Induced Correlation In FMRI Magnitude Data From k-Space Preprocessing Daniel B. Rowe¹ and Andrew S. Nencka¹

Introduction

Correlations between image-space voxels over time have been used to identify functionally connected regions of the cortex of subjects in the resting state (1). Such analysis assumes that image-space voxel correlations arise only from physiologic fluctuations. Much work has been done to temporally filter the image-space voxel time series to frequency windows in which voxel correlations arise from functional physiologic correlations. However, little consideration has been made of the commonly used image processing techniques which necessarily induce voxel correlations in image-space. Such image processing techniques, however, alter the observed time series correlations as one voxel's signal may be spread over several voxels. Some work has been done to consider the contributions of common image processing techniques on the correlations of the complex-valued image-space observations (2,3). This extends the previous work to the more relevant correlations within the magnitude-squared data, which are asymptotically equivalent to the magnitude correlations, as most correlation studies consider magnitude data.

Theory

It has been shown that correlations in complex-valued image-space data caused by common image preprocessing can be determined by linear algebra (2). Consider the complex-valued image data with a real-valued isomorphism of a vector of real observations stacked above imaginary observations (4). Let O_k be a linear operation performed on the complex-valued k-space observations, Ω be a Fourier reconstruction matrix, and O_r be a linear operation performed on the reconstructed complex-valued imagespace observations. Then if s_0 and Γ are the true mean and covariance matrix of the k-space observations, the resulting image-space mean image is $\mu = O_r \Omega O_k s_0$ and covariance matrix is $\Sigma = O_r \Omega O_k \Gamma O_k^T \Omega^T O_r^T$. This image space covariance matrix can be written as $\Sigma = [\Sigma_R, \Sigma_{RI}; \Sigma_{RI}', \Sigma_I]$ where Σ_R , is the within real observations covariance matrix, Σ_I is the within imaginary observations covariance matrix, and Σ_{RI} is the between real and imaginary observations covariance matrix. Define $A_{jj} = [\Sigma_{Rjj}, \Sigma_{RIjj}; \Sigma_{RIjj}, \Sigma_{Ijj}]$ and $A_{jj} = [\Sigma_{Rjj}, \Sigma_{RIjj}; \Sigma_{RIjj}, \Sigma_{Ijj}]$. Then assuming normally distributed k-space observations, the mean of a magnitude square observation in voxel j is $\tau_i = tr(A_{ii}) + \mu_i'\mu_i$, the variance is $\Lambda_{ii} = 2tr(A_{ii}A_{ii}') + 4\mu_i'A_{ii}\mu_i$, and the covariance between voxels j and k is given by $\Lambda_{ik} = 2 \operatorname{tr}(B_{ik}B_{ik}') + 4\mu_i'B_{ik}\mu_k$. In the above, $\mu_i = (\rho_i \cos\theta_i, \rho_i \sin\theta_i)'$ is the reconstructed real and imaginary observations of voxel j with magnitude and phase ρ_i and θ_i . To examine the effects only from image processing, the image data is examined with a k-space mean of zero ($s_0=0$) and identity covariance matrix ($\Gamma = I$). Thus the image-space covariance matrix simplifies to $\Sigma = O_r \Omega O_k O_k^T \Omega^T O_r^T$.

¹Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA

For clarity of presentation, the case where $\Sigma_{Rjj} = \overline{\Sigma}_{Ijj}$ considered. The correlation matrices are computed $R_{\Sigma} = D_{\Sigma}^{-1/2} \Sigma D_{\Sigma}^{-1/2}$ and $R_{\Lambda} = D_{\Lambda}^{-1/2} \Sigma D_{\Lambda}^{-1/2}$ where R_{Σ} and R_{Λ} a diagonal with variances from Σ and Λ .

Methods

Linear operators for three common k-space image processing techniques were created. A 32×32 image acquisition matrix was considered. These operators includ a Gaussian smoothing filter with an image-space FWHM 1.1774 voxels; a Tukey apodization filter commonly used spiral reconstruction with a plateau width of 12 voxels and slope width of 4 voxels; and an operator to perfor extrapolation of the symmetric half of k-space as is commo in partial k-space acquisitions. The complex data image space covariance matrix Σ and corresponding magnitud squared covariance matrix Λ were computed a correlation matrices R_{Σ} and R_{Λ} were determined from ther Image-space correlations for the center voxel after applying the processes individually and serially are shown in Fig. 1.

Results

Correlations from k-space pre-processing are as expecte From the above equations, magnitude squared correlation are less than complex correlations when , and the complex data variance is one. When simple convolution is applied as

Fig. 1 Image-space correlations for center voxel in real and magnitude squared data. Center 2 of 256 colorbar values black.

is	n the cases of smoothing and apodization. the ima
as	spacecorrelations reflect convolution with the Fou
are	transform of the <i>k</i> -space kernel. This method allows examination of induced image-space correlations finded nonintuitive processes. It is seen that slight correlations
ge ae	the phase encode direction are induced by homod reconstruction.
le:	Conclusion
of	The image-space correlations that are induced by mult
in	image-processing steps can be easily considered in
la	framework. This theoretical work provides the basis
rm	future work to improve functional connectivity studies.
on	quantifying the image-space correlations caused by
je-	processing methods, the pre-processing indu
de	correlations can be removed and separated from the
nd	biological correlations. After removal of indu
m.	correlations, cleaner biological correlations will remain.
ng	will enhance and refine all future fMRI connectivity studie
	References
	1. Biswal, Yetkin, Haughton, Hyde MRM 34:537-541, 19
ed.	2. Nencka, Rowe. ProcOHBM S55:284, 2007.
ns	3. Nencka, Rowe ProcISMRM 2457, 2008.

4. Rowe, Nencka, Hoffmann JNSciMeth. 159:361-9, 2007.

Acknowledgements: Funded in part by NIH R01EB00215 and T32MH019992.

rier the rom s in vne

tiple this for By oreced true ced ⁻his

995.

