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Abstract:

In fMRI, the objective is to image the dynam-
ically changing effective proton spin density of a
real-valued object. This is performed by selecting
a slice of tissue then applying gradients to encode
then measure the complex-valued Fourier transform
of the effective proton spin density. Due to the
magnetic field “irregularities,” the inverse Fourier
transform reconstructed object is complex-valued as
are the voxel time courses. Nearly all fMRI studies
derive functional “activation” based on magnitude-
only voxel time courses. Here the entire complex
or bivariate data are modeled rather than just the
magnitude-only data. A general nonlinear multi-
ple regression model is used to describe task re-
lated magnitude and/or phase changes within the
complex-valued signal, and likelihood ratio tests are
derived to determine statistically significant activa-
tion in each voxel.

1. Introduction

With the assumption that the noise in fMRI is
primarily due to thermal fluctuations in the scanner
hardware, the real and imaginary channels in spatial
frequency k-space are independently corrupted by
normally distributed noise. The inverse Fourier re-
ansform reconstruction procedure is linear and thus
the complex voxel time series are also normally dis-
tributed. If the k-space measurements are statis-
tically independent then the voxels are also inde-
pendent in image space. If the k-space measure-
ments are correlated then so are the voxels in image
space. Thus, it is often assumed that the noise in
each pixel can be considered to be derived from a
bivariate normal distribution with mean zero and
standard deviation o (Henkelman, 1985,1986). Al-
though the object being imaged is real, phase irreg-
ularities cause flaws in the encoding of proton spins
by magnetic field gradients and the resulting recon-
structed images are complex (Bernstein et al., 1989;
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Macovski, 1996; and Haacke et al., 1999). The com-
plex observation in every voxel at every time point is
generally transformed from rectangular coordinates
of real-imaginary to equivalent information polar
coordinates of magnitude-phase. The unique non-
linear transformation of the real-imaginary complex
data with bivariate normal distribution to equivalent
magnitude-phase data now has joint distribution in
Eqn. 1.1

p(r, ¢)

as indicicated by Rowe and Logan (2004). This joint
distribution is marginalized to the Ricean distribu-
tion for the magnitude-only data given in Eqn. 1.2
and complicated distribution for the phase-only data
given in Eqn. 1.3 (Rice, 1944; Gudbjartsson and
Patz, 1995; Rowe and Logan, 2004). In most anal-
yses the phase portion of the data is discarded and
the magnitude-only data with probability distribu-
tion function in Eqn. 1.2 is used.
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If the signal-to-noise ratio (SNR) in a voxel is large,
then the Ricean distribution in Eqn. 1.2 is well ap-
proximated by the normal distribution with mean p
and variance 2. However, if the SNR is a priori not
known to be sufficiently large or is questionable, a
more accurate approximation to the Ricean distri-
bution can be utilized (Rowe, 2005a). Most func-
tional brain activation techniques utilize only the
magnitude data and the magnitude marginal normal
distribution thus discarding all temporal phase in-
formation. Initial magnitude-only activation meth-
ods which simplified the complex image problem in-
cluded appropriate assumptions for the given im-
age resolutions (Bandettini et al., 1993; Cox et al.,
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1995; Friston et al., 1995). The high SNR from
the large voxels allowed the magnitude’s Ricean
noise to be accurately approximated by assuming the
noise was normally distributed. Voxels have become
smaller and their SNR decreased approximately lin-
early with their volume (Kruger et al., 2001). Tasks
have become more specific and intrinsic signal re-
sponse decreased thus SNR is decreased. Further-
more, the previously discarded phase information
generally contained little pertinent information as it
was significantly corrupted by relatively large mag-
netic field gradients compared to voxel size, caused
by poor magnetic field shimming and air-tissue inter-
faces. Additionally, subject motion and physiologic
noise further compounded phase measurements due
to the large magnetic field gradients across voxels.
At this time, the phase is much better and useful
information can potentially be discerned from it.

2. Complex Models

Neglecting the voxel location and treating them
individually, the complex-valued image measured
over time in a given voxel is

[Pt COS 9t + T]Rt] + ’L[pt sin 9t + T][t] ,(21)
t=1,...,n

Yt

where (ngre, n1t)’ ~ N(0,0212). The true population
magnitude is p; and phase is 6;. The distributional
specifications in Eqn. 2.1 are on the real and imag-
inary parts of the measured image and not on the
magnitude or phase. The temporally varying magni-
tude is generally described in terms of a linear model
pr = xB = Bo + Bix1e + - - - + Bqrqr where x; is the
t'" row of an n x (g + 1) design matrix X and § is
a (¢ + 1) x 1 vector of magnitude regression coeffi-
cients. Alternatively, we can represent the observed
data at time point ¢ as a 2 x 1 vector instead of as a
complex number

YRt ;3 cos 0 MRt
= . , (2.2
( Yrt ) ( Ty sin 0y Nt (22)
t=1,...,n.

The model described in Eqn. 2.2 is a very general
nonlinear multiple regression model. Rowe and Lo-
gan (2004) introduced a precursor to this model in
which the phase was temporally constant 6; = 6 in
each voxel but varied in space from voxel to voxel.
The phase is a fixed and unknown quantity, which
may be estimated voxel by voxel. Using this mag-
nitude activation in complex data with a constant
phase model, Rowe and Logan were able to obtain
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closed form analytic maximum likelihood parame-
ter estimators under the unrestricted alternative hy-
pothesis Hy : C8 # 0 to be

A _ 2437 (X' X)p
9A - %tan {[ﬁk(X/)?)IZ}(R—ﬁ;(ﬁ)é/X)ﬁJ
B8 = Brcosf+ Brsind,
.9 1 Xﬁcosé ' Xﬁcosé
R [y_( Xfsind )] [y_ ( Xf3sind ]
(2.3)

where Br = (X'X)"'X'yn, B = (X'X)"'X'yr,
and C is a d x (¢ + 1) contrast matrix. Note that
the estimate of the regression coeflicients is a lin-
ear combination or “weighted” average of estimates
from the real and imaginary parts.

Rowe and Logan were also able to obtain closed
form analytic maximum likelihood parameter esti-
mators under the restricted null hypothesis Hy :
CpB =0 tobe

j Lol 2BRYX'X)B }
9~ 2 t?n [%‘P(}(/X)ﬁﬁfﬁ;@()«xm,
B = U[Brcosf+ Brsind],
2 _ 1 |, _ X3 cosf ' B X3 cosf
— 2n y Xﬂsnl@ y Xﬁsnlo

(2.4)

where U =1, — (X'X)"'C'[C(X'X)~ ¢ 1C.
These two variance estimators were combined to
form a generalized likelihood ratio statistic with
large sample x? distribution under the null hypoth-
esis. This was verified through permutation resam-
pling of complex-valued residuals. It was also noted
that this generalized likelihood ratio statistic could
be turned into a z statistic via a signed likelihood ra-
tio statistic provided d = 1 (Rowe and Logan, 2004).
A subsequent complex-valued model was de-
scribed by Rowe and Logan (2005) in which the
phase was assumed to be unique at each time point
0 # 6y . In this magnitude activation in complex
data with an unrestricted phase model, Rowe and
Logan were able to obtain closed form analytic max-
imum likelihood parameter estimators under the un-
restricted alternative hypothesis Hy : C3 # 0 to be

ét = tanl<&>, t=1,...,n
YRt
po= (xx)ixm
o L[ (AxeN\][ [ Axp
7T 2”[y (AzXB” [y (A2X5A>],

(2.5)

where A} and /12 are diagonal matrices with cos ét
and sin ; as the t'" diagonal element. The vector r
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is the observed magnitude with t* element r; given
by v y12%t + Y-

Rowe and Logan were also able to obtain closed
form analytic maximum likelihood parameter esti-
mators under the restricted null hypothesis Hy :

CpB3 =0 to be
6, = tanl(&>, t=1,...,n
YRt
po= B,
oo L[ (AXEN] [ [ AXP
= - (s )] b (g )]

where W is as previously defined, Ay and Ay are di-
agonal matrices with cos 0, and sin 0, as the t*" diag-
onal element. The restricted regression coefficients
can also be shown to be equivalent to the magnitude-
only model because the multiplicative factor ¥ is
identical in both cases.

The likelihood ratio statistic with some algebra
was shown to be written as

x)“etes

2n62

(n—g-1)pCOX’

F
d

L(2.7)

The F statistic and equivalent likelihood ratio statis-
tic is identical to the one from the magnitude-only
model. In either case the F statistic follows the
same distribution. If the signal-to-noise ratio is large
so that r; is approximately normal, then F' follows
an Fy,_q—1 distribution under the null hypothesis,
where d is the full row rank of C'. Otherwise, one
might use the Ricean distribution (Rice, 1944; Gud-
bjartsson and Patz, 1995; Rowe, 2005a) to derive
the proper distribution of the F statistic. In either
case, the estimates of 3 and the likelihood ratio test
depend only on the magnitude data.

This magnitude activation in complex data with
an unrestricted phase model was shown to be equiva-
lent to the magnitude-only model in terms of regres-
sion coefficients and activation statistics. In essence,
deriving the magnitude-only model from complex
data.

The previously described two magnitude activa-
tion models represent the extremes in terms of tem-
poral phase change parametrization assumptions.
These being constant and completely unspecified
over time. There are many possible parameteri-
zations between these two including describing the
temporal phase changes in terms of a linear model
as in Eqn. 2.7 so that both magnitude and phase
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change linearly over time

ye = [prcosOp + g + i[pesin Oy + 0]
pr = xfB=Po+ Pzt + By Tau
0 = wyy =17 +71ui+ -+ Vg lgsr,

t=1,...,n (2.8)

where z is the #*" row of a design matrix X for
the magnitude and u} is the t** row of a design ma-
trix U for the phase. The last columns of X and
U are (different) task related reference functions.
In this model, we can determine task related mag-
nitude and/or phase changes within the observed
complex-valued time course that has a component
related to the reference function. This can be accom-
plished with magnitude and phase contrast matrices
C=(0,...,0,1) and D = (0,...,0,1).

There are four readily visible hypotheses for test-

ing
H,:CB#0, Dvy#0
Hy,:CB=0, Dy#0
H.:CB8#0, Dy=0
Hy:CB8=0, Dy=0
that can combined in different ways to form spe-

cific meaningful hypothesis pairs. The constant and
unrestricted phase models and hypotheses are sup-
ported within this framework. Other hypotheses are
possible including one sided or interval hypotheses.

The log likelihood using the joint magnitude-
phase distribution was written as

LL —nlog(2m) — Y1, logry — nlogo?

= 357 i1 | 71 + (@18)7 — 2(218) 1 cos(¢r — upy)
—_————

—nlog(2m) — Y7 logrs — nlogt;t2
—g7 [(r = XB) (r = XB) +2(r — 1) X ]

+Y'(CB—0) +6(Dy —0)

and iteratively maximized under the unconstrained
null and constrained alternative hypotheses to yield
estimates Hy : (3,7,62) and Hy : (3,4,52). The ap-
propriate Lagrange constraints are retained or omit-
ted appropriately. These maximum likelihood esti-
mates are utilized in a generalized likelihood ratio
test statistic.

3. Application to fMRI dataset

A Dbilateral finger tapping experiment was per-
formed in a block design with 16s off followed by
eight epochs of 16s on and 16s off. Scanning was
performed using a 1.5T GE Signa in which 5 ax-
ial slices of size 96 x 96 were acquired. In image
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reconstruction, the acquired data was zero filled to
128 x 128. After Fourier image reconstruction, each
voxel has dimensions in mm of 1.5625 x 1.5625 x 5,
with TE= 47ms. Observations were taken every
TR= 1000ms so that there are 272 in each voxel.
Data from a single axial slice through the motor
cortex was selected for analysis. Pre-processing us-
ing an ideal 0/1 frequency filter was performed to
remove respiration and low frequency physiological
noise in addition to the removal of the first three
points to omit signal equilibration effects. Where
necessary, the phase time courses were unwrapped
for jumps greater than 7 between successive obser-
vations.

The abovementioned activation models were fit
to the data with an intercept, a zero mean time
trend, and a 41 square wave reference function.
In Fig. 1(a)-(c) are 5% Bonferroni familywise er-
ror (FWE) rate thresholded x2-statistic activation
maps with real fMRI data for (a) the complex un-
restricted phase (UP) or usual magnitude-only data
model; (b) and a phase-only (PO) data model (ac-
tivation from phase-only data assuming normality);
(c) the Rowe-Logan complex constant phase (CP)
activation model. In Fig. 1(d)-(h) are 5% Bonferroni
familywise error (FWE) rate thresholded y?-statistic
activation maps from the five hypothesis pairs from
the complex linear magnitude and/or phase model
for (d) Hq vs Hy, (d) Hg vs Hy, (f) Hq vs H, (g)H,
vs H,, and (h) Hy, vs H,.

The activation maps for voxels within the brain
in Figs.1 (¢), (f), and (h) are similar, as are those
in Figs. 1(b), (e), and (g). The above threshold ac-
tivated voxels in Fig. 1(c) appear to be a subset of
those in Fig. 1(a). The above threshold voxel acti-
vation map in Fig. 1(h) appears to be a combination
of those in Figs. 1(b) and (c).

4. Conclusions

A very general complex data fMRI activation
model was presented as an alternative to the typi-
cal magnitude-only data model. Activation statis-
tics were derived from generalized likelihood ra-
tio tests and applied on real data. It was found
that the magnitude-only data model declares vox-
els as active regardless of any phase changes, phase-
only data model declares voxels as active regard-
less of any magnitude changes, and the five com-
plex linear phase models were sensitive to different
(CNR,TRPC) combinations. The complex linear
phase model is very general and includes all previ-
ously introduced activation models as special cases.
Perhaps this model will reach its full potential with
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other experimental data acquisition methods such as
flow tagging or steady state free precession. There
are indications that this model might be useful in
eliminating unwanted voxels due to venous contri-
butions to the BOLD signal (Rowe, 2005; Nencka
and Rowe, 2005).
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Figure 1: Bonferroni 5% thresholded activation statistics.

(a) UP/MO (b) PO (c) CP
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