
For clarity of presentation, the case where ΣRjj=ΣIjj is

considered. The correlation matrices are computed as

R =D -1/2 D -1/2 and RΛ=DΛ
-1/2 DΛ

-1/2 where R and RΛ are

diagonal with variances from Σ and Λ.

Methods
Linear operators for three common k-space image

processing techniques were created. A 32×32 image

acquisition matrix was considered. These operators include:

a Gaussian smoothing filter with an image-space FWHM of

1.1774 voxels; a Tukey apodization filter commonly used in

spiral reconstruction with a plateau width of 12 voxels and a

slope width of 4 voxels; and an operator to perform

extrapolation of the symmetric half of k-space as is common

in partial k-space acquisitions. The complex data image-

space covariance matrix Σ and corresponding magnitude

squared covariance matrix Λ were computed and

correlation matrices R and RΛ were determined from them.

Image-space correlations for the center voxel after applying

the processes individually and serially are shown in Fig. 1.

Results
Correlations from k-space pre-processing are as expected.

From the above equations, magnitude squared correlations

are less than complex correlations when , and the complex

data variance is one. When simple convolution is applied as
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Introduction
Correlations between image-space voxels over time have

been used to identify functionally connected regions of the

cortex of subjects in the resting state (1). Such analysis

assumes that image-space voxel correlations arise only

from physiologic fluctuations. Much work has been done to

temporally filter the image-space voxel time series to

frequency windows in which voxel correlations arise from

functional physiologic correlations. However, little

consideration has been made of the commonly used image

processing techniques which necessarily induce voxel

correlations in image-space. Such image processing

techniques, however, alter the observed time series

correlations as one voxel’s signal may be spread over

several voxels. Some work has been done to consider the

contributions of common image processing techniques on

the correlations of the complex-valued image-space

observations (2,3). This extends the previous work to the

more relevant correlations within the magnitude-squared

data, which are asymptotically equivalent to the magnitude

correlations, as most correlation studies consider magnitude

data.

Theory
It has been shown that correlations in complex-valued

image-space data caused by common image preprocessing

can be determined by linear algebra (2). Consider the

complex-valued image data with a real-valued isomorphism

of a vector of real observations stacked above imaginary

observations (4). Let Οk be a linear operation performed on

the complex-valued k-space observations, Ω be a Fourier

reconstruction matrix, and Οr be a linear operation

performed on the reconstructed complex-valued image-

space observations. Then if s0 and Γ are the true mean and

covariance matrix of the k-space observations, the resulting

image-space mean image is μ=ΟrΩΟks0 and covariance

matrix is Σ=ΟrΩΟkΓΟk
TΩTΟr

T. This image space covariance

matrix can be written as Σ=[ΣR,ΣRI;ΣRI',ΣI] where ΣR, is the

within real observations covariance matrix, ΣI is the within

imaginary observations covariance matrix, and ΣRI is the

between real and imaginary observations covariance matrix.

Define Ajj=[ΣRjj,ΣRIjj;ΣRIjj,ΣIjj] and Ajj=[ΣRjj,ΣRIjj;ΣRIjj,ΣIjj]. Then

assuming normally distributed k-space observations, the

mean of a magnitude square observation in voxel j is

τj=tr(Ajj)+μj'μj, the variance is Λjj=2tr(AjjAjj')+4μj'Ajjμj, and the

covariance between voxels j and k is given by

Λjk=2tr(BjkBjk')+4μj'Bjkμk. In the above, μj=(ρjcosθj,ρjsinθj)' is

the reconstructed real and imaginary observations of voxel j

with magnitude and phase ρj and θj. To examine the effects

only from image processing, the image data is examined

with a k-space mean of zero (s0=0) and identity covariance

matrix ( =I). Thus the image-space covariance matrix

simplifies to Σ=ΟrΩΟkΟk
TΩTΟr

T.
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n the cases of smoothing and apodization, the image-

spacecorrelations reflect convolution with the Fourier

transform of the k-space kernel. This method allows the

examination of induced image-space correlations from

nonintuitive processes. It is seen that slight correlations in

the phase encode direction are induced by homodyne

reconstruction.

Conclusion
The image-space correlations that are induced by multiple

image-processing steps can be easily considered in this

framework. This theoretical work provides the basis for

future work to improve functional connectivity studies. By

quantifying the image-space correlations caused by pre-

processing methods, the pre-processing induced

correlations can be removed and separated from the true

biological correlations. After removal of induced

correlations, cleaner biological correlations will remain. This

will enhance and refine all future fMRI connectivity studies.
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Fig. 1 Image-space correlations for center voxel in real and magnitude squared data. Center 2 of 256 colorbar values black. 
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