

1
2
trΦ−1(X−FΛ′)Ψ−1(X−FΛ′)′

∝ |Φ|−
(p+m)

2

(
ρ+ a

b− a

)α−1 (
1− ρ+ a

b− a

)β−1

e−trΦ
−1C (5.4.6)

where

C = (X − FΛ′)Ψ−1(X − FΛ′)′ + FR−1F ′. (5.4.7)

This is not a well–known recognizable distribution. Random sample genera-

tion will be performed by a simple univariate rejection sampling technique.

The exact form of |Φ| and Φ−1 will depend on which structure we determine

for Φ.
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The Conditional for ρ, Φ Intraclass

As previously stated, the exact form of the conditional posterior distribution

depends on which structure we determine for the correlation matrix Φ. If we deter-

mine the intraclass structure that has the covariance between any two observations

being the same, then we can use the result that the determinant of Φ has the form

|Φ| = (1− ρ)N−1[1 + ρ(N − 1)] (5.4.8)

and the result that the inverse of Φ has the form

Φ−1 =
IN

1− ρ
− ρee′

(1− ρ)[1 + (N − 1)ρ]
, (5.4.9)

which is again a matrix with intraclass correlation structure (Press 1982, p.23).

Using the aforementioned likelihood, priors, and forms above we obtain

p(ρ|F,Λ,Ψ,m,X) ∝
(
ρ+ a

b− a

)α−1 (
1− ρ+ a

b− a

)β−1

· |Φ|−
(p+m)

2 e−
1
2
trΦ−1C

∝
(
ρ+ a

b− a

)α−1 (
1− ρ+ a

b− a

)β−1

· (1− ρ)−
(N−1)(p+m)

2 [1 + ρ(N − 1)]−
(p+m)

2

· e−
1
2( 1

1−ρ trINC−
ρ

(1−ρ)[1+(N−1)ρ]
tree′C)

∝
(
ρ+ a

b− a

)α−1 (
1− ρ+ a

b− a

)β−1

· (1− ρ)−
(N−1)(p+m)

2 [1 + ρ(N − 1)]−
(p+m)

2

· e−
1
2( c1

1−ρ−
c2ρ

(1−ρ)[1+(N−1)ρ]) (5.4.10)
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where C is as defined as before,

c1 = tr(C),

and

c2 = tr(ee′C).

This is not recognizable as a friendly distribution so we must use use rejection

sampling in order to generate random samples.

The Conditional for ρ, Φ First Order Markov

If we determine the first order Markov structure, then we can use the result

that the determinant of a matrix with such structure has the form

|Φ| = (1− ρ2)N−1 (5.4.11)

and the result (Press 1982, p.24) that the inverse of such a patterned matrix has

the form

Φ−1 =
1

1− ρ2



1 −ρ 0
−ρ (1 + ρ2) −ρ

. . . . . . . . .

(1 + ρ2) −ρ
0 −ρ 1

 . (5.4.12)

along with the aforementioned likelihood and prior distributions to obtain
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p(ρ|F,Λ,Ψ,m,X) ∝
(
ρ+ a

b− a

)α−1 (
1− ρ+ a

b− a

)β−1

· |Φ|−
(p+m)

2 e−
1
2
trΦ−1C

∝
(
ρ+ a

b− a

)α−1 (
1− ρ+ a

b− a

)β−1

· (1− ρ2)−
(N−1)(p+m)

2 e−
1
2
tr(M1−ρM2+ρ2M3)C/(1−ρ2)

∝
(
ρ+ a

b− a

)α−1 (
1− ρ+ a

b− a

)β−1

· (1− ρ2)−
(N−1)(p+m)

2 e−
1
2

(k1−k2ρ+k3ρ2)/(1−ρ2)

where the matrices and constants used are, C as defined previously,

M1 = IN ,

M2 =



0 1 0
1 0 1

. . . . . . . . .

0 1
0 1 0

 ,

M3 =



0 0
1

. . .

1
0 0

 ,

k1 = tr(C),

k2 = tr(M2C),
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and

k3 = tr(M3C).

Again, this is not recognizable as a friendly distribution. We must use rejec-

tion sampling in order to generate random samples from this conditional posterior

distribution.

These are two simple possible structures. There may be others that also

depend on a single parameter or on several parameters. For the purpose of illustra-

tion, we will only study the two aforementioned structures. The rejection sampling

technique is simple to carry out because we only need to generate samples from a

univariate distribution.
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Gibbs Estimation, Φ Unknown but Structured

For Gibbs estimation of the posterior, we start with initial values for the

parameters ρ, Ψ, m, and F say ρ̄(0), Ψ̄(0), m̄(0), and F̄(0).

Then for a given number of factors m = m̄(i) cycle through

Ψ̄(i+1) ≡ a random sample from p(Ψ|ρ̄(i), F̄(i), Λ̄(i), m̄(i), X)

F̄(i+1) ≡ a random sample from p(F |ρ̄(i), Ψ̄(i+1), Λ̄(i), m̄(i), X)

Λ̄(i+1) ≡ a random sample from p(Λ|ρ̄(i), Ψ̄(i+1), F̄(i+1), m̄(i), X)

ρ̄(i+1) ≡ a random sample from p(ρ|Ψ̄(i+1), F̄(i+1), Λ̄(i+1), m̄(i), X)

and for the given value for the number of factors m = m̄(i) we have the sequence

(ρ̄(1), Ψ̄(1), F̄(1), Λ̄(1))

...

(ρ̄(s), Ψ̄(s), F̄(s), Λ̄(s))

(ρ̄(s+1), Ψ̄(s+1), F̄(s+1), Λ̄(s+1))

...

(ρ̄(s+t), Ψ̄(s+t), F̄(s+t), Λ̄(s+t)).

The first s random samples called the “burn in” are discarded and the re-

maining t samples are kept to be used for our estimates. We use the means of the

remaining t random samples
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F̄ =
1

t

t∑
k=1

F̄(s+k)

Λ̄ =
1

t

t∑
k=1

Λ̄(s+k)

Ψ̄ =
1

t

t∑
k=1

Ψ̄(s+k)

ρ̄ =
1

t

t∑
k=1

ρ̄(s+k)

as the sampling based posterior mean estimates of the parameters for a given number

of factors m = m̄(i).

We carry out this procedure of sampling and calculating the means of the

remaining samples for each value of the number of factors m, then find the value of

of the number of factors m = m̄ that makes the posterior conditional distribution

for the number of factors p(m|ρ̄, Ψ̄, F̄ , Λ̄, X) a maximum given the corresponding

estimates of the other parameters. This is the same as selecting the number of factors

to be that value which makes the conditional posterior odds ratio a maximum. We

will have (m̄, ρ̄, Ψ̄, F̄ , Λ̄) as our posterior estimates of the unknown parameters where

(ρ̄, Ψ̄, F̄ , Λ̄) are the estimates conditional on m = m̄. The step where we draw

samples from p(ρ|Ψ,m, F,Λ, X) is performed by univariate rejection sampling.
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6 Matrix Intraclass Covariance Model

When the observation vectors have a matrix intraclass covariance matrix

(Ωii = Ψ and Ωij = Υ, i 6= j.), we use the following 1. Note that if Υ = 0,

the null matrix, then we have independent observations and if Υ = ρΨ we have the

separable intraclass covariance discussed earlier.

6.1 Likelihood

The likelihood function for the observations when the errors are assumed to

have a matrix intraclass structure (after centering them about the sample mean) is

given by

p(x|Ψ,Υ,m, f,Λ) = (2π)−
Np
2 |Ω|−

1
2 e−

1
2

[x−(IN⊗Λ)f ]′Ω−1[x−(IN⊗Λ)f ]. (6.1.1)

where the covariance matrix is

Ω =



Ψ Υ · · · Υ
Ψ

.. .
...
Υ
Ψ

 , (6.1.2)

where Ψ > 0, Υ > 0 and Ψ is assumed to be diagonal on average. We will make an

orthogonal transformation on our observations. Let y = Γx = (y′1, . . . , y
′
N)′, with Γ

1Thanks to Dr. S. James Press for suggesting this covariance structure and the transformation
of the observations that results in a new covariance matrix that is block diagonal.
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such that ΓΓ′ = I, Γ = Γ0 ⊗ Ip, Γ0 a Helmert matrix, then the likelihood for the

transformed variables is given by

(y|Ψ,Υ,m, f,Λ) ∼ N (Γ(IN ⊗ Λ)f,ΓΩΓ′) (6.1.3)

which after some algebra and using Theorem (5) of (Press 1979) becomes

(y|χ,Ξ,m, f ∗,Λ) ∼ N ((IN ⊗ Λ)f ∗, D1) (6.1.4)

where the transformed factor scores f ∗ is

f ∗ = (Γ0 ⊗ Im)f, (6.1.5)

and the covariance matrix for the transformed observations is

D1 =



χ
Ξ 0

. . .

0
Ξ

 , D1 > 0. (6.1.6)

The transformed observations are independent with covariance matrices

χ = Ψ + (N − 1)Υ, χ > 0 (6.1.7)

for the first transformed variable and
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Ξ = Ψ−Υ, Ξ > 0. (6.1.8)

for the remaining N − 1 transformed variables.

We can partition y and f ∗ into

y =

(
y1

z

)
, f ∗ =

(
f ∗1
g

)
, (6.1.9)

where y1 and f ∗1 are p×1 vectors while z and g are (N−1)p×1 vectors. It is readily

seen from (6.1.4-6.1.8) that

(y1|χ,m, f ∗1 ,Λ) ∼ N(Λf ∗1 , χ)
(z|Ξ,m, g,Λ) ∼ N ((IN−1 ⊗ Λ)g, IN−1 ⊗ Ξ)

}
independent (6.1.10)

or the likelihood for the first transformed observation is

p(y1|χ,m, f ∗1 ,Λ) = (2π)−
p
2 |χ|−

1
2 e−

1
2

(y1−Λf∗1 )′χ−1(y1−Λf∗1 ). (6.1.11)

and the likelihood for the remaining N − 1 transformed observations is

p(z|Ξ,m, g,Λ) = (2π)−
(N−1)p

2 |IN−1 ⊗ Ξ|−
1
2 e−

1
2

[z−(IN−1⊗Λ)g]′(IN−1⊗Ξ)−1[z−(IN−1⊗Λ)g].

(6.1.12)
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The likelihood of the last N −1 transformed observations may be rewritten as

p(Z|Ξ,m,G,Λ) = (2π)−
np
2 |Ξ|−

n
2 e−

1
2
trΞ−1(Z−GΛ′)′(Z−GΛ′) (6.1.13)

where Z ′ = (z1, . . . , zn), G′ = (g1, . . . , gn), n = N − 1, and Ξ is assumed to be

diagonal on average.

We will neglect the first transformed observation thus we have n independent

transformed observations.

6.2 Prior Distributions

We will use generalized natural conjugate families of prior distributions for

the parameters. Lets consider the prior distribution for the factor scores

p(f |R,P,m) = (2π)−
Nm
2 |Θ|−

1
2 e−

1
2
f ′Θ−1f . (6.2.1)

where we assume the matrix intraclass correlation matrix

Θ =



R P · · · P
R

. . .
...
P
R

 , R > 0, P > 0.

In performing the transformation given above from f to f ∗, the prior distri-

bution for the factor scores becomes
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p(f ∗|R1, R2,m) = (2π)−
Nm
2 |D2|−

1
2 e−

1
2
f ′D−1

2 f (6.2.2)

and the covariance matrix for the transformed factor scores is

D2 =



R1

R2 0
. . .

0
R2

 , D2 > 0. (6.2.3)

The transformed factor score vectors are independent with covariance matrices

R1 = R + (N − 1)P, R1 > 0 (6.2.4)

for the first transformed factor score vector and

R2 = R− P, R2 > 0. (6.2.5)

for the remaining N − 1 transformed factor score vectors.

Using the partition f ∗ = (f ∗1 , g)

(f ∗1 |R1,m) ∼ N(0, R1)
(g|R2,m) ∼ N (0, IN−1 ⊗R2)

}
independent (6.2.6)

or the prior for the first transformed observation is
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p(f ∗1 |R1,m) = (2π)−
p
2 |R1|−

1
2 e−

1
2
f∗1
′R−1

1 f∗1 (6.2.7)

and the prior distribution for the remaining N − 1 transformed factor scores is

p(G|R2,m) = (2π)−
nm
2 |R2|−

n
2 e−

1
2
trGR−1

2 G′ . (6.2.8)

We will neglect the first transformed factor score vector.

Returning to the prior distributions. We will assume that the joint prior dis-

tribution for the parameters in the likelihood containing n transformed observation

vectors is

p(Ξ, G,Λ,m) = p(Ξ)p(m)p(G|R2,m)p(Λ|Ξ,m). (6.2.9)

where

p(Ξ) = c(n, ν)|Ξ|−
ν
2 e−

1
2
trΞ−1B, Ξ > 0, ν > 2n, (6.2.10)

p(m) = a discrete distribution to be defined below (6.2.11)

p(G|R2,m) = (2π)−
nm
2 |R2|−

n
2 e−

1
2
trGR−1

2 G′ , R2 > 0 (6.2.12)

p(Λ|Ξ,m) = (2π)−
pm
2 |Ξ|−

m
2 e−

1
2

(Λ−Λ0)Ξ−1(Λ−Λ0)′ , Ξ > 0, (6.2.13)
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6.3 Posterior Distribution

By Bayes’ rule and some algebra, the posterior distribution of the unknown

parameters becomes

p(Ξ,m,G,Λ|Z) ∝ p(m)p(Ξ)(2π)−
(n+p)m

2 |H|
p
2 |Ξ|−

(n+m+ν)
2

· |R2|−
n
2 e−

1
2
trGR−1

2 G′e−
1
2
trΞ−1U (6.3.1)

where the posterior conditional mean is given by

U ≡ (Z −GΛ′)′(Z −GΛ′) + (Λ− Λ0)H(Λ− Λ0)′ +B. (6.3.2)

6.4 Estimation

We simply note that N , Ψ, and F , are replaced by n, Ξ, and G in the priors,

posterior, the conditionals, and the estimation algorithm of the independent obser-

vation model. We may now estimate the parameters by either conditional modal,

LSO, or Gibbs estimation.
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7 Examples

We present two examples in this section. The first is a simulation to compare

CBFA and PS89 to ground truth. The second example, is an analysis of a real data

set.

7.1 Simulation Example

For our first example, we simulated a set of data to compare CBFA and PS89

in a known setting. We determined the number of factors using the correlated

Bayesian factor analysis (CBFA) methods previously developed and compared the

results to those of the PS89 model.

Data

We are using the homoscedastic separable covariance model that depends on

a single parameter ρ. For the correlation matrix Φ, we have selected the first order

Markov autocorrelation scheme. The data we simulated was of size N = 100 with

dimension p = 12. We use the convention of denoting the true known parameter by

using an asterisk as a subscript.

We selected the true correlation parameter to be ρ∗ = 0.25 and the disturbance

covariance matrix to be Ψ∗ = 25Ip. We then selected the true number of factors

to be m∗ = 4 and the true factor loading matrix to be as given in the estimation

section.

We selected the true correlation matrix for the factor scores to be R = IM
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corresponding to there being independence within the factor score vectors. We

generated a random score f∗ from

N(0,Φ∗ ⊗ Im)

and a random error ε∗ from

N(0,Φ∗ ⊗Ψ∗)

to obtain our simulated data

X∗ = F∗Λ
′
∗ + E∗

where f∗ = vec(F ′∗) and ε∗ = vec(E ′∗).

We partitioned the generated data into (Y,X)′. The first half for parameter

estimation and the second half for analysis.

Assessment

We took the first 50 observations Y and use these to assess our hyperparame-

ters then analyzed the remaining 50 observations X with the assessed hyperparam-

eters.

We selected the previously stated prior distributions for the separable model

(equations 5.1.5 - 5.1.7 and 5.4.4).

The mean of the of the training data used for hyperparameter assessment is

given in Table 3 while the covariance matrix is given in Table 4.
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Table 3: Simulation Training Mean.

p mean
1 -3.902
2 -2.101
3 -2.306
4 -0.723
5 -2.828
6 -4.032
7 2.742
8 2.870
9 2.633

10 1.007
11 1.811
12 2.457

The hyperparameters were assessed according to method (a) in appendix C.

The hyperparameters are ν = 76 and b0 = 1105.9. The possible number of factors

m = 3, 4, 5 was determined from a principal components analysis on the covariance

matrix (Table 4) of the training data because they had eigenvalues of 2.574, 1.585,

and 0.373 respectively. These factors also accountes for 74.8%, 88.0%, 91.1% of the

variance respectively. The prior p(3) = p(4) = p(5) = 1
3

was assessed.

We assessed the a priori mean for the factor loadings to be as displayed in the

next section, the prior matrix H to be H = 1
50
Im, the prior correlation matrix for

the factor scores to be R = Im because we wish to fit the standard orthogonal factor

analysis model.

The hyperparameters α and β have the interpretation that α + β − 2 is the

effective prior sample size, and a priori, we believe that for every α − 1 times we
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Table 4: Simulation Training Covariance matrix.

1 2 3 4 5 6 7 8 9 10 11 12
1 155.0 145.6 134.5 -8.0 -3.9 -2.8 -40.0 -39.0 -43.4 1.9 0.1 16.8
2 177.2 140.0 -13.5 1.5 -13.4 -52.4 -51.1 -50.5 -1.4 -5.3 6.4
3 164.4 -35.0 -29.8 -28.6 -37.7 -43.9 -52.7 7.6 13.0 18.5
4 123.3 94.7 116.8 -0.9 0.3 4.5 -8.4 11.7 14.5
5 107.6 97.0 -7.1 -1.1 6.6 -13.6 -9.8 4.1
6 139.6 -10.6 -11.9 -4.4 -5.4 17.0 24.7
7 131.3 112.2 110.7 26.3 11.7 16.9
8 132.2 103.8 29.2 2.7 6.2
9 137.4 15.6 -7.7 -0.2

10 101.3 67.9 63.5
11 92.0 68.1
12 88.8

believe ρ = b we believe there are β − 1 times ρ = a. We further selected the range

of values for the correlation parameter ρ to be a = 0 and b = 1
2

while we selected

the hyperparameter for its prior distribution to be α = 10, and β = 10.

Estimates

Implementing the Gibbs sampling was a computational challenge. Exact im-

plementation required the Cholesky factorization of a large matrix. It is Φ⊗ (Im +

Λ′Ψ−1Λ)−1 which could not be implemented within a reasonable amount of time

using the FORTRAN IMSL library subroutines for exact Cholesky factorization of

matrices. Instead of computing the exact Cholesky factorization, we make an ap-

proximation in order to reduce computational time. We assumed that ρ5 = 0. The

covariance matrix across the factor vectors which is of the form

Θ ≡



R̃ ρR̃ ρ2R̃ · · · ρN−1R̃

R̃
. . .

...

R̃

 ,

became the band symmetric matrix
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Θ ≡



R̃ . . . ρ4R̃ 0
... R̃

. . .

ρ4R̃
. . . . . .

0


,

where the matrix R̃ = (Im + Λ′Ψ−1Λ)−1. That is, we have a band consisting of

five blocks. We then used the FORTRAN subroutine SPBTRF for exact Cholesky

factorization of band symmetric matrices which is part of the LAPACK library of

routines. Computation time2 on a Sun Ultra 10 for 110000 iterations including

10000 for a burn in is given in Table 5.

Number of Factors m = 3 m = 4 m = 5
Computation Time 2 hrs 33 3 hrs 2 min 3 hrs 13

Table 5: Simulation Computation time for 110000 iterations.

Upon implementing the CBFA model, we found the number of factors to be

m̄ = 4 as evidenced in the following table containing the log of the conditional

posterior probabilities (with an additive constant).

Number of Factors m = 3 m = 4 m = 5
Log of Posterior -4745.5 -3956.2 -4493.9

Table 6: Simulation Posterior distribution for the number of factors.

Thus, CBFA correctly determined the number of factors to be four.

We found the correlation parameter to be as given in the Table 7 which is

consistent with its true value. We found the estimated factor scores from both

2We implemented several parallel runs with 25000 iterations (5000 for burn in) and found the
results to be consistent. The smaller runs took approximately 40 minutes for four factors.
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Model Estimate of ρ
True 0.25
CBFA, Φ Markov 0.2501

Table 7: Simulation Estimate of the Correlation Parameter ρ.

CBFA and PS89 to be as given in Table 8.
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Table 8: Simulation Factor Scores

True Factor Scores, F∗. PS89 Factor Scores, F̂ . CBFA Factor Scores, F̄ .

N 1 2 3 4
1 -0.066 -1.268 0.402 0.354
2 -0.219 -0.082 0.417 0.250
3 -0.281 1.258 -0.153 -0.548
4 -0.577 0.419 -1.023 0.516
5 -0.989 -0.653 0.186 0.517
6 1.956 -0.150 -0.774 1.494
7 0.656 -0.704 -0.569 -1.475
8 -0.613 -2.516 -1.348 0.154
9 0.573 -1.939 -0.812 0.340

10 1.684 -0.827 0.126 0.139
11 1.222 0.530 0.803 -0.352
12 -0.754 0.684 -2.550 -0.585
13 -1.403 0.327 -0.715 0.030
14 1.821 -0.226 0.392 0.652
15 -0.950 1.919 2.254 1.246
16 1.093 -1.160 1.195 1.091
17 -0.744 0.015 0.275 -0.015
18 -0.074 1.172 -0.148 0.126
19 0.379 -0.622 0.934 -0.208
20 -2.053 -2.607 -0.267 0.584
21 -0.782 0.848 -0.492 -2.031
22 -0.737 0.685 -0.381 -1.920
23 -0.657 1.247 -2.587 -0.136
24 1.078 0.106 -1.778 0.104
25 1.402 2.181 0.210 -0.701
26 0.018 3.027 0.096 -1.476
27 -2.013 1.934 1.852 0.573
28 -0.647 0.666 2.083 0.080
29 -1.881 0.525 0.403 0.052
30 0.713 -0.675 0.213 -0.597
31 -1.129 -0.283 0.845 -0.997
32 -1.981 0.519 0.816 -0.110
33 -0.714 -0.515 -0.138 1.009
34 -0.693 -1.366 -2.149 0.670
35 -0.719 -0.769 -0.921 0.047
36 -0.577 -1.461 -1.114 -0.269
37 -0.486 -0.728 -2.100 0.930
38 -1.856 0.229 -0.801 -0.904
39 -0.591 -0.543 1.066 -0.347
40 -2.071 -0.410 1.635 0.179
41 -0.527 -2.246 0.873 1.115
42 -0.278 -1.538 -0.028 2.073
43 -0.701 -0.808 1.327 0.801
44 -0.160 -0.120 1.573 3.746
45 -0.052 0.018 0.129 1.281
46 0.872 2.488 -0.444 0.869
47 0.055 -0.997 -1.984 0.067
48 -0.365 0.189 -0.238 -0.710
49 0.030 -0.122 -1.180 -0.447
50 -0.051 0.082 1.341 0.718

1 2 3 4
-0.096 -0.926 0.184 0.433
0.638 -0.053 0.635 0.123
0.037 1.196 -0.187 -0.594

-0.224 0.776 -0.920 0.399
-0.258 -0.782 0.146 0.625
1.371 0.075 -0.447 1.065
0.653 -0.559 0.140 -1.427

-0.760 -2.206 -1.039 0.207
0.335 -1.471 -0.605 0.249
1.771 -0.768 0.119 0.063
1.740 0.509 1.051 -0.546

-0.575 0.373 -2.582 -1.296
-1.022 -0.224 -0.524 -0.068
1.915 0.434 1.555 0.272

-0.042 2.218 2.584 1.503
1.063 -1.083 1.384 0.719

-0.120 -0.063 0.082 0.073
0.073 1.208 -0.237 0.007
1.088 -0.425 0.962 -0.287

-1.313 -1.987 -0.286 0.673
-0.798 0.797 -0.346 -2.223
-0.678 0.785 -0.221 -2.454
-0.466 0.893 -1.946 -0.205
1.309 0.183 -0.603 -0.775
1.656 1.990 0.635 -1.537
0.502 3.032 -0.048 -1.394

-0.730 2.235 1.156 0.766
0.244 0.666 2.009 0.447

-1.227 0.619 0.158 -0.051
0.923 -0.601 0.351 -0.990

-0.678 -0.266 -0.371 -1.067
-1.399 0.169 0.748 -0.324
-0.380 -0.421 -0.522 0.820
-0.807 -1.605 -1.997 0.109
-0.397 -0.886 -1.262 -0.398
-0.490 -0.913 -0.980 -0.158
-0.463 -0.450 -1.930 0.222
-1.412 -0.055 -0.610 -1.413
-0.266 -0.249 0.869 0.028
-1.518 -0.837 1.581 0.326
-0.348 -2.149 0.590 1.138
-0.462 -1.129 -0.142 1.956
-0.216 -0.001 1.054 0.156
0.344 -0.009 1.370 4.220
0.346 0.034 -0.492 0.970
1.363 2.374 0.042 0.325

-0.352 -1.075 -1.772 0.182
-0.245 0.059 -0.236 -0.672
-0.065 0.157 -0.847 -0.548
0.434 0.410 1.747 0.351

1 2 3 4
-0.087 -0.916 0.201 0.411
0.638 -0.058 0.622 0.122
0.019 1.190 -0.212 -0.563

-0.228 0.801 -0.948 0.443
-0.256 -0.780 0.160 0.603
1.386 0.083 -0.487 1.094
0.670 -0.577 0.163 -1.455

-0.725 -2.183 -0.993 0.175
0.369 -1.466 -0.573 0.215
1.797 -0.779 0.116 0.042
1.735 0.472 1.025 -0.546

-0.556 0.394 -2.585 -1.244
-1.023 -0.213 -0.511 -0.063
1.913 0.405 1.522 0.262

-0.104 2.203 2.521 1.537
1.071 -1.100 1.387 0.690

-0.116 -0.062 0.092 0.074
0.060 1.215 -0.257 0.034
1.093 -0.449 0.979 -0.327

-1.299 -1.965 -0.235 0.633
-0.811 0.775 -0.333 -2.213
-0.686 0.768 -0.213 -2.440
-0.452 0.924 -1.958 -0.153
1.337 0.186 -0.612 -0.758
1.646 1.961 0.592 -1.503
0.467 3.007 -0.101 -1.338

-0.788 2.224 1.120 0.795
0.212 0.640 1.993 0.432

-1.245 0.630 0.159 -0.049
0.935 -0.622 0.363 -1.017

-0.682 -0.274 -0.340 -1.089
-1.425 0.170 0.772 -0.349
-0.371 -0.397 -0.505 0.804
-0.760 -1.562 -1.943 0.097
-0.371 -0.875 -1.225 -0.412
-0.464 -0.886 -0.956 -0.158
-0.429 -0.410 -1.918 0.240
-1.416 -0.048 -0.588 -1.412
-0.281 -0.259 0.861 0.031
-1.537 -0.848 1.633 0.267
-0.339 -2.150 0.632 1.072
-0.454 -1.106 -0.131 1.938
-0.236 -0.013 1.055 0.137
0.316 0.010 1.314 4.229
0.362 0.053 -0.501 0.978
1.344 2.367 -0.044 0.401

-0.324 -1.047 -1.765 0.205
-0.248 0.047 -0.232 -0.670
-0.063 0.149 -0.846 -0.541
0.404 0.378 1.731 0.333
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Here are the true factor loadings along with the prior and estimated factor

loadings. We find that the CBFA estimates look more like the true values than the

PS89 estimates.

Table 9: Simulation Factor Loadings

True Loadings, Λ∗. Prior Loadings, Λ0.

p 1 2 3 4
1 10 0 0 0
2 10 0 0 0
3 10 10 0 0
4 0 10 0 0
5 0 10 0 0
6 0 0 10 0
7 0 0 10 0
8 0 0 10 0
9 0 0 0 0

10 0 0 0 10
11 0 0 0 10
12 0 0 0 10

p 1 2 3 4
1 11.57 0.18 -1.80 0.45
2 12.12 -0.17 -2.62 -0.40
3 11.14 -2.46 -2.42 1.46
4 -0.91 10.40 0.08 0.59
5 -0.16 9.21 0.20 -1.08
6 -0.78 10.87 -0.93 1.41
7 -1.81 -0.53 10.44 1.62
8 -1.93 -0.38 10.12 0.92
9 -2.17 0.33 10.13 -0.36

10 0.18 -1.08 1.79 8.05
11 -0.22 0.33 -0.42 8.56
12 1.02 1.25 0.41 7.94

PS89 Loadings, Λ̂. CBFA Loadings, Λ̄.

p 1 2 3 4
1 11.86 -0.56 -1.70 0.49
2 12.05 -0.41 -2.51 0.07
3 11.77 -1.27 -2.21 0.85
4 -0.78 10.56 -0.20 0.37
5 0.29 10.15 0.10 -0.79
6 -1.02 11.42 -0.45 0.99
7 -1.52 -0.36 10.55 1.26
8 -1.59 0.21 10.86 0.74
9 -2.51 -0.27 10.69 0.25

10 0.17 -0.65 1.10 8.42
11 -0.42 -0.47 0.41 9.22
12 1.11 1.17 0.25 8.64

p 1 2 3 4
1 11.60 -0.35 -1.64 0.40
2 11.71 -0.46 -2.39 0.04
3 11.50 -1.28 -2.14 0.98
4 -0.79 10.28 -0.08 0.27
5 0.27 9.92 0.18 -0.74
6 -0.92 11.18 -0.36 0.91
7 -1.60 -0.38 10.36 1.35
8 -1.48 0.39 10.55 0.68
9 -2.31 -0.07 10.47 0.40

10 0.14 -0.82 1.21 8.34
11 -0.32 -0.63 0.52 9.78
12 1.02 1.19 0.32 8.29
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Table 10: Simulation Disturbance Covariance Matrices

True Disturbance Covariance matrix, Ψ∗.
1 2 3 4 5 6 7 8 9 10 11 12

1 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 25.00 0.00 0.00 0.00 0.00 0.00 0.00
7 25.00 0.00 0.00 0.00 0.00 0.00
8 25.00 0.00 0.00 0.00 0.00
9 25.00 0.00 0.00 0.00

10 25.00 0.00 0.00
11 25.00 0.00
12 25.00

PS89 Disturbance Covariance Matrix, Ψ̂mode.
1 2 3 4 5 6 7 8 9 10 11 12

1 13.03 -1.58 -2.80 -0.07 -0.36 -1.02 -0.62 -1.29 1.66 0.18 0.77 -0.32
2 12.79 -3.10 -0.73 -0.96 0.67 -0.08 -0.19 0.46 0.39 0.30 0.51
3 15.54 0.95 1.39 0.65 1.04 2.08 -2.42 -0.96 -0.75 -0.72
4 14.71 -1.24 -4.48 0.53 0.40 -1.63 -0.03 -0.75 0.33
5 14.26 -2.54 -1.48 0.25 0.47 1.99 -0.74 0.42
6 15.75 1.56 0.20 -0.30 -0.72 0.21 -1.61
7 16.45 -2.81 -4.77 -1.21 -0.44 -0.87
8 14.92 -2.22 -2.34 1.07 0.40
9 15.70 1.53 1.01 0.19

10 15.41 -3.32 -1.84
11 13.64 -1.41
12 13.28

CBFA Disturbance Covariance Matrix, Ψ̄.
1 2 3 4 5 6 7 8 9 10 11 12

1 16.62 0.11 -0.69 0.29 -0.33 -1.01 -0.24 -1.47 1.63 0.09 0.85 -0.28
2 16.41 -1.03 -0.85 -0.42 0.31 -0.17 0.35 -0.15 0.23 0.16 0.76
3 18.98 0.43 1.39 1.26 0.82 2.35 -1.77 -0.94 -0.73 -0.68
4 17.31 0.85 -2.02 0.46 0.42 -1.30 -0.85 -0.37 0.65
5 17.20 -0.39 -1.90 0.93 1.25 1.87 -1.42 0.22
6 19.62 2.02 0.46 -1.09 -0.78 -0.01 -1.28
7 19.91 -0.44 -3.14 -0.93 -0.34 -0.99
8 18.18 0.25 -2.54 0.78 0.70
9 19.01 2.00 0.95 0.15

10 18.94 -1.28 -0.17
11 17.77 0.54
12 16.83

90



Comparison of CBFA and PS89 Estimators.

So we will address the question of whether or not CBFA is worth the extra

work. The purpose of factor analysis is to represent the observations in terms of a

smaller set of variables called factors along with factor loadings. The factor scores

and loadings capture the essence of the observations by making use of interdepen-

dencies.

It is not easy to determine quantitative conclusions about these estimated

matrices, since they contain so many values. So to assist us in such comparisons we

have adopted the same several distinct scalar performance measures used in RP98.

Accordingly, we have evaluated:

∣∣∣∣∣F ′FN
∣∣∣∣∣ ,

[
tr

(
F ′F

N

)] 1
2

, and

∣∣∣∣∣F ′FN − Im
∣∣∣∣∣ ,

for the true, PS89, and CBFA estimators. (Note that [tr(F
′F
N

)]
1
2 denotes the norm

of the F ′F
N

matrix.) We have also differenced the matrix estimators pairwise, for the

factor scores, factor loadings, and disturbance covariance matrices, to form:

∆FTP = FT − FP , ∆FTC = FT − FC ,

∆ΛTP = ΛT − ΛP , ∆ΛTC = ΛT − ΛC , and

∆ΨTP = ΨT −ΨP ,∆ΨTC = ΨT −ΨC ,

where T , P , and C denote the true values, the PS89 conditional modal, and CBFA

estimators respectively.
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Moreover, we have computed the scalar measures of the differenced matrices:

|(∆F ′)(∆F )|
1
2 , |(∆Λ′)(∆Λ)|

1
2 , |(∆Ψ′)(∆Ψ)|

1
2 ,

and have compared their numerical values. All these comparisons are displayed in

Tables 11 and 12. The F ′F
N

matrices themselves are given below for the three types

of estimators.

CBFA Matrix

F̄ ′F̄

N
=


0.779 0.213 0.255 0.037
0.213 1.252 0.262 −0.237
0.255 0.262 1.155 0.328
0.037 −0.237 0.328 1.124

 ,

PS89 Matrix

F̃ ′F̃

N
=


0.776 0.239 0.287 0.035
0.239 1.270 0.306 −0.269
0.287 0.306 1.176 0.344
0.035 −0.269 0.344 1.132

 ,

True Matrix

F ′∗F∗
N

=


1.079 0.048 −0.095 0.037
0.048 1.455 0.211 −0.328
−0.095 0.211 1.357 0.253

0.037 −0.328 0.253 0.981

 .

We note from inspection of Table 11 that the CBFA estimator of F ′F
N

is closer

to the ideal values for all of the three of the measures of performance which is better

than the PS89 estimators. Since the matrix F ′F
N

represents the sample covariance

for the factor scores, and they have been generated from an identity covariance

matrix the determinant should be the determinant of an identity covariance matrix,

which is 1. That’s what is meant by the ideal value in the last column of the table.

Similarly for the norm of this matrix in the middle row since the square root of the
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Table 11: Measures of Quality.

Performance CBFA PS89 True Ideal
Measures Estimation Estimation Values Values

∣∣∣F ′F
N

∣∣∣ 0.918 0.883 1.722 1

[
tr
(
F ′F
N

)] 1
2 2.076 2.084 2.207 2

∣∣∣F ′F
N
− Im

∣∣∣ 3.619× 10−2 3.637× 10−2 9.849× 10−3 0

trace of the identity matrix of order 4 is 2.

The difference measures in Table 12 clearly show that the factor scores, load-

ings, and disturbance variance and covariance estimates of CBFA are better than

Table 12: Difference Measures Of Quality.

Performance CBFA-True PS89-True Ideal
Measures Values

|(∆F ′)(∆F )| 12 40.065 42.833 0

|(∆Λ′)(∆Λ)| 12 52.695 63.036 0

|(∆Ψ′)(∆Ψ)| 12 3.286× 109 7.9385× 1010 0

those of PS89. This is especially true for the loading and disturbance covariance

matrices. We attribute this to CBFA yielding a better estimate of the sample
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covariance matrix Σ̂ than PS89. This sample covariance matrix is the basis for the

entire analysis.
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7.2 Plankton Example

For our second example, we factor analyze the data given in Table 13 taken

from Basilevsky, 1994 and originally from Imbrie and Kipp, 1971. The data consists

of a core sample taken from the ocean floor.

Table 13: Plankton Data

N 1 2 3 4 5 6 7 8 9 10
1 1.792 0.489 43.485 0.814 25.570 0.651 0.000 0.163 0.000 0.163
2 3.203 0.712 37.722 0.356 30.961 0.712 0.000 0.356 0.000 0.000
3 2.364 1.709 47.009 0.855 20.513 1.709 0.000 1.282 0.427 0.000
4 1.124 0.562 47.191 1.124 12.360 2.247 0.000 3.933 0.562 0.562
5 0.671 1.007 43.624 3.020 15.436 1.007 0.000 0.336 0.671 0.336
6 1.149 0.766 52.874 0.766 12.261 0.000 0.000 0.383 2.299 0.000
7 1.990 0.498 53.234 3.980 6.965 0.000 0.000 0.498 0.995 0.000
8 2.222 2.222 45.926 2.222 13.333 2.963 0.000 1.481 1.481 1.481
9 1.786 1.190 49.405 1.786 10.714 1.786 0.000 0.595 0.595 0.000

10 0.621 0.621 36.025 2.484 10.519 0.621 0.000 1.242 1.863 0.000
11 1.418 0.000 46.099 2.837 9.220 4.255 0.000 0.709 2.836 0.000
12 0.000 0.000 38.298 0.709 11.348 2.837 0.000 1.418 5.674 0.000
13 0.498 0.498 48.756 0.000 5.970 1.990 0.498 0.498 2.985 0.000
14 1.379 1.034 42.069 0.690 8.621 2.069 0.000 2.759 1.724 0.690
15 0.662 0.000 46.358 0.000 11.921 0.000 0.000 1.987 3.311 0.000
16 3.429 1.143 45.714 1.143 14.286 1.714 0.000 0.571 3.429 0.571
17 2.899 2.899 42.995 0.000 14.010 1.449 0.000 2.415 2.415 0.483
18 1.198 1.796 50.299 1.198 8.383 2.994 0.000 0.599 0.599 0.599
19 1.887 2.516 38.994 3.145 7.547 2.516 0.000 1.258 1.258 0.000
20 5.143 2.857 38.286 0.000 13.714 1.143 0.000 1.143 1.143 0.000
21 3.067 0.613 37.423 1.227 13.497 2.761 0.000 1.227 0.000 0.307
22 1.961 2.614 41.830 3.268 11.765 1.307 0.654 1.307 0.654 0.000
23 1.515 2.020 37.374 1.010 12.626 2.020 0.000 0.000 0.505 0.000
34 1.422 2.844 38.389 1.422 16.114 0.948 0.000 0.000 0.474 0.000
25 1.630 1.630 36.957 2.174 10.870 2.174 0.000 0.000 0.000 0.000
26 1.571 1.571 37.696 1.571 10.995 4.188 0.000 2.094 2.618 1.047
27 1.826 3.196 36.073 0.913 12.329 2.283 0.000 0.457 0.913 0.457
28 0.926 3.241 28.241 0.463 12.037 0.926 0.000 0.463 1.852 0.463
29 1.379 2.414 35.517 0.345 11.679 0.345 0.000 0.000 4.828 0.000
30 1.036 6.218 34.197 1.036 14.508 0.518 0.000 0.000 1.554 0.518
31 0.649 3.896 39.610 3.896 13.636 1.299 0.000 0.543 0.649 0.000
32 1.485 7.426 29.208 2.475 15.842 1.485 0.000 2.970 1.485 0.000
33 1.087 0.000 42.391 1.630 15.761 1.630 0.000 2.174 1.087 0.000
34 3.404 0.426 32.766 4.255 13.191 2.128 0.000 3.830 0.851 1.700
35 1.429 0.476 42.381 2.857 10.952 1.905 0.000 0.476 0.952 1.900
36 1.449 3.623 36.957 0.000 15.942 3.623 0.000 0.725 1.449 0.720
37 1.685 1.685 48.315 2.809 10.674 1.124 0.000 1.124 1.124 0.000
38 0.772 0.386 40.927 0.772 15.444 2.703 0.000 0.000 0.772 0.380
39 1.266 1.266 37.975 2.532 18.143 3.376 0.000 2.110 0.422 0.000
40 3.627 0.518 41.451 1.554 16.580 0.518 0.000 2.591 1.554 0.000
41 1.869 1.402 37.850 2.804 12.617 2.336 0.000 9.813 0.467 0.930
42 3.509 2.456 42.105 2.105 12.281 1.053 0.351 2.456 0.000 0.000
43 0.904 0.904 44.578 1.205 14.759 0.602 0.301 1.506 0.602 0.000
44 1.449 0.483 43.961 3.865 12.560 1.449 0.000 2.899 0.000 0.000
45 1.299 0.649 38.961 0.325 17.208 1.945 0.000 4.545 1.948 0.000
46 0.000 0.741 33.333 2.222 22.222 2.222 0.000 0.741 0.000 0.000
47 2.513 4.523 35.176 1.005 20.603 0.000 0.000 0.000 0.000 0.000
48 1.026 0.513 42.051 2.051 16.410 2.051 0.000 0.513 2.051 0.000
49 0.565 0.565 44.068 3.955 10.169 1.695 0.000 9.605 3.390 0.000
50 1.523 0.000 34.518 2.030 20.305 2.030 0.000 1.523 1.015 0.000
51 0.508 0.000 40.609 0.508 21.827 0.508 0.000 3.046 0.000 0.000
52 0.000 2.703 28.649 1.622 24.324 3.784 0.000 2.162 3.243 0.000
53 0.629 4.403 39.623 0.629 10.063 3.145 0.000 5.660 5.031 0.000
54 0.800 2.400 50.400 1.600 11.200 2.400 0.000 4.800 0.000 0.000
55 1.630 0.543 54.348 2.174 7.609 3.804 0.000 1.630 2.717 0.000
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In the core sample, plankton content is measured for p = 10 species at 110

depths. The plankton content is used to infer approximate climatological conditions

which

Table 12 Continued: Plankton Data

N 1 2 3 4 5 6 7 8 9 10
56 0.000 0.543 32.609 1.087 11.413 4.891 0.000 3.804 2.717 0.000
57 1.622 1.081 32.973 2.162 11.892 3.784 0.000 9.780 0.541 0.000
58 1.762 0.000 33.921 0.000 16.740 2.643 0.000 9.251 2.643 0.000
59 1.418 0.000 36.879 0.709 11.348 4.255 0.000 4.965 4.965 0.709
60 1.136 2.841 49.432 2.273 11.932 2.273 0.000 0.568 0.000 0.000
61 0.893 3.561 33.036 5.357 13.393 2.679 0.000 4.464 0.893 0.893
62 3.636 1.212 35.758 2.424 6.061 6.061 0.000 3.030 0.000 0.000
63 3.448 1.478 29.064 3.448 14.778 4.433 0.000 2.955 0.000 0.000
64 1.342 2.685 34.228 3.356 12.081 2.685 0.000 2.685 4.027 0.000
65 4.435 2.419 33.468 0.806 17.742 3.226 0.000 0.000 4.032 0.000
66 2.158 2.158 34.532 2.158 15.826 5.036 0.000 0.719 2.158 0.000
67 0.000 4.545 38.636 0.000 15.152 1.515 0.000 2.273 2.273 0.758
68 1.235 0.000 41.975 0.000 12.346 1.852 7.407 0.617 2.469 0.000
69 1.508 1.508 38.191 0.503 3.518 1.508 4.523 1.508 2.010 0.503
70 3.550 2.367 47.337 2.367 5.917 10.059 0.000 0.000 0.592 0.000
71 5.344 0.000 39.695 1.527 13.740 6.870 0.000 0.763 0.000 0.000
72 5.455 0.606 43.636 1.818 10.303 7.273 1.212 0.605 0.000 0.000
73 0.000 0.000 38.095 3.571 4.762 9.524 0.000 3.571 0.000 1.190
74 2.609 1.304 33.043 1.739 9.130 3.913 0.870 3.478 0.435 0.000
75 1.604 1.604 33.690 0.000 19.251 2.139 0.000 3.209 3.209 0.535
76 1.899 0.000 34.177 2.532 12.025 4.430 0.633 2.532 1.266 0.000
77 2.041 0.816 36.327 2.041 20.000 2.449 0.000 2.449 1.224 0.408
78 0.595 2.976 50.000 0.000 7.738 6.548 0.000 2.381 0.595 0.000
79 0.000 6.130 35.249 0.000 10.728 0.000 0.000 0.383 0.383 0.000
80 0.372 5.576 37.918 0.372 15.613 0.743 0.000 0.000 0.372 0.000
81 3.582 5.373 38.209 0.896 17.015 0.896 0.000 0.000 0.896 0.299
82 2.362 2.362 36.220 3.150 14.173 1.969 0.000 0.787 1.575 0.000
83 2.105 4.211 26.842 1.053 13.684 4.737 0.526 5.263 2.105 0.000
84 2.381 3.175 32.143 1.190 17.460 1.587 0.000 0.397 1.190 0.000
85 0.455 0.909 37.273 0.455 24.091 3.182 0.000 0.455 0.455 0.909
86 0.858 3.863 31.760 1.717 21.888 7.296 0.000 4.721 0.858 0.000
87 2.769 1.231 43.385 1.231 2.769 4.000 0.000 6.462 3.077 0.000
88 0.658 1.316 52.632 0.000 3.289 1.974 0.000 3.947 0.658 0.000
89 3.448 0.575 35.632 1.149 14.368 0.000 0.000 4.598 0.575 0.000
90 1.689 0.676 26.689 2.027 8.108 4.392 0.338 13.176 2.027 1.689
91 1.533 0.000 35.249 0.383 9.195 2.682 1.533 13.793 1.533 0.000
92 1.064 0.000 40.957 1.596 6.915 2.660 0.000 3.723 2.660 0.000
93 1.394 0.348 36.585 1.045 8.014 3.833 0.000 6.969 1.394 0.000
94 0.000 0.000 35.533 1.015 13.706 7.614 0.000 3.553 0.000 0.000
95 1.970 2.463 39.901 0.493 15.764 3.941 0.000 0.985 0.493 0.493
96 1.471 2.206 34.559 2.941 15.441 1.471 0.000 0.000 0.735 0.000
97 1.613 0.403 42.742 1.210 16.129 2.823 0.000 2.823 0.403 0.000
98 0.000 0.498 44.776 2.488 19.900 0.995 0.000 1.990 0.995 0.498
99 0.448 0.448 40.359 4.484 12.556 2.242 0.000 6.278 0.897 0.000

100 2.717 0.000 32.065 3.261 15.761 1.087 0.000 6.522 1.087 0.000
101 1.887 1.887 34.906 1.415 12.264 1.415 0.000 3.302 1.415 0.472
102 1.342 2.013 24.161 3.356 11.409 1.342 0.000 9.396 0.000 0.671
103 1.633 0.816 24.898 2.449 6.531 0.408 0.000 12.245 2.041 0.000
104 1.548 0.310 31.269 1.548 9.288 0.000 0.000 9.288 4.644 0.000
105 1.093 0.546 31.694 1.639 14.208 0.000 0.000 19.672 4.372 0.000
106 2.183 1.747 33.188 0.437 13.974 0.437 0.000 4.367 1.747 1.747
107 1.878 0.469 24.883 1.878 14.085 1.408 0.000 9.390 0.939 0.000
108 2.286 2.286 37.143 1.714 8.000 1.714 0.000 8.000 4.571 0.000
109 3.911 2.793 32.961 1.117 14.525 1.117 0.000 2.793 0.559 0.000
110 0.658 0.658 34.868 4.605 15.789 1.316 0.000 3.947 1.974 0.000

existed on earth. Since many species coexist at different times (core depths), their

abundance is generally correlated, and a factor analysis is frequently performed.

We take the first 55 observations as our training data and analyze the last N = 55
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observations.

We have calculated the training sample mean x̄ and the sample covariance

matrix

Table 14: Plankton Training Mean.

p mean
1 1.58
2 1.65
3 41.10
4 1.66
5 14.01
6 1.80
7 0.03
8 1.76
9 1.43

10 0.24

Σ̂ which are given in Tables 14 and 15. From a principal components analysis we

determined the number of factors m to be 4, 5, or 6 because they had eigenvalues

1.128, 1.064, and 0.842 respectively. These factors also accounted for 59.8%, 70.4%,

and 78.8% of the variance respectively.

The prior p(4) = p(5) = p(6) = 1
3

was assessed. Our prior means for the factor

loadings hyperparameter is given in Table 17.

We assessed the remaining hyperparameters using method (a) as in the ap-

pendix. They are h0 = 55, ν = 77, and b0 = 174.5.

We will be able to compare PS89 estimates to CBFA Gibbs sampling estimates.

Upon implementing the aforementioned, we found the number of factors to
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Table 15: Plankton Sample Covariance matrix.

1 2 3 4 5 6 7 8 9 10
1 1.01 0.12 0.10 -0.04 0.40 -0.18 0.00 -0.14 -0.35 0.08
2 2.43 -3.98 -0.17 0.06 -0.10 0.00 -0.20 0.01 -0.01
3 35.90 0.45 -11.59 -0.31 0.10 0.08 0.01 -0.23
4 1.34 -1.32 0.11 0.00 0.54 -0.37 0.06
5 23.03 -0.94 -0.11 -1.15 -2.09 -0.32
6 1.18 -0.02 0.38 0.29 0.13
7 0.02 -0.01 -0.01 -0.01
8 4.11 0.37 0.09
9 1.80 -0.03

10 0.20

be m̄ = 5 as evidenced in the following table containing the log of the conditional

posterior probabilities (with an additive constant).

Number of Factors m = 4 m = 5 m = 6
Log of Posterior -7330.5 -5407.1 -6713.

Table 16: Simulation Posterior distribution for the number of factors.

Thus, CBFA correctly determined the number of factors to be five.

We found the estimate of the correlation parameter to be ρ̄ = 0.5473.
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Table 17: Plankton Factor Loadings

Prior Factor Loadings, Λ0.

p 1 2 3 4 5
1 0.068 -0.066 0.000 -0.518 -0.023
2 0.014 -1.210 -0.089 -0.029 0.141
3 3.193 3.150 0.022 -0.144 -0.107
4 0.137 0.059 0.185 -0.038 0.803
5 -3.375 -0.295 -0.672 -1.109 -0.789
6 -0.011 -0.034 0.135 0.549 0.275
7 0.037 -0.004 -0.010 -0.015 0.004
8 -0.062 0.112 1.050 0.237 0.444
9 0.355 -0.298 0.388 0.772 -0.360

10 0.023 -0.074 0.028 0.054 0.170

PS89 Factor Loadings, Λ̂.

p 1 2 3 4 5
1 0.118 -0.191 0.000 -0.540 0.041
2 0.158 -1.002 -0.467 -0.309 -0.117
3 3.297 3.679 -0.270 -0.363 -0.366
4 -0.033 0.068 0.011 -0.139 0.934
5 -3.709 0.137 -0.921 -1.390 -1.094
6 0.135 0.320 -0.331 0.817 0.466
7 0.146 -0.008 -0.028 0.030 -0.060
8 -0.359 0.075 2.271 0.413 0.699
9 0.187 -0.227 0.431 0.747 -0.651

10 -0.013 -0.039 -0.016 0.035 0.131

CBFA Loadings, Λ̄.

p 1 2 3 4 5
1 0.004 -0.103 -0.053 -0.364 -0.065
2 0.071 -0.695 -0.145 -0.100 0.024
3 3.150 3.569 -0.254 -0.319 -0.299
4 -0.029 -0.073 0.120 0.023 0.548
5 -3.372 0.152 -0.690 -1.114 -0.832
6 0.140 0.142 0.112 0.524 0.350
7 0.051 0.019 0.004 -0.008 -0.035
8 -0.346 -0.186 1.420 0.404 0.556
9 0.215 -0.175 0.295 0.492 -0.287

10 -0.012 -0.068 -0.011 0.045 0.062
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Table 18: Plankton Factor Scores

PS89 Factor Scores, F̂ . CBFA Factor Scores, F̄ .

N 1 2 3 4 5
1 -0.194 -0.507 0.073 0.894 0.023
2 -0.457 -0.237 1.241 0.263 0.753
3 -1.101 0.375 1.092 0.077 -0.326
4 0.123 0.156 0.417 0.794 -0.405
5 1.274 1.829 -1.190 -0.933 -0.467
6 -0.299 -0.582 0.022 -0.105 0.810
7 0.971 -0.609 -0.092 0.424 0.805
8 -0.822 -0.906 -0.235 -0.105 0.577
9 0.106 -0.603 -0.144 0.358 -0.016

10 -0.614 -0.370 -0.851 -0.287 -0.964
11 -0.460 -0.134 -0.794 0.012 -0.281
12 0.093 0.152 -0.662 -0.294 -0.801
13 0.602 0.902 -0.847 -0.168 -0.930
14 1.780 -0.702 -0.358 0.508 0.010
15 1.914 1.045 -0.985 0.292 0.310
16 0.106 0.785 -0.844 -0.415 -0.134
17 0.963 1.011 -0.869 -0.362 0.009
18 0.998 0.022 -0.007 1.248 1.255
19 0.334 -0.791 -0.041 0.281 0.462
20 -1.098 0.111 -0.305 -0.209 -0.939
21 -0.122 -0.176 -0.270 0.280 0.220
22 -1.101 0.766 -0.609 -0.698 -0.556
23 1.792 1.631 -0.692 0.041 -0.329
24 0.770 -1.070 -1.028 -0.297 -0.373
25 0.152 -0.104 -1.289 -0.755 -0.726
26 0.031 0.002 -1.227 -1.169 -0.796
27 0.007 -0.088 -0.787 -0.415 -0.150
28 -0.718 -1.694 0.331 0.509 0.277
29 -0.689 -0.578 -0.965 -0.547 -0.542
30 -1.636 1.283 -1.294 -0.875 -1.117
31 -1.808 0.051 -0.224 -0.105 -0.098
32 1.959 0.298 0.752 0.637 0.291
33 2.633 1.800 -0.215 -0.153 -0.292
34 -0.260 0.140 0.028 -0.690 -0.240
35 -0.486 -1.469 2.322 1.186 1.358
36 -0.061 0.083 2.208 0.511 0.621
37 1.161 0.401 0.064 0.457 -0.035
38 0.513 -0.072 0.731 0.553 0.389
39 -0.494 0.388 -0.269 0.545 0.181
40 -0.037 0.698 -0.989 -0.528 -0.595
41 -0.303 -0.206 -1.031 -0.484 -0.185
42 -0.109 1.531 -0.601 -0.694 -0.566
43 -0.519 2.180 -0.919 -1.065 -0.868
44 0.065 0.988 0.361 -0.215 0.471
45 -0.939 -0.089 0.541 -0.355 0.289
46 0.088 -0.345 -0.188 -0.129 -0.103
47 -0.879 -1.852 1.305 0.359 1.274
48 -0.195 -2.037 2.214 0.933 1.279
49 -0.015 -0.894 1.521 0.718 0.173
50 -1.262 0.032 3.576 0.443 0.568
51 -0.307 -0.459 0.039 -0.221 -0.296
52 -1.303 -1.340 1.301 0.293 0.668
53 0.761 -0.361 1.113 0.502 0.090
54 -0.256 -0.624 -0.371 -0.627 -0.193
55 -0.656 0.239 -0.061 -0.215 0.163

N 1 2 3 4 5
1 -0.175 -0.384 -0.011 0.688 -0.093
2 -0.307 -0.086 0.627 0.079 0.432
3 -0.847 0.366 0.593 0.052 -0.351
4 0.127 0.146 0.294 0.661 -0.375
5 0.996 1.396 -0.454 -0.589 -0.036
6 -0.230 -0.511 -0.012 -0.116 0.645
7 0.769 -0.445 -0.086 0.218 0.552
8 -0.666 -0.720 -0.233 -0.135 0.390
9 0.126 -0.536 -0.051 0.335 -0.014

10 -0.354 -0.393 -0.422 -0.058 -0.651
11 -0.515 -0.225 -0.422 0.105 -0.134
12 0.073 0.010 -0.352 -0.157 -0.450
13 0.425 0.739 -0.458 -0.048 -0.602
14 1.479 -0.531 -0.203 0.328 -0.056
15 1.477 0.779 -0.332 0.265 0.423
16 0.011 0.613 -0.406 -0.292 0.007
17 0.729 0.794 -0.357 -0.260 0.160
18 0.792 0.095 0.004 0.871 0.890
19 0.263 -0.595 -0.112 0.133 0.255
20 -0.944 0.008 -0.175 -0.045 -0.680
21 -0.126 -0.116 -0.195 0.200 0.134
22 -0.931 0.557 -0.310 -0.438 -0.294
23 1.418 1.255 -0.160 0.124 -0.044
24 0.570 -0.989 -0.636 -0.189 -0.231
25 0.057 -0.254 -0.699 -0.462 -0.379
26 -0.046 -0.181 -0.630 -0.783 -0.396
27 -0.029 -0.138 -0.425 -0.262 -0.010
28 -0.600 -1.431 0.063 0.344 0.059
29 -0.633 -0.580 -0.601 -0.350 -0.346
30 -1.444 0.903 -0.688 -0.480 -0.640
31 -1.549 -0.116 -0.122 0.009 -0.010
32 1.673 0.337 0.537 0.425 0.168
33 2.184 1.521 0.079 -0.095 -0.065
34 -0.198 0.161 -0.032 -0.559 -0.181
35 -0.271 -1.005 1.133 0.683 0.676
36 0.090 0.259 1.187 0.225 0.237
37 0.973 0.395 0.097 0.345 -0.050
38 0.473 0.043 0.388 0.341 0.164
39 -0.460 0.318 -0.176 0.422 0.105
40 -0.106 0.465 -0.489 -0.306 -0.295
41 -0.293 -0.236 -0.609 -0.314 -0.047
42 -0.128 1.217 -0.236 -0.447 -0.261
43 -0.464 1.695 -0.353 -0.637 -0.367
44 0.100 0.863 0.273 -0.171 0.433
45 -0.724 0.002 0.228 -0.327 0.166
46 0.073 -0.282 -0.139 -0.103 -0.088
47 -0.638 -1.382 0.491 0.070 0.702
48 -0.007 -1.429 1.003 0.451 0.571
49 0.112 -0.592 0.776 0.464 -0.103
50 -0.791 0.234 1.969 0.193 0.147
51 -0.239 -0.367 -0.045 -0.170 -0.262
52 -0.995 -0.960 0.509 0.066 0.244
53 0.720 -0.242 0.682 0.345 -0.025
54 -0.230 -0.544 -0.271 -0.499 -0.141
55 -0.519 0.200 -0.036 -0.133 0.176
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Table 19: Plankton Disturbance Covariance Matrices

PS89 Disturbance Covariance Matrix, Ψ̂mode.
1 2 3 4 5 6 7 8 9 10

1 1.88 -0.20 -0.12 -0.01 -0.12 0.31 -0.00 -0.13 -0.01 -0.05
2 2.03 0.42 -0.03 0.35 0.01 -0.14 -0.20 0.05 0.03
3 1.70 0.01 0.38 0.18 -0.06 -0.15 0.11 0.03
4 1.73 0.10 0.03 -0.10 -0.26 0.04 -0.01
5 1.78 0.10 -0.09 -0.07 0.22 0.05
6 3.11 -0.10 -0.64 -0.29 -0.01
7 1.81 -0.06 0.02 0.00
8 2.81 0.05 -0.03
9 1.76 0.02

10 1.35

CBFA Disturbance Covariance Matrix, Ψ̄.
1 2 3 4 5 6 7 8 9 10

1 3.05 -0.17 -0.23 -0.30 0.11 -0.03 0.08 -0.36 -0.14 -0.19
2 3.13 0.68 -0.22 0.58 -0.13 -0.44 -0.53 -0.12 0.09
3 9.90 -0.56 -0.06 0.51 -0.21 -2.48 0.06 -0.00
4 2.79 -0.30 0.22 -0.17 0.17 -0.16 0.01
5 8.51 -0.76 -0.23 -1.31 -0.07 0.06
6 5.26 -0.37 0.01 -0.44 0.03
7 2.51 0.09 0.05 -0.10
8 8.88 0.42 -0.20
9 3.04 0.07

10 1.63

Using CBFA, we identify there to be five underlying factors. The factors (in

the order 1, 2, 5, 3, 4) correspond to the four climate zones Tropical, Subtropical,

Polar, Subpolar, and the Gyre margin assemblege region.

We see that factor two is more defined to load on variable two in the PS89

estimate and more so in the CBFA estimate of the loading matrix and factor four

is more defined to load on variable five.

101



Notice how the CBFA estimates of the disturbance variances are all larger than

the PS89 and some are several times larger. This is because the PS89 estimates are

inefficient when the observations are correlated.
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8 Conclusion and Future Research

We have developed the full covariance correlated Bayesian factor analysis

model; we have shown that the number of parameters is enormous; we have shown

that the number of covariance parameters can be greatly reduced by specifying

either a separable or a matrix intraclass covariance matrix; and we have shown

that that the separable covariance matrix can be estimated but the computational

requirements are too great. We have simplified the computation by considering a

homoscedastic variance model decomposing Ω into Φ and Ψ where Φ is a correlation

matrix that is a function of the single parameter ρ and Ψ is a covariance matrix.

We have outlined a couple of correlation structures for Φ and have used a first order

Markov correlation matrix in two examples.

We see that the addition of a single parameter models correlation vectors and

increases how well we explain the relationship among a set of observed random vari-

ables in terms of a smaller number of factors as measured several scalar performance

measures.

It is our conclusion that when correlated observations are factor analyzed as

independent observations, the covariance matrix Σ is inefficiently estimated and

thus the factor analysis based on this covariance matrix can be improved.

Future research will include investigation of the independent vector assump-

tion when in fact the observation vectors are correlated.

We csn investigate other covariance structures and covariances that depend on

more than one parameter. We have laid the foundation for the correlation matrix
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Φ to depend on several parameters, but for simplicity consider it to be a function

of a single parameter.

We have evaluated examples that assumed orthogonal factors. We can consider

examples with oblique factors.

We might use sampling distributions other than the normal such as the mul-

tivariate t distribution.

Finally, future research will include applications to imaging science, economics,

and to the social sciences. In imaging, we can factor analyze an image taken in

several different modalities or bands into a smaller number of “common” factor

images that represent the essence of the images. These “common” factor images can

be stored thus a lossy compression technique or can be used for object recognition. In

Economics, we can use factor analysis for portfolio selection. In the social sciences,

we can use correlated Bayesian factor analysis when it is found that the subjects

(observation vectors) are related.
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Appendices

A Bayesian Estimation Methods

In this section we define define the estimation procedures used and discuss

some advantages of each. The procedures are marginalization and conditional esti-

mation, LSO, and Gibbs sampling

A.1 Conditional Modal Estimation

Often we have a set of parameters, θ = (θ1, . . . , θJ) in our posterior distribution

p(θ|X). The marginal posterior distribution of any of the parameters, say θj can be

obtained by integrating p(θ|X) with respect all parameters except θj. That is

p(θj|X) =
∫
p(θ1, . . . , θJ) dθ1 . . . dθj−1 dθj+1 . . . dθJ (A.1.1)

where the integral is evaluated over the appropriate range of the parameters. It is

possible to calculate the marginal posterior distribution for each of the parameters

and calculate marginal posterior estimates such as the mean

θ̂j = E(θj|X) =
∫
θjp(θj|X)dθj. (A.1.2)

We may instead choose to compute conditional posterior distributions. If again

θ = (θ1, . . . , θJ), then the conditional distribution of any one of the parameters say

θk given another say θj is given by
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p(θk|θj, X) =
p(θk, θj|X)

p(θj|X)
(A.1.3)

where

p(θk, θj|X) =
∫
p(θ1, . . . , θJ |X)dθ1 . . . dθj−1 dθj+1 . . . dθk−1 dθk+1 . . . dθJ . (A.1.4)

We may now compute conditional posterior mean (and mode) estimators such

as

θ̂k = E(θk|θj, X) =
∫
θkp(θk|θj, X)dθk. (A.1.5)

or

θ̂l = E(θl|θk, θj, X) =
∫
θlp(θl|θk, θj, X)dθl. (A.1.6)

where

p(θl|θk, θj, X) =
p(θl, θk, θj|X)

p(θk, θj|X)
. (A.1.7)
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A.2 Lindley/Smith Optimization (LSO)

Lindley/Smith optimization (Lindley and Smith, 1972) is a deterministic op-

timization method that finds the joint posterior modal estimators of p(θ|X) where

θ denotes the vector of parameters, and X denotes the data.

Assume that θ = (θ1, θ2) where θ1 and θ2 are scalars and the posterior density

of θ is p(θ1, θ2|X). We have a surface in 3-Dimensional space. We have θ1 along one

axis and θ2 along the other with p(θ1, θ2|X) being the height of the surface or hill.

We want to find the top of the hill which is the same as finding the peak or

maximum of the function p(θ1, θ2|X) with respect to both θ1 and θ2. Well we find

the maximum of a surface by differentiating with respect to each variable (direction).

The maximum of the function p(θ1, θ2|X) satisfies

∂

∂θ1

p(θ1, θ2|X)
∣∣∣θ1=θ̃1

=
∂

∂θ2

p(θ1, θ2)
∣∣∣θ2=θ̃2

= 0, (A.2.1)

which is the same as

∂

∂θ1

p(θ1|θ2, X)p(θ2|X)
∣∣∣θ1=θ̃1

=
∂

∂θ2

p(θ2|θ1, X)p(θ1|X)
∣∣∣θ2=θ̃2

= 0 (A.2.2)

or

p(θ2|X)
∂

∂θ1

p(θ1|θ2, X)
∣∣∣θ1=θ̃1

= p(θ1|X)
∂

∂θ2

p(θ2|θ1, X)
∣∣∣θ2=θ̃2

= 0 (A.2.3)
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assuming that p(θ1|X) 6= 0 and p(θ2|X) 6= 0.

We can obtain the posterior conditionals (functions) p(θ1|θ2, X) and p(θ2|θ1, X)

along with their respective modes (maximum) θ̃1 = θ̃1(θ2, X) and θ̃2 = θ̃2(θ1, X).

We have the maximum of θ1, θ̃1 for a given value of (conditional on) θ2, and

the maximum of θ2, θ̃2 for a given value of (conditional on) θ1.

The optimization procedure consists of

(1) Selecting an initial value for θ2; call it θ̃
(0)
2 .

(2) Calculate the modal (maximal) value of p(θ1|θ̃(0)
2 , X), θ̃

(1)
1 .

(3) Calculate the modal (maximal) value of p(θ2|θ̃(1)
1 , X), θ̃

(1)
2 .

(4) Continue to calculate the remainder of the sequence θ̃
(1)
1 , θ̃

(1)
2 , θ̃

(2)
1 , θ̃

(2)
2 , . . . until

convergence is reached.

If the posterior conditional distributions are not unimodal, we may converge

to a local maximum and not the global maximum. If the posterior conditionals are

unimodal, then we will always converge to a global maximum.

When convergence is reached, the point estimators (θ̃1, θ̃2) are the maximum

a posteori estimators.
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This method can be generalized to more than two parameters. According to

O’Hagan (1994),

If θ is partitioned by θ = (θ1, θ2, . . . , θJ) into J groups of parameters,

we begin with a starting point θ̃(0) = (θ̃
(0)
1 , θ̃

(0)
2 , . . . , θ̃

(0)
J ) and at the ith

iteration define θ̃(i+1) by

θ̃
(i+1)
1 = θ̃1(θ̃

(i)
2 , θ̃

(i)
3 , . . . , θ̃

(i)
J ) (A.2.4)

θ̃
(i+1)
2 = θ̃2(θ̃

(i+1)
1 , θ̃

(i)
3 , . . . , θ̃

(i)
J ) (A.2.5)

...

θ̃
(i+1)
J = θ̃1(θ̃

(i+1)
2 , θ̃

(i+1)
3 , . . . , θ̃

(i+1)
J−1 ) (A.2.6)

at each step computing the maximum or mode. To apply this method we

need to determine the functions θ̃j which give the maximum of p(θ|X)

with respect to θ̃j, conditional on the fixed values of all the other elements

of θ.

This is the general form of LSO.
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A.3 Gibbs Sampling

Gibbs sampling is a stochastic method that draws random samples from the

posterior conditional distribution for each of the parameters conditional on the fixed

values of all the other parameters and the data X. Let p(θ|X) be the posterior

distribution of the parameters where θ is the set of parameters and X is the data.

Let θ is partitioned by θ = (θ1, θ2, . . . , θJ) into J groups of parameters. Ideally, we

would like to perform the integration of the joint posterior distribution to obtain

marginal posterior distributions

p(θj|X) =
∫
p(θ1, . . . , θJ) dθ1 . . . dθj−1 dθj+1 . . . dθJ (A.3.1)

and marginal posterior mean estimates

E(θj|X) =
∫
θjp(θj|X)dθj. (A.3.2)

Unfortunately, these integrations are usually of very high dimension and not

available in a closed form. This is why we need the Gibbs sampling procedure.

With the random samples drawn from the posterior conditional distributions, we

can estimate the marginal posterior distributions and the marginal posterior means.

For the Gibbs sampling, we begin with an initial value

θ̄(0) = (θ̄
(0)
1 , θ̄

(0)
2 , . . . , θ̄

(0)
J )
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and at the ith iteration define

θ̄(i+1) = (θ̄
(i+1)
1 , θ̄

(i+1)
2 , . . . , θ̄

(i+1)
J )

by the values from

θ̄
(i+1)
1 = a random sample from p(θ̄1|θ̄(i)

2 , θ̄
(i)
3 , . . . , θ̄

(i)
J , X) (A.3.3)

θ̄
(i+1)
2 = a random sample from p(θ̄2|θ̄(i+1)

1 , θ̄
(i)
3 , . . . , θ̄

(i)
J , X) (A.3.4)

...

θ̄
(i+1)
J = a random sample from p(θ̄J |θ̄(i+1)

1 , θ̄
(i+1)
2 , . . . , θ̄

(i+1)
J−1 , X) (A.3.5)

that is, at each step drawing a random sample from the conditional posterior dis-

tribution. To apply this method we need to determine the posterior conditionals of

θj, conditional on the fixed values of all the other elements of θ and X from p(θ|X).

We will have θ̄(1), θ̄(2), . . . , θ̄(s+1), . . . , θ̄(s+t). The first s random samples called

the “burn in” are discarded and the remaining t samples are kept.

The marginal posterior distributions (Equation A.3.1) are estimated by

p̄(θj) =
1

t

t∑
k=1

p(θ̄
(s+k)
j |θ̄(s+k)

1 , θ̄
(s+k)
2 , · · · , θ̄(s+k)

j−1 , θ̄
(s+k)
j+1 , · · · , θ̄(s+k)

J , X), j = 1, . . . , J

(A.3.6)

and the marginal posterior mean estimators of the parameters (Equation A.3.2) are

estimated by θ̄ = (θ̄1, . . . , θ̄J) where
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θ̄j =
1

t

t∑
k=1

θ̄
(s+k)
j , j = 1, . . . , J. (A.3.7)

A.4 Advantages of Marginalization And Conditional Esti-
mation over LSO and Gibbs Sampling

The advantage of marginalization and conditional estimation over LSO and

Gibbs sampling is that there are analytic equations for the estimators. This result

eliminates the the need for a computationally intensive method thus dramatically

reducing the computation time and convergence issues. However, this method could

not be used because we cannot obtain marginal distributions in closed form when

Φ has unknown parameters.

A.5 Advantages of LSO Over Gibbs Sampling

We will show that when Φ is known, each of the posterior conditional dis-

tributions are unimodal. Thus we do not have to worry about local maxima, we

will find global maxima. The reason one would use a stochastic procedure like

Gibbs sampling over a deterministic procedure like LSO is to eliminate the possi-

bility of converging to a local mode when the conditional posterior distribution is

multimodal.

LSO is slightly simpler to implement than Gibbs and less computationally

intensive because Gibbs sampling requires generation of random samples from the

conditionals. LSO simply has to cycle through the posterior conditional modes

and convergence is not uncertain as it is with Gibbs sampling. With LSO, we can
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check for convergence say every 1000 iterations by computing the difference between

θ
(1000k)
j and θ

(1000(k+1))
j for every j and if each element is the same to the 3rd decimal,

we can claim convergence and stop. This reduces computation time.

We do not implement LSO because when Φ has unknown parameters, the

posterior conditional is not unimodal. LSO might converge to a local maxima.

A.6 Advantages of Gibbs Sampling Over LSO

When the posterior conditionals are not recognizable as unimodal distribu-

tions, we would want to use a stochastic procedure like Gibbs sampling to eliminate

the possibility of converging to a local maxima. Although Gibbs sampling is more

computationally intensive than LSO, it is a more general method and gives us more

information such as marginal posterior estimates.

A.7 Gibbs Sampling Convergence

The Gibbs sampling procedure in the current form was introduced by Geman

and Geman, 1984. Hastings, 1970 developed essentially the same idea.

It is well known that the full posterior conditional distributions uniquely de-

termine the full joint density when the random variables have a joint distribution

whose density function is strictly positive over the sample space (Gelfand and Smith,

1990). Since the posterior conditionals uniquely determine the full joint density, they

also uniquely determine the posterior marginals. Geman and Geman showed that

under mild conditions, the following results are true.
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Result 1 (Convergence)

(θ̄
(i)
1 , θ̄

(i)
2 , . . . , θ̄

(i)
J )

d→ (θ1, θ2, . . . , θJ)

and hence for each j, θ̄
(i)
j

d→ θj ∼ p(θj) as i→∞.

Result 2 (Rate)

Using the sup norm, rather than the L1 norm, the joint density of (θ̄
(i)
1 , θ̄

(i)
2 , . . . , θ̄

(i)
J )

converges to the true joint density p(θ1, θ2, . . . , θJ) at a geometric rate in i, under

visiting in the natural order. A minor adjustment to the rate is required for an

arbitrary io visiting scheme.

Result 3 (Ergodic Theorem)

For any measurable function T of (θ̄1, θ̄2, . . . , θ̄J) whose expectation exists,

lim
s→∞

t∑
s=1

T (θ̄
(i)
1 , θ̄

(i)
2 , . . . , θ̄

(i)
J )

a.s.→ E(T (θ1, θ2, . . . , θJ)).

With these results, we are guaranteed convergence.
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B Covariance Determination

Here we describe a method to determine which correlation structure to de-

termine. The possible structures are separable independent, first order Markov,

intraclass and matrix intraclass.

B.1 Separable

(I) (ε|Φ,Ψ) ∼ N(0,Φ⊗Ψ)
(II) (f |Φ,m) ∼ N(0,Φ⊗R)
(III) (f |Φ,m) and (ε|Φ⊗Ψ) are independent

(B.1.1)

From (I)–(III) above,

p(X|Φ,Ψ,m, F,Λ) = (2π)−
Np
2 |Φ|−

p
2 |Ψ|−

N
2 e−

1
2
trΨ−1(X−FΛ′)′Φ−1(X−FΛ′) (B.1.2)

and

p(F |Φ,m) = (2π)−
Nm
2 |R|−

N
2 |Φ|−

m
2 e−

1
2
trΦ−1FR−1F ′ . (B.1.3)

Multiplying the above expressions we obtain p(F,X|Φ,m,Λ,Ψ) which can be

integrated with respect to F to obtain

p(X|Φ,m,Λ,Ψ) = (2π)−
Np
2 |Φ|−

p
2 |ΛRΛ′ + Ψ|

N
2 e−

1
2
trΦ−1X(ΛRΛ′+Ψ)−1X′ (B.1.4)

But we are not interested in Λ and Ψ so let Σ = ΛRΛ′ + Ψ and
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p(X|Φ,Σ) = (2π)−
Np
2 |Φ|−

p
2 |Σ|−

N
2 e−

1
2
trΦ−1XΣ−1X′ . (B.1.5)

The maximum likelihood estimates are

Σ̂ =
X ′Φ̂−1X

N
(B.1.6)

and

Φ̂ =
XΣ̂−1X ′

p
. (B.1.7)

We cycle between the equations. But since p < N , Φ̂ is singular. We must

consider structures for Φ.

B.2 Separable Markov

Cycle between

Σ̂ =
X ′Φ̂−1X

N
(B.2.1)

and ρ̂, where ρ̂ is the max of

ln[p(X|ρ,Σ)] = −p(N − 1)

2
ln(1− ρ2)− k1

2

1

1− ρ2
+
k2

2

ρ

1− ρ2
− k3

2

ρ3

1− ρ2
(B.2.2)

and k1, k2, and k3 are scalars that depend on Σ̂.
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Φ̂ =


1 ρ̂ ρ̂2 · · · ρ̂N−1

1 ρ̂ · · · ρ̂N−2

. . .
...
1

 (B.2.3)

B.3 Separable Intraclass

Cycle between

Σ̂ =
X ′Φ̂−1X

N
(B.3.1)

and ρ̂, where ρ̂ is the max of

ln[p(X|ρ,Σ)] = −p(N − 1)

2
ln(1− ρ)− p

2
ln[1 + ρ(N − 1)]

− c1

2

1

1− ρ
+
c2

2

ρ

(1− ρ)[1 + ρ(N − 1)]
(B.3.2)

and c1 and c2 are scalars that depend on Σ̂.

Φ̂ =



1 ρ̂ ρ̂ · · · ρ̂
1 ρ̂ · · · ρ̂

. . .
...
ρ̂
1

 (B.3.3)

B.4 Separable Independent

Σ̂ =
X ′X

N
(B.4.1)
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and

Φ̂ = IN . (B.4.2)

B.5 Matrix Intraclass

(I) (ε|Ω) ∼ N(0,Ω)
(II) (f |Θ,m) ∼ N(0,Θ)
(III) (f |Θ,m) and (ε|Ω) are independent

(B.5.1)

where

Ω =



Ψ Υ · · · Υ
Ψ

.. .
...
Υ
Ψ

 (B.5.2)

and

Θ =



R P · · · P
R

. . .
...
P
R

 .

p(x|Ψ,Υ,m, f,Λ) = (2π)−
Np
2 |Ω|−

1
2 e−

1
2

[x−(IN⊗Λ)f ]′Ω−1[x−(IN⊗Λ)f ]. (B.5.3)

and

p(f |m,R, P ) = (2π)−
Nm
2 |Θ|−

1
2 e−

1
2
f ′Θ−1f . (B.5.4)
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Going through the orthogonal transformation, integrating with respect to f ,

and neglecting the first transformed observation we find

p(Z|m,Λ,Ξ, R2) = (2π)−
(N−1)p

2 |ΛR2Λ′ + Ξ|
(N−1)

2 e−
1
2
trΦ−1Z(ΛR2Λ′+Ξ)−1Z′ (B.5.5)

But we are not interested in Λ and Ξ so let Σ = ΛR2Λ′ + Ξ and

p(Z|Φ,Σ) = (2π)−
Np
2 |Σ|−

(N−1)
2 e−

1
2
trXΣ−1X′ . (B.5.6)

The maximum likelihood estimate is

Σ̂ =
Z ′Z

N − 1
. (B.5.7)

and

Φ̂ = IN−1. (B.5.8)

B.6 Determination

Let the various covariance models be denoted by

M1 = Separable Independent

M2 = Separable Markov

M3 = Separable Intraclass
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M4 = Matrix Intraclass

We assess p(Mi), i=1,...,4 then select Mi that makes

p(Mi|Φi,Σi, Data) = p(Mi)p(Data|Φi,Σi,Mi) (B.6.1)

a maximum given Φi = Φ̂i and Σi = Σ̂i. Note that Data is either X or Z.
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C Hyperparameter Assessment

In this section, we describe the process of assessing the hyperparameters of the

prior distributions for the parameters under the separable model. Our methods are

very simple and very easy to implement. For details and more elaborate methods

see Hayashi, 1997 but we do not believe that more elaborate methods are necessary

as demonstrated by Lee 1994, and Lee and Press, 1998.

We can either a) assume that there is previous data available or b) that there

is not previous data available. We will discuss both. The previous data could be

part of the current data set used for hyperparameter assessment. Let the previous

data be Y with n observations

Hyperparameters for p(m)

a) We perform a principal components analysis on the sample covariance ma-

trix Σ̂ of the training data Y and to determine the range of values for the number

of factors m. We do this by using Kaiser’s eigenvalue-one criterion (Kaiser, 1960).

In the Kaiser criterion you select the number of factors to be that number which

has an eigenvalue greater than one. In this criterion, a factor is retained provided it

explains at least as much of the variability as one test score. We select this number

mE1 to be our most likely value and retain one more mu and one less ml. We assign

the prior probability for the number of factors to be p(ml) = p(mE1) = p(mu) = 1
3
.

b) The possible number of factors can be assigned purely subjectively and so

can their distribution.
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Hyperparameters for p(Λ|Ψ,m)

a) We assign Λ0 by performing a classical, independent data vectors factor

analysis on the training data Y and using the resulting factor loadings. We choose

to perform a principal factor analysis.

We simplify the assessment of H by assuming that H = h0Im. We assess the

hyperparameter h0 using the following method attributed to Hayashi. Maximum

likelihood estimators are obtained by replacing V ar(λ) and E(Ψ) by V ar(λ̂) and Ψ̂

in

V ar(λ) = E(Ψ)⊗H−1.

This assumes Normality.We also assume that

p∑
i=1

V ar(λ̂ij) =
p∑
i=1

V ar(λ̂ik), j 6= k

and

p∏
i=1

V ar(λ̂ij) =
p∏
i=1

V ar(λ̂ik), j 6= k

along with the large sample approximation

F ′F

N
≈ Im

so that we assess the hyperparameter h0 as
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h0 = n ,

where n is the training data sample size.

b) We may also use pure subjective prior experience where h0 determines how

much less variable the loadings are than an individual observation.

Hyperparameters for p(Ψ)

We simplify the assessment by assuming that hyperparameter B is B = b0Ip

where b0 is a scalar constant.

a) We assess the hyperparameter ν, the prior degrees of freedom by a method

due to Hayashi. We start with the Bayes estimator for the disturbance covariance

matrix

Ψ̂ =
Û

N +m+ ν − 2p− 2

where

Û = (X − F̂ Λ̂′)′(X − F̂ Λ̂′) + (Λ̂− Λ0)H(Λ̂− Λ0)′ + B̂.

We can consider Ψ̂ as a weighted average of the three terms in Û . The scalar

values associated with the terms are N , m, and ν − 2p− 2 respectively. Because we

consider the first and third terms as representing the current and training data, we

equate ν − 2p− 2 with n to obtain
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ν = n+ 2p+ 2.

The mean of the prior distribution for the disturbance covariance matrix is

E(Ψ) =
B

ν − 2p− 2
,

and since B = b0Ip the mean of any diagonal element is

E(Ψii) =
b0

ν − 2p− 2
, i = 1, . . . , p.

From the classical factor analysis model we have

Σ = ΛΛ′ + Ψ

where Σ is the covariance matrix for the observations. Substituting the training

sample covariance matrix Σ̂ and the a priori mean for the factor loadings into the

above equation we have

Ψ0 = Σ̂− Λ0Λ′0

then we take the average of the diagonal elements

1

p
tr(Ψ0) =

1

p
tr(Σ̂− Λ0Λ′0)
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as our prior mean for a diagonal element E(Ψii) of the disturbance covariance matrix.

We determine b0 as

b0 = n
1

p
tr(Ψ0).

b) We can assess B and ν by purely subjective methods.

Hyperparameters for p(F |Φ,m)

a) We assign R the correlation matrix for factor scores as

R = Im

which is the classic orthogonal model.

b) We can use previous experience to assess R.

Hyperparameters for p(ρ)

The hyperparameters α and β have the interpretation that α + β − 2 is the

effective prior sample size, and a priori, we believe that for every α − 1 times we

believe ρ = b we believe there are β − 1 times ρ = a. If for example we expressed

no prior beliefs about the value of the parameter ρ then α = 1 and β = 1 can be

used which corresponds to a vague or uninformative prior distribution.

a) These are assessed with assistance from the determined correlation struc-

ture. For example, if we determined the correlation structure to be intraclass, then

a > − 1
N−1

and b < 1. If the structure were first order Markov, then a > −1 and

b < 1.
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We assign α and β such that

(b− a)

(
α

α + β

)
− a

is equal to the either the estimated correlation value from the training data.

b) We may also assess by pure subjective prior beliefs of the correlation pa-

rameter. We do this because this is the mean of the beta distribution.

126



D Prior on the Mean

D.1 Extended PS89 Bayesian Factor Analysis

As stated in section 2.4, we can extend the Press and Shigemasu model by

assessing a prior distribution for the general mean µ instead of centering the obser-

vations with their sample mean (which is the maximum likelihood estimator). The

parameters can be estimated in the same fashion as PS89 (EPS89) or as in RP98

(ERP98).

The same factor analysis model applies and is

(x|µ,Λ, f,m) = µ + (IN ⊗ Λ) f + ε .
(Np× 1) (Np× 1) (Np×Nm) (Nm× 1) (Np× 1)

Using the same likelihood and prior distributions as in the PS89 model but

adding the prior distribution on the general mean µ

p(µ|Ψ) ∝ |IN ⊗Ψ|−
1
2 e−

1
2

(µ−µ0)′(IN⊗ψ0Ψ)−1(µ−µ0) (D.1.1)

which can be written as the matrix normal distribution

p(M |Ψ) ∝ |Ψ|−
N
2 e−

1
2
tr(ψ0Ψ)−1(M−M0)′(M−M0). (D.1.2)

We will follow the same conditional modal estimation procedure used in PS89.

127



First we find the marginal posterior density of the factor scores. Integrating

the joint posterior distribution with respect to Ψ, Λ, and M , in that order then

applying the large sample result as before, the marginal posterior distribution for

the factor scores is approximately matrix-T with mean.

F̂ ≡ (IN −XW−1X ′)−1XW−1Λ0H. (D.1.3)

where

W ≡ X ′X +B + Λ0HΛ′0 +M ′
0(ψ0)−1M0,

The posterior distribution of the general mean M given the factor scores and

the data is approximately matrix-T with mean

M̂ ≡ 1

1 + ψ0

(
IN −

ψ0

1 + ψ0

F̂Q−1

F̂
F̂ ′
)−1

[M0 + ψ0(X − F̂Q−1

F̂
(X ′F̂ + Λ0H)′)],

where we define

QF̂ ≡ (H + F̂ ′F̂ ).

In order to obtain the above equation we also assumed that H = h0Im as is

usually done.
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Taking a closer look at the equation for M̂ we see that for large samples

ψ0

1 + ψ0

F̂Q−1

F̂
F̂ ′ =

ψ0

1 + ψ0

F̂ F̂ ′

(h0 +N)
.

Now recall that F is a matrix of random variables distributed as N(0, 1) so

each element will be less than 3 in magnitude. Lets consider what happens when

we assume an extreme case where all the elements were 3. If we multiply an N ×m

matrix of 3’s by its transpose, the resulting N × N matrix has elements that are

m32 = 9m. We now have

ψ0

1 + ψ0

F̂
Q−1

F̂

2
F̂ ′ =

ψ0

1 + ψ0

9m

h0 +N
JN

where JN is an N ×N matrix of ones. With a large sample size, the above matrix is

approximately zero. This is also aided by h0 being a positive number and ψ0 being

taken as a small number between zero and one. Thus the estimator for the general

mean becomes

M̂ ≡ 1

1 + ψ0

[M0 + ψ0(X − F̂ (Λ0HQ
−1

F̂
)′)]. (D.1.4)

The posterior distribution of the factor loadings Λ given the factor scores, the

general mean, and the data is approximately matrix-T with mean

Λ̂ ≡ [(X − M̂)′F̂ + Λ0H]Q−1

F̂
. (D.1.5)

129



The posterior distribution of the disturbance covariance matrix Ψ given the

factor scores, the general mean, the factor loadings, and the data is approximately

distributed as an inverted Wishart with hyperparameter matrix

Û ≡ (X − M̂ − F̂ Λ̂′)′(X − M̂ − F̂ Λ̂′) + (Λ̂− Λ0)H(Λ̂− Λ0)′

+ (M̂ −M0)′ψ−1
0 (M̂ −M0) +B,

and hyperparameter degrees of freedom 2N +m+ ν so that

Ψ̂ ≡ Û

2N +m+ ν − 2p− 2

Ψ̂mode ≡
Û

2N +m+ ν
. (D.1.6)

We can also apply Gibbs sampling and LSO to this model.
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D.2 Extended RP98 Bayesian Factor Analysis

For Gibbs sampling, the procedure is to cycle through

Λ̄(i+1) ≡ a random sample from p(Λ|M̄(i), F̄(i), Ψ̄(i), X,m)

Ψ̄(i+1) ≡ a random sample from p(Ψ|M̄(i), F̄(i), Λ̄(i+1), X,m)

F̄(i+1) ≡ a random sample from p(F |M̄(i), Λ̄(i+1), Ψ̄(i+1), X,m)

M̄(i+1) ≡ a random sample from p(M |F̄(i+1), Λ̄(i+1), Ψ̄(i+1), X,m)

where the posterior conditional distribution of the loadings (Λ|M,F,Ψ,m,X) is

normally distributed with mean

[(X −M)′ + Λ0H](H + F ′F )−1

and covariance matrix

Ψ⊗ (H + F ′F )−1,

the posterior conditional distribution of the disturbance covariance matrix

(Ψ|M,F,Λ,m,X) has an inverted Wishart distribution with parameter matrix

U = (X−M−FΛ′)′(X−M−FΛ′)+(Λ−Λ0)H(Λ−Λ0)′+(M−M0)′ψ−1
0 (M−M0)+B

and degrees of freedom
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2N +m+ ν,

the posterior conditional distribution of the scores (F |M,Λ,Ψ,m,X) is normally

distributed with mean

(X −M)Ψ−1Λ(Im + ΛΨ−1Λ)−1

and covariance matrix

IN ⊗ (Im + ΛΨ−1Λ),

the posterior conditional distribution of the general mean (M |F,Λ,Ψ,m,X) is nor-

mally distributed with mean

1

1 + ψ0

[M0 + ψ0(X − FΛ′)]

and covariance matrix

Φ⊗
(

ψ0

1 + ψ0

Ψ

)
.

As before we will have

(M̄(1), Ψ̄(1), F̄(1), Λ̄(1))
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...

(M̄(s), Ψ̄(s), F̄(s), Λ̄(s))

(M̄(s+1), Ψ̄(s+1), F̄(s+1), Λ̄(s+1))

...

(M̄(s+t), Ψ̄(s+t), F̄(s+t), Λ̄(s+t)).

The first s random samples called the “burn in” are discarded and the remain-

ing t samples are kept. The means of the remaining random samples

F̄ =
1

t

t∑
k=1

F̄(s+k)

M̄ =
1

t

t∑
k=1

M̄(s+k)

Λ̄ =
1

t

t∑
k=1

Λ̄(s+k)

Ψ̄ =
1

t

t∑
k=1

Ψ̄(s+k)

are used as the posterior estimates of the parameters.

For LSO estimation of the parameters, we start with an initial value for M̃

and F̃ , say F̃(0) and M̃(0) then cycle through

Λ̃(i+1) ≡ [(X −M(i))
′F̃(i) + Λ0H](H + F̃ ′(i)F̃(i))

−1

Ψ̃(i+1) ≡ [(X −M(i) − F̃(i)Λ̃
′
(i+1))

′(X −M(i) − F̃(i)Λ̃
′
(i+1))

+(Λ̃(i+1) − Λ0)H(Λ̃(i+1) − Λ0)′
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+(M̃(i) −M0)′ψ−1
0 (M̃(i) −M0) +B]/(2N +m+ ν)

F̃(i+1) ≡ (X −M(i))Ψ̃
−1
(i+1)Λ̃(i+1)(Im + Λ̃′(i+1)Ψ̃

−1
(i+1)Λ̃(i+1))

−1

M̃(i+1) ≡
ψ0

1 + ψ0

[M0 + ψ0(X − F̃(i+1)Λ̃
′
(i+1))].

until convergence is reached.

D.3 Extended Correlated Bayesian Factor Analysis

Here is a description of CBFA that is extended to have a prior distribution

placed on it instead of estimating the mean by the sample mean and centering the

data.

The factor analysis model is

(x|µ,m,Λ, f) = µ + (IN ⊗ Λ) f + ε ,
(Np× 1) (Np× 1) (Np×Nm) (Nm× 1) (Np× 1)

(D.3.1)

the likelihood for the observation vector is

p(x|µ,Ω,m, f,Λ) = (2π)−
Np
2 |Ω|−

1
2 e−

1
2

[x−µ−(IN⊗Λ)f ]′Ω−1[x−µ−(IN⊗Λ)f ], Ω > 0,

(D.3.2)

where we use the same definitions as before.

We use natural conjugate prior distributions to represent our uncertainty

about the parameters and assume that the joint prior distribution for the unknown
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parameters is given by

p(µ,Ω,m, f, λ) = p(µ|Ω)p(Ω)p(m)p(f |m)p(λ|m), (D.3.3)

where p(Ω), p(m), p(f |m), p(λ|m) are the same as before and

p(µ|Ω) = (2π)−
Np
2 |ω0Ω|−

1
2 e−

1
2

(µ−µ0)′(ω0Ω)−1(µ−µ0). (D.3.4)

By Bayes’ rule, the joint posterior distribution for the unknown parameters of

interest is given by

p(µ,Ω,m, f, λ|x) ∝ p(µ,Ω,m, f, λ)p(x|µ,Ω,m, f,Λ)

∝ p(µ|Ω)p(Ω)p(λ|m)p(f |m)p(m)p(x|µ,Ω,m, f,Λ)

∝ |Ω|−
1
2 e−

1
2

(µ−µ0)′(ω0Ω)−1(µ−µ0)|Ω|−
ν
2 e−

1
2
trΩ−1A

· (2π)−
Nm
2 |Θ|−

1
2 e−

1
2

(f−f0)′Θ−1(f−f0)

· (2π)−
pm
2 |∆|−

1
2 e−

1
2

(λ−λ0)′∆−1(λ−λ0)

· p(m)|Ω|−
1
2 e−

1
2

[x−µ−(IN⊗Λ)f ]′Ω−1[x−µ−(IN⊗Λ)f ]

∝ p(m)(2π)−
(N+p)m

2 |Ω|−
(ν+2)

2 e−
1
2

(µ−µ0)′(ω0Ω)−1(µ−µ0)e−
1
2
trΩ−1A

· |Θ|−
1
2 e−

1
2
f ′Θ−1f |∆|−

1
2 e−

1
2

(λ−λ0)′∆−1(λ−λ0)

· e−
1
2

[x−µ−(IN⊗Λ)f ]′Ω−1[x−µ−(IN⊗Λ)f ] (D.3.5)
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Conditional Posterior Densities

Here we find the necessary posterior conditional densities. We find that the

conditional posterior density for the parameters in the same fashion to be

p(µ|Ω,m, f, λ, x) ∝ e
− 1

2
(µ−µ̃)′(

ω0
1+ω0

Ω)−1(µ−µ̃)

p(Ω|µ,m, f, λ, x) ∝ |Ω|−
(ν+2)

2 e−
1
2
trΩ−1U

p(f |µ,Ω,m, λ, x) ∝ e−
1
2

(f−f̃)′[Θ−1+(IN⊗Λ)′Ω−1(IN⊗Λ)](f−f̃)

p(λ|µ,Ω, f, x) ∝ e−
1
2
γ

p(m|µ,Ω, f, λ, x) ∝ p(m)(2π)−
(N+p)m

2 |Ω|−
1
2 |Θ|−

1
2 |∆|−

1
2 e−

1
2
τ

where we have defined

µ̃ =
1

1 + ω0

[µ0 + ω0(x− (IN ⊗ Λ)f)]

U = [x− µ− (IN ⊗ Λ)f ][x− µ− (IN ⊗ Λ)f ]′ + (µ− µ0)ω−1
0 (µ− µ0)′ + A

f̃ =
[
Θ−1 + (IN ⊗ Λ)′Ω−1(IN ⊗ Λ)

]−1
(IN ⊗ Λ)′Ω−1(x− µ)

γ = (λ− λ0)′∆−1(λ− λ0) + [x− µ− (IN ⊗ Λ)f ]′Ω−1[x− µ− (IN ⊗ Λ)f ]

τ = [x− µ− (IN ⊗ Λ)f ]′Ω−1[x− µ− (IN ⊗ Λ)f ] + f ′Θ−1f

+ (λ− λ0)′∆−1(λ− λ0).

The conditional posterior density of the mean given the error covariance ma-

trix, the number of factors, the factor scores, the factor loadings, and the data is

normal.The conditional posterior density of the error covariance matrix given the
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mean of the observations, the number of factors, the factor scores, the factor load-

ings, and the data is an inverted Wishart. The factor scores given the mean of the

observations, the error covariance matrix, the number of factors, the factor loadings,

and the data follows a normal distribution. The factor scores given the mean of the

observations, the error covariance matrix, the number of factors, the factor loadings,

and the data follows a normal distribution.

The conditional posterior distribution for the number of factors is not a rec-

ognizable distribution.

Gibbs Sampling Estimation

For Gibbs estimation of the posterior, we start with initial values for µ, Ω, m,

f , and λ say µ̄(0), Ω̄(0), m̄(0), f̄(0), and λ̄(0).

Then for a given number of factors m = m̄(i) cycle through

µ̄(i+1) ≡ a random sample from p(µ|Ω̄(i), m̄(i), f̄(i), λ̄(i), x)

Ω̄(i+1) ≡ a random sample from p(Ω|µ̄(i+1), m̄(i), f̄(i), λ̄(i), x)

f̄(i+1) ≡ a random sample from p(f |µ̄(i+1), Ω̄(i+1), m̄(i), λ̄(i), x)

λ̄(i+1) ≡ a random sample from p(λ|µ̄(i+1), Ω̄(i+1), m̄(i), f̄(i+1), x).

which is the Gibbs sampling algorithm.
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For the given number of factors m = m̄(i) we have the sequence

(µ̄(1), λ̄(1), Ω̄(1), f̄(1))

...

(µ̄(s), λ̄(s), Ω̄(s), f̄(s))

(µ̄(s+1), λ̄(s+1), Ω̄(s+1), f̄(s+1))

...

(µ̄(s+t), λ̄(s+t), Ω̄(s+t), f̄(s+t))

The first s random samples called the “burn in” are discarded and the remain-

ing t samples are kept. The means of the remaining random samples

µ̄ =
1

t

t∑
k=1

µ̄(s+k) (D.3.6)

Ω̄ =
1

t

t∑
k=1

Ω̄(s+k) (D.3.7)

f̄ =
1

t

t∑
k=1

f̄(s+k) (D.3.8)

λ̄ =
1

t

t∑
k=1

λ̄(s+k) (D.3.9)

are used as the posterior mean estimates of the parameters given the number of

factors m = m̄(i). We do this for each value of m, then find the value of the number

of factors m = m̄ that makes the posterior conditional distribution for the number of

factors p(m|µ̄, Ω̄, f̄ , λ̄, x) a maximum given the corresponding estimates of the other

parameters. This is the same as finding the value for the number of factors that
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gives the largest conditional posterior odds ratio. We will have (m̄, µ̄, Ω̄, f̄ , λ̄) as our

posterior estimates of the unknown parameters where (µ̄, Ω̄, f̄ , λ̄) are the estimates

conditional on m = m̄.

As before, the posterior conditional distribution for the factor loadings λ,

p(λ|µ,Ω,m, f, x), the terms in the exponent do not combine nicely to form a well

known and recognizable distribution.

139



References

[1] Alexander Basilevsky. Statistical Factor Analysis and Related Methods. John

Wiley and Sons Inc., New York, 1994.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society,

Series B, 39:1–38, 1977.

[3] J. Dongarra et. al. LAPACK routine (version 2.0) – Univ. of Tennessee, Univ.

of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab,

and Rice University March 31, 1993.

[4] A. E. Gelfand and A. F. M Smith. Sampling based approaches to calculating

marginal densities. Journal of the American Statistical Association, 85:398–409,

1990.

[5] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images. IEEE Transactions on pattern analysis and

machine intelligence, 6:721–741, 1984.

[6] W. Gilks and P. Wild. Adaptive rejection sapling for Gibbs sampling. Applied

Statistics, 41:337–348, 1992.

[7] James D. Hamilton. Time Series Analysis. Princeton University Press, Prince-

ton, New Jersey, 1994.

[8] Kentaro Hayashi. The Press-Shigemasu Bayesian Factor Analysis Model With

Estimated Hyperparameters. PhD thesis, University of North Carolina, Chapel

Hill, 1997.

140



[9] John Imbrie and Nilva Kipp. A new micropaleontological method for quantita-

tive paleoclimatology: Application to a late pleistocene caribbean core. In The

Late Cenozoic Glacial Ages, chapter 5. Yale University Press, 1971.

[10] IMSL. MATH & STAT/ LIBRARY user’s manual version 1.0, 1987.

[11] H. F. Kaiser. The application of electronic computers to factor analysis. Edu-

cation and Psychological Measurement, 20:141–151, 1960.

[12] William Kennedy and James Gentle. Statistical Computing. Marcel Dekker,

Inc., New York, 1980.

[13] Samuel Kotz and Norman Johnson, editors. Encyclopedia of Statistical Science,

volume 5. John Wiley and Sons, Inc., New York, 1985. pages 326–333.

[14] D. N. Lawley. The estimation of factor loadings by the method of maximum

likelihood. Proceedings of the Royal Society of Edinburgh, 60:64–82, 1940.

[15] Sang Eun Lee. Robustness of Bayesian Factor Analysis Estimates. PhD thesis,

University of California, Riverside, December 1994.

[16] Sang Eun Lee and S. James Press. Robustness of Bayesian factor analysis

estimates. Communications in Statistics – Theory And Methods, 27(8), 1998.

[17] D. V. Lindley and A. F. M. Smith. Bayes estimates for the linear model. Journal

of the Royal Statistical Society B, 34(1), 1972.

[18] Anthony O’Hagen. Kendalls’ Advanced Theory of Statistics, Volume 2B

Bayesian Inference. John Wiley and Sons Inc., New York, 1994.

141



[19] S. J. Press. Matrix intraclass covariance matricies with applications in agricul-

ture. Technical Report No. 49, Department of Statistics, University of Califor-

nia, Riverside, February 1979.

[20] S. J. Press and K. Shigemasu. Bayesian inference in factor analysis. In Contri-

butions to Probability and Statistics, chapter 15. Springer-Verlag, 1989.

[21] S. J. Press and K. Shigemasu. Posterior distribution for the number of factors.

Technical Report No. 208, Department of Statistics, University of California,

Riverside, April 1994.

[22] S. J. Press and K. Shigemasu. Bayesian inference in factor analysis-Revised.

Technical Report No. 243, Department of Statistics, University of California,

Riverside, May 1997.

[23] S. James Press. Applied Multivariate Analysis: Using Bayesian and Frequen-

tist Methods of Inference. Robert E. Krieger Publishing Company, Malabar,

Florida, 1982.

[24] S. James Press. Bayesian Statistics: Principles, Models, and Applications. John

Wiley and Sons, New York, 1989.

[25] Daniel B. Rowe and S. James Press. Gibbs sampling and hill climbing in

Bayesian factor analysis. Technical Report No. 255, Department of Statistics,

University of California, Riverside, May 1998.

[26] Donald Rubin and Dorothy Thayer. EM algorithms for ML factor analysis.

Psychometrika, 47(1):69–76, 1982.

142


