FMRI Activation in Image Space from k-space Data

Daniel B. Rowe^{1,2} ¹Department of Biophysics, Medical College of Wisconsin ²Division of Biostatistics, Medical College of Wisconsin

Introduction: In fMRI, image reconstruction and statistical activation are treated separately. The relationship between complex-valued encoded k-space measurements and complex-valued image measurements from reconstructed images has recently been described [1]. Here, voxel time courses are written in terms of spatio-temporal k-space measurements and voxel fMRI activation [2,3] is determined in image space from the original k-space measurements. Thus activation and reconstruction are all in a single step. This is one move closer to the actual acquired data and opens the potential for statistical modeling in k-space.

Model: Denote a complex-valued *k*-space matrix by $S_C = (S_{0R} + iS_{0I}) + (E_R + iE_I)$ [1]. Traditionally each S_C is reconstructed by pre-multiplying by the reconstruction matrix $\Omega_C = \Omega_R + i\Omega_I$ and post-multiplying by its transpose to produce the complex-valued image $R_C = (R_{0R} + iR_{0I}) + (N_R + iN_I)$. This linear reconstruction process can be equivalently described as the pre-multiplication of the complex-valued spatial frequencies in the form of a real-valued vector $s = \text{vec}(S_R, S_I)^T$ by a real-valued matrix representation $\Omega = [\Omega_1, -\Omega_2; \Omega_2, \Omega_1]$ of Ω_C where $\Omega_1 = \Omega_R \otimes \Omega_R - \Omega_I \otimes \Omega_I$ and $\Omega_2 = \Omega_R \otimes \Omega_I + \Omega_I \otimes \Omega_R$ with \otimes being the Kronecker product. This produces a real-valued vector $r = \text{vec}(R_R, R_I)^T$ containing real and imaginary parts of the complex-valued image. If the mean and covariance of s are s_0 and Γ , then they are Ωs_0 and $\Omega \Gamma \Omega^T$ for r.

In fMRI a series of slices are acquired. Let the random complex-valued spatial frequency matrix at time t be S_{Ct} and $s_t = \operatorname{vec}(S_{Rt'}S_{It})^T$, for t=1,...,n. Define a matrix $S=(s_1,...,s_n)$ and $R=\Omega S$ where the t^{th} column is the real k-space measurements stacked upon the imaginary k-space measurements for time t. All measurements can be stacked as newly defined $s=\operatorname{vec}(S)$ and $r=\operatorname{vec}(R)$. If the mean and covariance of s are s_0 and Δ , then the mean and covariance of the reconstructed voxel measurements r are $(I_n \otimes \Omega)s_0$ and $(I_n \otimes \Omega)\Delta(I_n \otimes \Omega^T)$. Thus, the fMRI voxel measurements are a linear function of the k-space measurements. We can reorder the voxel measurements to be reals then imaginaries for each successive voxel in a single column vector by the linear transformation $y=Pr=P(I_n \otimes \Omega)\Delta(I_n \otimes \Omega^T)P^T$. The data can now be modeled as in Fig. 1

$\begin{bmatrix} \begin{pmatrix} y_{R1} \\ y_{I1} \end{pmatrix} \\ \vdots \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} C_1 X & 0 \\ 0 & S_1 X \end{pmatrix}$		0	$\begin{bmatrix} \begin{pmatrix} \beta_1 \\ \beta_1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} \\ \end{pmatrix} \end{bmatrix}$	$\begin{pmatrix} \eta_{R1} \\ \eta_{I1} \end{pmatrix}$
$\begin{bmatrix} \begin{pmatrix} y_{R1} \\ y_{P1} \\ \vdots \\ \begin{pmatrix} y_{Rp} \\ y_{Ip} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} C_1 X & 0 \\ 0 & S_1 X \end{pmatrix} \\ 0 \end{bmatrix}$	•	$ \begin{bmatrix} 0 \\ \begin{pmatrix} C_p X & 0 \\ 0 & S_p X \end{bmatrix} $	$\begin{bmatrix} \mathbf{i} \\ \mathbf{\beta}_p \\ \mathbf{\beta}_p \end{bmatrix}^+ \begin{bmatrix} \mathbf{i} \\ \mathbf{j} \end{bmatrix}$	$\begin{pmatrix} \eta_{_{Rp}} \\ \eta_{_{Ip}} \end{pmatrix}$

where C_j and S_j are diagonal matrices with cosine and sine terms respectively. Different complex fMRI activation models [2,3] are found by different choices of *C* and *S*. Since Ω and *P* are known a priori, we can write $s = (I_n \otimes \Omega^{-1})P^{-1}y$ then the optimization for the regression coefficients (β) and phases (θ) could be performed in *k*-space to yield the same parameter estimates. Activations can then be computed from one of the complex activation models and thresholded [4].

Conclusion: Complex-valued voxel measurements have been written in terms of the original complex-valued *k*-space measurements. This allows the computation of statistically significant fMRI brain activation directly from the original *k*-space measurements but in image space. The correlation between voxel measurements can also be written in terms of the correlation between *k*-space measurements.

References: 1. DB Rowe et al., JNEUMETH, 159:361-369, 2007. 2. DB Rowe & BR Logan, NIMG 23:1078-1092, 2004. 3. DB Rowe, NIMG 25:1310-1324, 2005. 4. BR Logan & DB Rowe, NIMG 22:95-108, 2004.

Category: Modeling and Analysis Sub-Category: Multivariate modeling, PCA & ICA